首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few data are available on the movements and behavior of immature Atlantic loggerhead sea turtles (Caretta caretta) from their seasonal neritic foraging grounds within the western north Atlantic. These waters provide developmental habitat for loggerheads originating from several western Atlantic nesting stocks. We examined the long-term movements of 23 immature loggerheads (16 wild-caught and seven headstart turtles) characterizing their seasonal distribution, habitat use, site fidelity, and the oceanographic conditions encountered during their migrations. We identified two movement strategies: (1) a seasonal shelf-constrained north–south migratory pattern; and (2) a year-round oceanic dispersal strategy where turtles travel in the Gulf Stream to the North Atlantic and their northern dispersal is limited by the 10–15°C isotherm. When sea surface temperatures dropped below 20°C, neritic turtles began a migration south of Cape Hatteras, North Carolina (USA) where they established fidelity to the waters between North Carolina’s Outer Banks and the western edge of the Gulf Stream along outer continental shelf. Two turtles traveled as far south as Florida. Several turtles returned to their seasonal foraging grounds during subsequent summers. Northern movements were associated with both increased sea surface temperature (>21°C) and increased primary productivity. Our results indicate strong seasonal and interannual philopatry to the waters of Virginia (summer foraging habitat) and North Carolina (winter habitat). We suggest that the waters of Virginia and North Carolina provide important seasonal habitat and serve as a seasonal migratory pathway for immature loggerhead sea turtles. North Carolina’s Cape Hatteras acts as a seasonal “migratory bottleneck” for this species; special management consideration should be given to this region. Six turtles spent time farther from the continental shelf. Three entered the Gulf Stream near Cape Hatteras, traveling in the current to the northwest Atlantic. Two of these turtles remained within an oceanic habitat from 1 to 3 years and were associated with mesoscale features and frontal systems. The ability of large benthic subadults to resume an oceanic lifestyle for extended periods indicates plasticity in habitat use and migratory strategies. Therefore, traditional life history models for loggerhead sea turtles should be reevaluated.  相似文献   

2.
Sixteen satellite-tagged adult male loggerhead sea turtles (Caretta caretta) dispersed widely from an aggregation near Port Canaveral, Florida, USA (28°23′N, −80°32′W) after breeding. Northbound males migrated further (990 ± 303 km) than southbound males (577 ± 168 km) and transited more rapidly (median initial dive duration = 6 (IQR = 4–16) versus 19 (IQR = 10–31) min, respectively).. Migration occurred along a depth corridor (20–40 m) except where constricted by a narrow continental shelf width. Males foraged in areas 27 ± 41 km2 day−1 at locations <1–80 km from shore for 100.1 ± 60.6 days, with variability in foraging patterns not explained by turtle size or geography. Post-breeding dispersal patterns were similar to patterns reported for adult female loggerhead sea turtles in this region and adult male loggerhead sea turtles elsewhere in the northern hemisphere; however, foraging ground distributions were most similar to adult female loggerhead sea turtles in this region.  相似文献   

3.
Previous studies of loggerhead sea turtles have concluded that drifting longlines were the main threat for immature specimens in the western Mediterranean, because immature loggerhead sea turtles mainly inhabit oceanic waters. However, recent aerial surveys have revealed large numbers of immature loggerhead sea turtles over the continental shelf of eastern mainland Spain, where turtles are exposed to neritic fishing gears but not to drifting longlines. We satellite-tracked seven loggerhead sea turtles (minimum straight carapace length (SCLmin) range: 36.5–55.0 cm) to assess whether the turtles in this region are vagrants from the adjoining oceanic regions or whether these loggerheads mostly inhabit the continental shelf. Satellite-tracking revealed that six of the tagged turtles avoided the oceanic realm and made extended use of the continental shelf, whereas only one individual could be considered a true vagrant as it avoided the continental shelf and primarily used the oceanic habitat. These results are in sharp contrast with those previously reported for immature loggerhead sea turtles of similar size from the south-western Mediterranean and fit well a relaxed ontogenic model that was recently proposed for loggerhead sea turtles in the central Mediterranean. Furthermore, these results demonstrate the vulnerability of loggerhead sea turtles of eastern mainland Spain to neritic fishing gears, as three of the seven turtles died and one was bycaught incidentally while being tracked over the continental shelf.  相似文献   

