首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In Central Africa, important carbon stocks are stored in natural forest stands, while activities that modify the carbon storage occur in the forest landscape. Besides clean development mechanisms, the reduction of emission through deforestation and degradation (REDD) initiative is viewed as one way to mitigate climate change. Important forest habitat protection activities have already been implemented with the aim of conserving the biodiversity of the region in a sustainable manner. The main causes of land use changes in the region are small holder subsistence practices and logging activities. Agricultural production has low productivity levels and therefore investments in improved agricultural techniques can both reduce pressure on existing forests and perhaps allow for the reforestation of existing degraded lands. The logging industry is dominated by large, industrial scale, logging operations performing selective logging of specific species and large trees. The adoption of improved forest management practices can reduce the impact of such logging on the ecological integrity and carbon stocks. Some efforts to engage in the carbon market have begun in the region. Further research is needed into the types of projects that will most likely become successful in the region and what locations will offer the greatest benefits.  相似文献   

2.
The vulnerability of forest ecosystem services to climate change is expected to depend on landscape characteristic and management history, but may also be influenced by the proximity to the southern range limit of constituent tree species. In the Western Rhodopes in South Bulgaria, Norway spruce is an important commercial species, but is approaching its current southern limit. Using climate sensitive forest models, we projected the impact of climate change on timber production, carbon storage, biodiversity and soil retention in two representative landscapes in the Western Rhodopes; a lower elevation landscape (1000–1450 m a.s.l) dominated by mixed species forests, and a higher elevation landscape (1550–2100 m a.s.l.) currently dominated by spruce. In both landscapes climate change is projected to induce a shift in forest composition, with drought-sensitive species, such as Norway spruce, being replaced by more drought-tolerant species such as Scots pine and black pine at lower elevations. In the higher elevation landscape a reduction in spruce growth is projected, particularly under the more severe climate change scenarios. Under most climate scenarios a reduction in growing stock is projected to occur, but under some scenarios a moderate increase in higher elevation stands (>1500 m a.s.l.) is expected. Climate change is projected to negatively influence carbon storage potential across landscapes with the magnitude depending on the severity of the climate change scenario. The impact of climate change on forest diversity and habitat availability is projected to differ considerably between the two landscapes, with diversity and habitat quality generally increasing at higher elevations, and being reduced at lower elevations. Our results suggest that if currently management practices are maintained the sensitivity of forests and forest ecosystem services in the Western Rhodopes to climate change will differ between low and higher elevation sites and will depend strongly on current forest composition.  相似文献   

3.
以三峡库区为研究地点,建立库区优势树种立木生物量模型,并测定乔木含碳系数,结合库区第7次和第8次森林资源连续清查数据,估算了整个三峡库区乔木林的生物量和碳储量。研究结果表明:(1)整个库区乔木林生物量和碳储量第7次调查为12 583×104t和6 471×104t,单位面积生物量75.70t/hm2,碳密度38.93t/hm2,第8次调查为14 253×104t和7 396×104t,单位面积生物量77.46t/hm2,碳密度40.20t/hm2。可见,这5a中,三峡库区生物量和碳储量都有所增加。(2)对于不同森林植被类型来说,松类的生物量和碳储量都显著高于其他类型,分别占三峡库区生物量和碳储量的40%和50%。(3)三峡库区森林植被生物量和碳储量随龄级增大先增大后减少,在中龄林时达到最大,比较两次调查的生物量和碳储量,森林植被主要以幼林龄和中龄林占优。(4)两次调查显示三峡库区森林植被生物量和碳储量主要分布在天然林中,对于碳汇起到主要作用,同时,人工林所占的比例有所提高,其碳汇能力也逐步提高。  相似文献   

4.
Vegetation distribution on Tibetan Plateau under climate change scenario   总被引:4,自引:0,他引:4  
The impact of climate change on distribution of vegetation is an important aspect in studies on the responses of ecosystems to the climate change. Particularly in the sensitive environments of the Tibetan Plateau, vegetation distribution may be significantly affected by climate change. In this research, the coupled biogeography and biogeochemistry model, BIOME4, was modified according to the features of vegetation distribution on the Plateau, and the Kappa statistic was used to evaluate the modeling results by comparing the simulated vegetation distribution with the existing 1:1,000,000 vegetation map of China. The comparison showed that modified model was appropriate for simulating the overall vegetation distribution on the Plateau. With the improved BIOME4 model, possible changes in the vegetation distribution were simulated under climate change scenarios. The simulated results suggest that alpine meadows, steppes, and alpine sparse/cushion vegetation and deserts would shrink, while shrubs, broad-leaved forests, coniferous-broad-leaved mixed forests, and coniferous forests would expand. Among these types, shrubs, alpine meadows, and steppes would change the most. The shrubs vegetation would expand toward the northwest, replacing most alpine meadows and part of steppes, and thus causing their shrinkages. Yet broad-leaved forests and coniferous-broad-leaved mixed forests demonstrated smaller changes in their distributions. For all the forest types, the area of coniferous forests would increase the most by spreading to the interior of the Plateau.  相似文献   

5.
As climate is an important driver of vegetation distribution, climate change represents an important challenge to forestry. We (1) identify prevailing bioclimatic conditions for 49 relevant forest species in Portugal and (2) assess future shifts under climate change scenarios. We compute two bioclimatic indices (aridity and thermicity) and a new composite index, at ~1 km spatial resolution, and overlap with the species’ current ranges. Locations are based on a digital inventory, while climate parameters for both recent-past (1950–2000) and future climates (2041–2060), under RCP4.5 and RCP8.5, are provided by a multi-model ensemble of climate simulations. Results for future scenarios highlight an overall warming and drying trend. Supramediterranean and mesomediterranean climates will be significantly reduced, while thermomediterranean climates will dramatically increase, from their almost absence in current conditions to an area coverage of ~54 % in 2041–2060 for RCP8.5. There is also a clear shift from hyper-humid and humid to sub-humid and from the latter to semi-arid climates (area coverage of ~13 % in 2041–2060 for RCP8.5). Lower thermomediterranean sub-humid to semi-arid zones will cover the southern half of Portugal. These projections identify the most vulnerable (e.g. Betula pubescens, Quercus pyrenaica and Castanea sativa) and the most adapted (e.g. Quercus suber, Q. rotundifolia, Ceratonia siliqua, Pinus pinea, Quercus coccifera) species in future climates. Current bioclimatic zones associated with Eucalyptus globulus and Pinus pinaster, economically relevant species, will be moderately reduced and relocated. Possible adaptation measures are discussed to improve forest resilience to climate change, while maintaining its economic and environmental benefits.  相似文献   

6.
Recent climate change is already affecting both ecosystems and the organisms that inhabit them, with mountains and their associated biota being particularly vulnerable. Due to the high conservation value of mountain ecosystems, reliable science-based information is needed to implement additional conservation efforts in order to ensure their future. This paper examines how climate change might impact on the distribution of the main alpine and subalpine vegetation in terms of losses of suitable area in the Oriental Pyrenees. The algorithm of maximum entropy (Maxent) was used to relate current environmental conditions (climate, topography, geological properties) to present data for the studied vegetation units, and time and space projections were subsequently carried out considering climate change predictions for the years 2020, 2050 and 2080. All models predicted rising altitude trends for all studied vegetation units. Moreover, the analysis of future trends under different climate scenarios for 2080 suggests an average loss in potential ranges of 92.3–99.9 % for alpine grasslands, 76.8–98.4 % for subalpine (and alpine) scrublands and 68.8–96.1 % for subalpine forest. The drastic reduction in the potential distribution areas for alpine grasslands, subalpine scrublands and Pinus uncinata forests highlights the potential severity of the effects of climate change on vegetation in the highest regions of the Pyrenees. Thus, alpine grasslands can be expected to become relegated to refuge areas (summit areas), with their current range being taken over by subalpine scrublands. Furthermore, subalpine forest units will probably become displaced and will occupy areas that currently present subalpine scrub vegetation.  相似文献   