4.
Skeletochronological analysis of Kemp’s ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtle humeri and scleral ossicles was conducted to (1) describe the characteristics of scleral ossicles in these species, (2) determine whether the scleral ossicles contain annually deposited skeletal growth marks and (3) evaluate the potential for skeletochronological analysis of ossicles to obtain age data for size classes and species of sea turtles whose humeri exhibit prohibitive amounts of growth mark resorption. Humeri, entire eyes, and/or individual scleral ossicles were collected from stranded, dead sea turtles that were found along the coasts of Florida, North Carolina, Virginia, and Texas, USA. Samples were taken from a total of 77 neritic, juvenile Kemp’s ridleys ranging from 21.1 to 56.8 cm straightline carapace length (SCL), as well as two Kemp’s ridley hatchlings. For loggerheads, samples were obtained from 65 neritic juvenile and adult turtles ranging from 44.7 to 103.6 cm SCL and ten hatchlings. Examination of the ossicles revealed the presence of marks similar in appearance to those found in humeri. The number of marks in the ossicles and humeri of individual juvenile Kemp’s ridleys for which both structures were collected (n = 55) was equivalent, strongly indicating that the marks are annual. However, in large juvenile and adult loggerhead turtles (n = 65), some significant resorption of early growth marks was observed, suggesting that although ossicles might be useful for skeletochronological analysis of small juveniles, they may not provide a reasonable alternative to humeri for obtaining age estimates for older loggerhead sea turtles.  相似文献   

5.
While our understanding of the early oceanic developmental stage of sea turtles has improved markedly over recent decades, the spatial context for this life history stage remains unknown for Indian Ocean loggerhead turtle populations. To address this gap in our knowledge, 18 juvenile loggerheads were satellite tracked from Reunion Island (21.2°S, 55.3°E) between 2007 and 2011. Nine turtles swam north toward Oman (20.5°N, 58.8°E), where one of the world’s largest rookeries of loggerheads is located. Three individuals traveled south toward South Africa and Madagascar, countries that also host loggerhead nesting grounds. Fourteen of the transmitters relayed diving profiles. A dichotomy between diurnal and nocturnal diving behavior was observed with a larger number of shorter dives occurring during the day. Diving behavior also differed according to movement behavior as individuals spent more time in subsurface waters (between 10 and 20 m) during transit phases. The study provides an understanding of the oceanic movement behavior of juvenile loggerheads in the Indian Ocean that suggests the existence of an atypical trans-equatorial developmental cycle for the species at the ocean basin scale in the Indian Ocean. These results address a significant gap in the understanding of loggerhead oceanic movements and may help with the conservation of the species.  相似文献   

6.
The analysis of mitochondrial DNA in loggerhead sea turtles (Caretta caretta) from eight foraging grounds in the Mediterranean and the adjoining Atlantic revealed deep genetic structuring within the western Mediterranean. As a consequence, the foraging grounds off the North-African coast and the Gimnesies Islands are shown to be inhabited mainly by turtles of the Atlantic stocks, whereas the foraging grounds off the European shore of the western Mediterranean are shown to be inhabited mainly by turtles from the eastern Mediterranean rookeries. This structuring is explained by the pattern of sea surface currents and water masses and suggests that immature loggerhead sea turtles entering the western Mediterranean from the Atlantic and the eastern Mediterranean remain linked to particular water masses, with a limited exchange of turtles between water masses. As the north of the western Mediterranean comprises mostly individuals from the highly endangered eastern Mediterranean rookeries, conservation plans should make it a priority to reduce the mortality caused by incidental by-catch in these areas.  相似文献   