7.
Loss of forest cover is a likely consequence of climate change in many parts of the world. To test the vulnerability of eucalypt forests in Australia’s island state of Tasmania, we modelled tree canopy cover in the period 2070–2099 under a high-emission scenario using the current climate–canopy cover relationship in conjunction with output from a dynamically downscaled regional climate model. The current climate–canopy cover relationship was quantified using Random Forest modelling, and the future climate projections were provided by three dynamically downscaled general circulation model (GCM) simulations. Three GCMs were used to show a range of projections for the selected scenario. We also explored the sensitivity of key endemic and non-endemic Tasmanian eucalypts to climate change. All GCMs suggested that canopy cover should remain stable (proportional cover change <10 %) across ~70 % of the Tasmanian eucalypt forests. However, there were geographic areas where all models projected a decline in canopy cover due to increased summer temperatures and lower precipitation, and in addition, all models projected an increase in canopy cover in the coldest part of the state. The model projections differed substantially for other areas. Tasmanian endemic species appear vulnerable to climate change, but species that also occur on the mainland are likely to be less affected. Given these changes, restoration and carbon sequestration plantings must consider the species and provenances most suitable for future, rather than present, climates.  相似文献   

8.
Although the terrestrial carbon budget is of key importance for atmospheric CO2 concentrations, little is known on the effects of management and natural disturbances on historical carbon stocks at the regional scale. We reconstruct the dynamics of vegetation carbon stocks and flows in forests across the past 100 years for a valley in the eastern Swiss Prealps using quantitative and qualitative information from forest management plans. The excellent quality of the historical information makes it possible to link dynamics in growing stocks with high-resolution time series for natural and anthropogenic disturbances. The results of the historical reconstruction are compared with modelled potential natural vegetation. Forest carbon stock at the beginning of the twentieth century was substantially reduced compared to natural conditions as a result of large scale clearcutting lasting until the late nineteenth century. Recovery of the forests from this unsustainable exploitation and systematic forest management were the main drivers of a strong carbon accumulation during almost the entire twentieth century. In the 1990s two major storm events and subsequent bark beetle infestations significantly reduced stocks back to the levels of the mid-twentieth century. The future potential for further carbon accumulation was found to be strongly limited, as the potential for further forest expansion in this valley is low and forest properties seem to approach equilibrium with the natural disturbance regime. We conclude that consistent long-term observations of carbon stocks and their changes provide rich information on the historical range of variability of forest ecosystems. Such historical information improves our ability to assess future changes in carbon stocks. Further, the information is vital for better parameterization and initialization of dynamic regional scale vegetation models and it provides important background for appropriate management decisions.  相似文献   

9.
Climate change is expected to cause shifts in species distributions worldwide, threatening their viability due to range reductions and altering their representation in protected areas. Biodiversity hotspots might be particularly vulnerable to climate change because they hold large numbers of species with small ranges which could contract even further as species track their optimal habitat. In this study, we assessed the extent to which climate change could cause distribution shifts in threatened and range-restricted birds in Colombia, a megadiverse region that includes the Tropical Andes and Tumbes-Choco-Magdalena hotspots. To evaluate how climate change might influence species in this region, we developed species distribution models using MAXENT. Species are projected to lose on average between 33 and 43 % of their total range under future climate, and up to 18 species may lose their climatically suitable range completely. Species whose suitable climate is projected to disappear occur in mountainous regions, particularly isolated ranges such as the Sierra Nevada de Santa Marta. Depending on the representation target considered, between 46 and 96 % of the species evaluated may be adequately represented in protected areas. In the future, the fraction of species potentially adequately represented is projected to decline to 30–95 %. Additional protected areas may help to retain representativeness of protected areas, but monitoring of species projected to have the largest potential declines in range size will be necessary to assess the need of implementing active management strategies to counteract the effects of climate change.  相似文献   