7.
Knowledge about migratory routes and highly frequented areas is a priority for sea turtle conservation, but the movement patterns of juveniles frequenting the Adriatic have not been investigated yet, although juveniles represent the bulk of populations. We tracked by satellite six juvenile and one adult female loggerhead from the north Adriatic. The results indicated that loggerhead juveniles (1) can either show a residential behaviour remaining in the Adriatic throughout the year or perform seasonal migrations to other areas, (2) can remain even in the coldest, northernmost area during winter, (3) can frequent relatively small foraging areas, (4) mostly frequent the eastern part of the Adriatic, and (5) follow preferred migratory routes along the western and eastern Adriatic coasts. The movements of the adult turtle also revealed (6) a behavioural polymorphism in Mediterranean adults, which included a lack of area fidelity and connection between distant neritic foraging grounds.  相似文献   

8.
Sea turtle tagging carried out in Italy in the period 1981–2006 resulted in 125 re-encounters of loggerhead turtles (Caretta caretta) after a mean of 2.5 years, from different marine areas in the Mediterranean. At first finding, turtles ranged 25–83 cm of curved carapace length. Data were analyzed according to size, area, habitat type, season, in order to provide indication of movement patterns. When integrated with other information, results indicate that: (1) a part of turtles in the oceanic stage show a nomad behavior with movements among different oceanic areas; (2) another part show fidelity to an oceanic area; (3) turtles in the neritic stage show fidelity to neritic areas, and once settled to one area, change to other neritic areas is unlikely; (4) nomad oceanic turtles are significantly larger than sedentary ones, and also larger than turtles found in neritic areas; it is hypothesized that these could be Atlantic turtles that eventually leave the Mediterranean; (5) ecological transition from oceanic to neritic habitats occurs at a wide range of sizes, and some turtles may have a very brief oceanic stage; (6) turtles in the oceanic stage are more likely to recruit to neritic areas close to their oceanic areas than to distant ones; (7) part of turtles from some Mediterranean nesting beaches might frequent a relatively limited area range, including both oceanic and neritic areas; (8) in most of the Mediterranean, latitudinal seasonal migrations are unlikely. A general model of movement patterns of loggerhead turtles in the Mediterranean is proposed.  相似文献   

9.
Previous studies have shown that loggerhead sea turtles (Caretta caretta), monitored by satellite telemetry, complete long-distance migration between the western and eastern Mediterranean basins following a seasonal pattern. This study investigated if these migration routes may be influenced by surface currents by superimposing the tracks of three loggerhead turtles (curved carapace length >55 cm), migrating from the western to the eastern Mediterranean basin, on Lagrangian data of current developed into pseudo-eulerian speed fields. The average travel speed of the turtles was 1.6 km h−1 and did not depend on the current speed or direction. We observed a connection between surface currents and the turtles’ migration routes, although not a conclusive one. These observations show that neritic stage loggerhead turtles conduct migration in two distinct alternate phases: the first characterized by high and constant speed of travel both when swimming with or against currents and the second typified by low travel speeds and a good concurrence between the trailed routes and the course of the currents. These two phases corresponded to two types of movements, one where the turtle migrates actively to reach a specific destination (either neritic foraging, wintering or nesting ground) and the other, where the turtle drifts with the mesoscale current and forages pelagically. It seemed thus, that the influence of currents on a turtle’s movements depends on the turtle’s momentary behaviour and location of residence.  相似文献   

10.
To study habitat use by loggerhead sea turtles in the Algerian Basin (western Mediterranean), ten juveniles (straight carapace length range: 39.0–63.3 cm) were tracked by satellite from March 2004 to September 2005. Swimming behaviour (characterized by speed of travel, time spent at the surface, and the cosine of turning angles) varied individually, but these differences were unrelated to body size. Despite individual differences in swimming behaviour, the ten immature loggerhead sea turtles spent most of their time in the oceanic waters of the Algerian Basin, although simulations indicated that the average tracking time (235.7 ± 98.7 SD days) was sufficiently long for them to leave the Algerian Basin and disperse through most of the Mediterranean. Furthermore, none of the ten turtles swam in any preferred direction, and their bearings were all randomly distributed. Finally, all them consistently avoided the continental shelf and did not migrate seasonally, as the average latitude, the average longitude, and the average distance of the population to the release point did not change seasonally. Seasonality also had only a weak influence in swimming behaviour, as the time spent at the surface during light hours was the only parameter that changed seasonally. We conclude that immature loggerhead sea turtles in the south of the western Mediterranean exhibit a strong fidelity to the Algerian Basin, where distribution is ruled mainly by the bathymetry, without any influence of seasonality. That fidelity to the Algerian Basin matches predictions based on genetic structuring and might result from a combination of factors: surface circulation patterns and habitat selection by the loggerhead sea turtles.  相似文献   

11.
Most studies on the foraging ecology of loggerhead turtles (Caretta caretta) have focused on adult females and juveniles. Little is known about the foraging patterns of adult male loggerheads. We analyzed tissues for carbon and nitrogen stable isotopes (δ13C and δ15N) from 29 adult male loggerheads tracked with satellite transmitters from one breeding area in Florida, USA, to evaluate their foraging habitats in the Northwest Atlantic (NWA). Our study revealed large variations in δ13C and δ15N and a correlation between both δ13C and δ15N and the latitude to which the loggerheads traveled after the mating season, thus reflecting a geographic pattern in the isotopic signatures. Variation in δ13C and δ15N can be explained by differences in food web baseline isotopic signatures rather than differences in loggerhead trophic levels. Stable isotope analysis may help elucidate residency and migration patterns and identify foraging sea turtle subpopulations in the NWA due to the isotopically distinct habitats used by these highly migratory organisms.  相似文献   

12.
Ten adult male loggerhead sea turtles, captured by trawlers or dip nets, were satellite-tracked from a neritic foraging ground in the Mediterranean in order to investigate adult spatio-temporal distribution and breeding migration. Five individuals migrated to potential breeding sites in Libya and one to Greece. The results complement previous studies and show that: (1) the Tunisian shelf may be more important for turtles from Libyan rookeries than previously thought; (2) male tracks corroborate a conservation hotspot previously identified for juveniles; (3) the north African coast represents a preferred migratory corridor, unless open sea routes are more direct; (4) adult males may exhibit high fidelity to relatively small areas, without evident seasonal differences; (5) adults home ranges were smaller and more neritic than juveniles frequenting the same area; (6) males may frequent multiple courtship areas; (7) the average remigration interval of males frequenting this region is longer than 1 year.  相似文献   

13.
Loggerhead turtles (Caretta caretta) are known to migrate towards fixed, individually-specific residential feeding grounds. To study their spatial behaviour and their navigational ability, five loggerheads nesting in South Africa were captured when about to start their postnesting migration and tracked by satellite after having been displaced from their usual migratory route. The first turtle, released south of Madagascar about 1,148 km from the capture site, moved west up to mainland Africa and then reached her feeding grounds by following the coast. A second turtle, released farther away (2,140 km) close to La Réunion Island, stopped for some time on the Madagascar east coast, then turned southwards to round the island and regain the African mainland in the northwest, without however allowing us to establish the location of her residential grounds. Three other turtles were released off the Tanzanian coast, 2,193 km north of their nesting area, at the northern edge of the distribution of the feeding grounds along the African coast. All of them headed north, and one turtle found her residential grounds located north of the release site. The other two females started long-distance oceanic wanderings in which they crossed nearly the entire Indian Ocean, apparently being transported by the sea currents of the region. We conclude that adult loggerhead turtles are apparently unable to compensate for the displacement and can return to a pelagic life style characteristic of juvenile turtles. These findings suggest that South African loggerheads rely on simple orientation mechanisms, such as the use of the coastline, as a guide, and compass orientation, possibly integrated by spatiotemporal programmes and/or acquired maps of familiar sites.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