10.
Climate change has in the past led to shifts in vegetation patterns; in a future, warmer climate due to enhanced greenhouse-gas concentrations, vegetation is also likely to be highly responsive to such warming. Mountain regions are considered to be particularly sensitive to such changes. In this paper we present an approach to assess the impact of climate change on long-term vegetation plots at the high-elevation site of the Schynige Platte, 2000 m above sea level, in the Bernese Alps (Switzerland). Records of vegetation spanning the period from 1928 to today at two different sites, each with several plots, were considered. The observed change in the species composition was then related to changes in land use and climate. We used daily values of temperature, snow and precipitation from several high-elevation weather stations to conduct these analyses. The correlation between climate and vegetation patterns revealed that species that prefer low thermal conditions move out of the plots, i.e., their frequency of occurrence is negatively correlated with the average number of degree-days over the last six decades. On the other hand, species with higher thermal demands are seen to be invading the plots, i.e., their frequency of occurrence is positively correlated to the average number of degree-days. Nutrient changes – though independent from climate – also play an important role in the observed shifts in species. Received: 20 June 1999 · Accepted: 14 January 2000  相似文献   

11.
Grazing is the main land use in semi-arid regions of the world, and sustainable management practices are urgently needed to prevent their degradation. However, how different grazing intensities affect forest density and ecosystem functions is often not sufficiently understood to allow for management adaptations that safeguard the ecosystems and their functions in the long run. We assessed the aboveground carbon stocks and plant densities along a grazing gradient in the semi-arid seasonally dry tropical forest of north-eastern Brazil (Caatinga). On 45 study plots, we analysed the aboveground carbon stocks of the vegetation and determined forest density and recruitment as well as the population structure of the most abundant tree species. Grazing intensity was accounted for based on the weight of livestock droppings and classified as low, intermediate, or high. Mean aboveground carbon stock was 15.74?±?1.92 Mg ha?1 with trees and shrubs accounting for 89% of the total amount. Grazing at high intensities significantly reduced aboveground carbon stocks of herbs but not of other plant functional types. Instead, aboveground carbon stocks of trees and shrubs were negatively related to altitude above sea level, which is a proxy for reduced water availability along with lower anthropogenic impact. The population structure of the most common tree species was characterised by abundant recruitment, irrespective of grazing, whereas the recruitment of less frequent woody species was negatively affected by grazing. Overall, our data imply that grazing and forage management need to be adapted, including the reduction of free-roaming livestock and storage of fodder, to maintain carbon storage and forest density.  相似文献   

12.
Conservation efforts in isolated archipelagos such as Hawaii often focus on habitat-based conservation and restoration efforts that benefit multiple species. Unfortunately, identifying locations where such efforts are safer from climatic shifts is still challenging. We aimed to provide a method to approximate these potential habitat shifts for similar data- and research-limited contexts. We modeled the relationship between climate and the potential distribution of native biomes across the Hawaiian archipelago to provide a first approximation of potential native biome shifts under end-of-century projected climate. Our correlative model circumvents the lack of data necessary for the parameterization of mechanistic vegetation models in isolated and data-poor islands. We identified locations consistently expected to remain the same in terms of the native biome compatibility by the end of the century with a robust evaluation of sources of uncertainty in our projections. Our results show that, despite large differences in climate projections considered, 35% of the areas considered are consistently projected to maintain their current compatibility to native biomes. By integrating our native biome compatibility projections with maps of current actual cover, we identified areas ideal for long-term habitat conservation and restoration. Our modeling approach can be used with relatively simple data; offers multiple forms of projection confidence estimates, model calibration, and variable selection routines; and is compatible with ensemble projections. This method is not only applicable to potential native cover, as done in this study, but to any set of vegetation classes that are related to environmental predictors available for modeling.  相似文献   