14.
This study is the first report of post-nesting migrations of loggerhead sea turtles (Caretta caretta) nesting in Sarasota County (Florida, USA), their most important rookery in the Gulf of Mexico (GOM). In total, 28 females (curved carapace length CCL between 82.2 and 112.0 cm) were satellite-tracked between May 2005 and December 2007. Post-nesting migrations were completed in 3–68 days (mean ± SD = 23 ± 16 days). Five different migration patterns were observed: six turtles remained in the vicinity of their nesting site while the other individuals moved either to the south-western part of the Florida Shelf (n = 9 turtles), the Northeast GOM (n = 2 turtles), the South GOM (Yucatán Shelf and Campeche Bay, Mexico, and Cuba; n = 5 turtles) or the Bahamas (n = 6 turtles). In average, turtles moved along rather straight routes over the continental shelf but showed more indirect paths in oceanic waters. Path analyses coupled with remote sensing oceanographic data suggest that most of long-distance migrants reached their intended foraging destinations but did not compensate for the deflecting action of ocean currents. While six out of seven small individuals (CCL < 90 cm) remained on the Florida Shelf, larger individuals showed various migration strategies, staying on the Florida Shelf or moving to long-distance foraging grounds. This study highlights the primary importance the Western Florida Shelf in the management of the Florida Nesting Subpopulation, as well as the need of multi-national effort to promote the conservation of the loggerhead turtle in the Western Atlantic. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
From 1998 to 2008, 68 adult female loggerhead sea turtles (Caretta caretta) were instrumented with platform transmitter terminals at nesting beaches in Georgia, North Carolina (NC) and South Carolina (SC) on the East Coast of the United States of America (30°48′N, 81°28′W to 33°51′N, 77°59′W). The majority of post-nesting loggerheads (N = 42, 62 %) migrated to foraging habitats in the Mid-Atlantic Bight during May–October, with a subsequent migration occurring during November–March to foraging habitats south of Cape Hatteras, NC. Nine (13 %) loggerheads initially foraged in the near-shore, coastal areas of the South Atlantic Bight, but moved to offshore habitats—closer to the Gulf Stream—during November–March, while fourteen (21 %) loggerheads remained in foraging areas along the mid-continental shelf off of the eastern coast of Florida and/or continued southward to Florida Bay and the Bahamas. The present study delineates important, post-nesting foraging habitats and migration corridors where loggerheads may interact with commercial fisheries—providing managers opportunities to develop and implement optimally effective conservation actions for the recovery of this threatened species.  相似文献   

16.
Hawksbill sea turtles (Eretmochelys imbricata) nesting in Barbados (Needham’s Point, 13° 04′ 41.33′′ N, 59° 36′ 32.69′′W) were outfitted with GPS dataloggers over three breeding seasons (2008–2010) to track movement during inter-nesting intervals. Most females established spatially restricted resident areas up current and within 7 km of the nesting beach where they spent the majority of the inter-nesting interval. Females nesting earlier in the season settled on shallower sites. Only experienced remigrant turtles occupied the most distant resident areas. Females tracked for multiple inter-nesting intervals exhibited site fidelity, but the area contracted and the activity of females decreased with each successive interval. Hawksbills may trade off site characteristics with distance from the nesting beach and reduce activity over the course of the breeding season to optimise energy reserves during inter-nesting intervals.  相似文献   

17.
Sea turtle populations worldwide suffer from reduced survival of immatures and adults due to fishery bycatch. Unfortunately, information about the whereabouts of turtles outside the breeding habitat is scarce in most areas, hampering the development of spatially explicit conservation plans. In the Mediterranean, recoveries of adult females flipper-tagged on nesting beaches suggest that the Adriatic Sea and Gulf of Gabès are important foraging areas for adults, but such information could be heavily biased (observing and reporting bias). In order to obtain unbiased data, we satellite-tracked seven loggerhead sea turtles after they completed nesting in the largest known Mediterranean rookery (Bay of Laganas, Zakynthos, Greece). Three females settled in the north Adriatic Sea, one in the south Adriatic Sea and two in the Gulf of Gabès area at the completion of their post-nesting migrations (one individual did not occupy a distinct foraging area). The concordance of tracking results with information from recoveries of flipper-tagged turtles suggests that the north Adriatic Sea and the Gulf of Gabès represent key areas for female adult Mediterranean loggerhead sea turtles.  相似文献   