13.
China is a key vulnerable region of climate change in the world. Climate warming and general increase in precipitation with strong temporal and spatial variations have happened in China during the past century. Such changes in climate associated with the human disturbances have influenced natural ecosystems of China, leading to the advanced plant phenology in spring, lengthened growing season of vegetation, modified composition and geographical pattern of vegetation, especially in ecotone and tree-lines, and the increases in vegetation cover, vegetation activity and net primary productivity. Increases in temperature, changes in precipitation regime and CO2 concentration enrichment will happen in the future in China according to climate model simulations. The projected climate scenarios (associated with land use changes again) will significantly influence Chinese ecosystems, resulting in a northward shift of all forests, disappearance of boreal forest from northeastern China, new tropical forests and woodlands move into the tropics, an eastward shift of grasslands (expansion) and deserts (shrinkage), a reduction in alpine vegetation and an increase in net primary productivity of most vegetation types. Ecosystems in northern and western parts of China are more vulnerable to climate changes than those in eastern China, while ecosystems in the east are more vulnerable to land use changes other than climate changes. Such assessment could be helpful to address the ultimate objective of the United Nations Framework Convention on Climate Change (UNFCCC Article 2).  相似文献   

14.
基于林业生态功能和青海省森林资源清查数据,采用森林植被生物量换算因子连续函数法,系统估算与分析青海省森林植被碳储量、碳密度,研究其近20 a碳储量变化并进行现状分析。结果表明:(1)青海省森林碳储量为11 182 64222 t,占同时期全国总碳储量的198%,青海省森林生态系统中面积占较大比重的中龄林,其碳储量尚未达到最大,有较大发展空间;(2)青海省近20 a天然林类型中碳储量较大的前4种分别是:柏木(Cupressus funebris)、桦木(Betula)、杨树(Populus)、云杉(Picea asperata)天然林,表明这几种天然林在青海省森林植被中占有重要的地位,其集中分布对区域生态功能的发挥起主导作用;(3)所采用的碳储量估算方法尚存不足,在以后计算中应考虑根据不同林分类型的含碳量进行计算  相似文献   

15.
European forestry is facing many challenges, including the need to adapt to climate change and an unprecedented increase in forest damage. We investigated these challenges in a Norway spruce-dominated mountain region in Central Europe. We used the model Sibyla to explore forest biomass production to the year 2100 under climate change and under two alternative management systems: the currently applied management (CM), which strives to actively improve the forest’s adaptive capacity, and no management (NM) as a reference. Because biodiversity is thought to have mostly positive effects on the adaptive capacity of forests and on the quality of ecosystem services, we explored how climate change and management affect indicators of biodiversity. We found a differential response across the elevation-climatic gradient, including a drought-induced decrease in biomass production over large areas. With CM, the support of non-spruce species and the projected improvement of their growth increased tree species diversity. The promotion of species with higher survival rates led to a decrease in forest damage relative to both the present conditions and NM. NM preserved the high density of over-matured spruce trees, which caused forest damage to increase. An abundance of dead wood and large standing trees, which can increase biodiversity, increased with NM. Our results suggest that commercial spruce forests, which are not actively adapted to climate change, tend to preserve their monospecific composition at a cost of increased forest damage. The persisting high rates of damage along with the adverse effects of climate change make the prospects of such forests uncertain.  相似文献   

16.
Climate change is one of the main factors that will affect biodiversity in the future and may even cause species extinctions. We suggest a methodology to derive a general relationship between biodiversity change and global warming. In conjunction with other pressure relationships, our relationship can help to assess the combined effect of different pressures to overall biodiversity change and indicate areas that are most at risk. We use a combination of an integrated environmental model (IMAGE) and climate envelope models for European plant species for several climate change scenarios to estimate changes in mean stable area of species and species turnover. We show that if global temperature increases, then both species turnover will increase, and mean stable area of species will decrease in all biomes. The most dramatic changes will occur in Northern Europe, where more than 35% of the species composition in 2100 will be new for that region, and in Southern Europe, where up to 25% of the species now present will have disappeared under the climatic circumstances forecasted for 2100. In Mediterranean scrubland and natural grassland/steppe systems, arctic and tundra systems species turnover is high, indicating major changes in species composition in these ecosystems. The mean stable area of species decreases mostly in Mediterranean scrubland, grassland/steppe systems and warm mixed forests.  相似文献   

17.
18.
Climate change will alter the capacity of carbon sequestration,and the risk assessment of carbon sequestration for terrestrial ecosystems will be helpful to the decision-making for climate change countermeasures and international climate negotiations.Based on the net ecosystem productivity of terrestrial ecosystems simulated by Atmosphere Vegetation Integrated Model,each grid of the risk criterion was set by time series trend analysis.Then the risks of carbon sequestration of terrestrial ecosystems were investigated.The results show that,in the IPCCSRES-B2 climate scenario,climate change will bring risks of carbon sequestration,and the high-risk level will dominate terrestrial ecosystems.The risk would expand with the increase of warming degree.By the end of the long-term of this century,about 60% of the whole country will face the risk;Northwest China,mountainous areas in Northeast China,middle and lower reaches plain of Yangtze River areas,Southwest China and Southeast China tend to be extremely vulnerable.Risk levels in most regions are likely to grow with the increase of warming degree,and this increase will mainly occur during the near-term to mid-term.Northwest China will become an area of high risks,and deciduous coniferous forests,temperate mixed forests and desert grassland tend to be extremely vulnerable.  相似文献   

19.
经营模式对毛竹林生物量、碳贮量具有重要影响。研究了湘中丘陵区毛竹笋用林(Ⅰ)、笋材兼用林 (Ⅱ)和材用林(Ⅲ) 3种不同经营目标下的竹林年龄结构、生物量分配及碳贮量格局。结果表明:应减少1~2 a、增加5~6 a生竹的留养比例,控制达到1~2 a、3~4 a、5~6 a各占1/3左右的立竹年龄结构。不同层次生物量表现为乔木层>凋落物层>林下植被层,毛竹笋用林经营有利于增加乔木层生物量。乔木层生物量及所占比例分别为5183~5566 t/hm2、8895%~9293%,林下植被层生物量及所占比例分别为154~258 t/hm2、258%~443%,凋落物层生物量及所占比例分别为269~386 t/hm2、449%~662%。毛竹林总碳贮量排队顺序为Ⅱ(14263 t/hm2)>Ⅰ(13389 t/hm2)>Ⅲ(13004 t/hm2),笋材兼用林有利于提高竹林碳贮能力。不同层次碳贮量排列顺序总体均表现为土壤层>乔木层>凋落物层>林下植被层。湘中丘陵区毛竹林生物量、碳贮量较低,应提高集约经营水平  相似文献   

20.
This article presents a comprehensive data set on Austria’s terrestrial carbon stocks from the beginnings of industrialization in the year 1830 to the present. It is based on extensive historical and recent land use and forestry data derived from primary sources (cadastral surveys) for the early nineteenth century, official statistics available for later parts of the nineteenth century as well as the twentieth century, and forest inventory data covering the second half of the twentieth century. Total carbon stocks—i.e. aboveground and belowground standing crop and soil organic carbon—are calculated for the entire period and compared to those of potential vegetation. Results suggest that carbon stocks were roughly constant from 1830 to 1880 and have grown considerably from 1880 to 2000, implying that Austria’s vegetation has acted as a carbon sink since the late nineteenth century. Carbon stocks increased by 20% from approximately 1.0 GtC in 1830 and 1880 to approximately 1.2 GtC in the year 2000, a value still much lower than the amount of carbon terrestrial ecosystems are expected to contain in the absence of land use: According to calculations presented in this article, potential vegetation would contain some 2.0 GtC or 162% of the present terrestrial carbon stock, suggesting that the recent carbon sink results from a recovery of biota from intensive use in the past. These findings are in line with the forest transition hypothesis which claims that forest areas are growing in industrialized countries. Growth in forest area and rising carbon stocks per unit area of forests both contribute to the carbon sink. We discuss the hypothesis that the carbon sink is mainly caused by the shift from area-dependent energy sources (biomass) in agrarian societies to the largely area-independent energy system of industrial societies based above all on fossil fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号