18.
Olive ridley sea turtles display two different types of nesting behavior: in arribada (synchronous mass nesting) or solitarily. Contrarily to arribadas, little has been published about solitary nesters. This study aimed to expand the knowledge on internesting interval and site fidelity of solitary nesting olive ridleys and to test a possible development of arribada nesting behavior. Data were collected in Sergipe (Brazil) over 125 km of beach from 10°30′S/36o23′W to 11°26′S/37o19′W, between nesting seasons 2004/2005 and 2006/2007. From 962 tagged females, 173 were seen renesting. The average internesting interval found was longer (22.35 ± 7.01 days) than previously described, which might relate to lower water temperatures during the internesting period. Olive ridleys at Sergipe showed high nesting site fidelity, with consecutive nesting events occurring in close proximity, non-randomly and dependently of previous events. Most of the consecutive nests were separated by 4.06–5.59 km. Development of arribada nesting behavior was not confirmed.  相似文献   

19.
An aerial survey was conducted in early spring 2002 over the continental shelf of the Balearic Archipelago to study the distribution of neritic loggerhead turtles. Furthermore, five juvenile loggerhead turtles [straight carapace length (SCL) range 37.1–48.7 cm], were instrumented with transmitters and monitored during 2003 by satellite tracking to study habitat use over a broader geographical range. The distribution of the turtles over the continental shelf matched habitat availability, as defined by depth. However, those tracked by satellite spent most of the time in the oceanic waters of the Algerian basin and generally avoided continental shelf areas. In these turtles, average speed of travel and mean cosine of turning angle did not significantly differ between habitats, indicating that avoidance of shelf areas is not due to active habitat selection. On average, tracked turtles spent 35.1±19.7% of the time at the surface, although surface time was much greater in the turtle with the shortest carapace length, suggesting that this individual had limited swimming capacity. We conclude that the transition between passive drifting and active habitat selection occurs at an SCL of about 40 cm. The turtles followed tracks that matched prevailing currents, but on some occasions they also swam upstream. Hence, the distribution of late juvenile loggerhead turtles in the southern and central western Mediterranean may reflect a combination of passive drifting and active habitat selection.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

20.
During 1955–2003, flipper tags were attached to 46,983 green turtles and ten turtles were fitted with satellite transmitters at Tortuguero, Costa Rica. Eight satellite-tracked turtles stayed within 135 km of the beach and probably returned to nest after release. The internesting area is more extensive than previously documented. Post-nesting migration routes of satellite-tracked turtles varied. Seven turtles swam close to the coast and three turtles swam through oceanic waters before moving toward nearshore areas. Sea surface height anomaly maps indicate that oceanic movements were consistent with the southwestern Caribbean gyre. Circling and semi-circling turtles could have been disoriented but submergence and surface times suggest they may have been feeding in Sargassum sp. concentrations. Rapid post-nesting migrations (mean 2.2 km hr−1) ended on benthic feeding grounds in shallow waters (<20 m) off Belize (n=1), Honduras (n=1) and Nicaragua (n=8). The spatial distribution of migration end points (n=10) and tag returns (n=4,669) are similar. Fishermen in Nicaragua target green turtles along migratory corridors and on foraging grounds. Management efforts are urgently needed in Nicaragua, particularly in the high-density feeding areas south and east of the Witties (N14°09 W82°45). The proximity of foraging grounds to the nesting beach (mean 512 km) may permit female turtles to invest more energy in reproduction and hence the Tortuguero population may have greater potential for recovery than other green turtle nesting populations. Recovery of the Tortuguero green turtle population will benefit countries and marine ecosystems throughout the Caribbean, especially Nicaragua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号