首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compared the swine wastewater treatment of two identical lab-scale two-stage sequencing batch reactors (TSSBR) under similar conditions except that one was operated on a fixed-time mode and the other on a real-time mode. While both TSSBR systems performed very well, the real-time TSSBR performed far better then the fixed-time TSSBR, in every aspect of carbon, nitrogen, and phosphorous removal. The removals of COD, TOC, were at 97% and for BOD5 even at 99.7%. In terms of NH4-N and TKN removals, the real-time TSSBR achieved removal of over 98%. For phosphorus removals (Ortho-P and total P) the results from the real-time TSSBR was quite remarkable at 97.7%.  相似文献   

2.
Abstract

A laboratory scale two‐stage sequencing batch reactor (TSSBR) was used to study the effectiveness of pH as a real‐time control parameter in swine wastewater treatment. A Ringlace media was inserted into the A/O (Anoxic/Oxic) reactor for bacteria immobilization. The TSSBR was subjected to three levels of organic loading. The pH and ORP (Oxidation Reduction Potential) patterns obtained were consistent with distinct features, enabling the real‐time control strategy to effectively set a flexible aeration time pending on influent concentration, hence resulting in flexible cycle time and HRT (Hydraulic Retention Time) for the system. The real‐time process ensured a removal efficiency of over 99% and 95%, respectively, for ammonia and TOC (Total Organic Carbon). For NO3 ‐N and PO4 ‐3, the run with influent TOC = 4,000 mg/L yielded the most efficient removal of 61% and 95%, respectively. Test results suggest that pH can be a viable tool for on‐line real‐time control of a biological treatment process.  相似文献   

3.
A laboratory scale two-stage sequencing batch reactor (TSSBR) was used to study the effectiveness of pH as a real-time control parameter in swine wastewater treatment. A Ringlace media was inserted into the A/O (Anoxic/Oxic) reactor for bacteria immobilization. The TSSBR was subjected to three levels of organic loading. The pH and ORP (Oxidation Reduction Potential) patterns obtained were consistent with distinct features, enabling the real-time control strategy to effectively set a flexible aeration time pending on influent concentration, hence resulting in flexible cycle time and HRT (Hydraulic Retention Time) for the system. The real-time process ensured a removal efficiency of over 99% and 95%, respectively, for ammonia and TOC (Total Organic Carbon). For NO3(-)-N and PO4(-3), the run with influent TOC = 4,000 mg/L yielded the most efficient removal of 61% and 95%, respectively. Test results suggest that pH can be a viable tool for on-line real-time control of a biological treatment process.  相似文献   

4.
Abstract

Degradation of two chlorinated pesticides (2,4-D and DDT) using a 54-mL glass column packed with tezontle (a low-cost basaltic scoria) was tested. Bacteria were cultured in YPG (yeast, peptone, and glucose) liquid medium at 32°C. The rich medium was pumped during 24 h through the column to inoculate it. Later, the wasted medium was discharged and the pesticide added. Optical densities, TOC, and pesticide concentration were determined. Pesticide removals for 2,4-D (with initial concentration between 100 and 500 mg/L) were about 99%. DDT removal (at initial concentration of up to 150 mg/L) was as high as 55–99%. TOC removals for 2,4-D was in the 36-87% interval, whereas for DDT they were as high as 36–78%.  相似文献   

5.
两级SBR与传统SBR工艺的对比研究   总被引:2,自引:0,他引:2  
用两级SBR工艺(TSSBR)处理COD与氮浓度较高的工业废水,SBR1去除有机物,SBR2主要进行硝化反硝化。TSSBR与传统SBR工艺相比,COD降解速率和硝化反应速率明显提高,COD去除率由84%提高到93%,2种工艺的反硝化速率没有明显差别。在原水COD浓度较高的情况下,TSSBR可有效克服高COD浓度对硝化反应的抑制,硝化反应速率是传统SBR的2倍。对于COD和氮浓度较高的工业废水,TSSBR明显优于传统SBR,是一种理想的处理工艺。  相似文献   

6.
采用两级SBR工艺(TSSBR)处理COD与氮浓度较高的工业废水,SBR1去除有机物,SBR2主要进行硝化反硝化。TSSBR与传统SBR工艺相比,COD降解速率和硝化反应速率明显提高,COD去除率由84%提高到93%,2种工艺的反硝化速率没有明显差别。在原水COD浓度较高的情况下,TSSBR可有效克服高COD浓度对硝化反应的抑制,硝化反应速率是传统SBR的2倍。对于COD和氮浓度较高的工业废水,TSSBR明显优于传统SBR,是一种理想的处理工艺。  相似文献   

7.
Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe2+] = 100 ppm, [H2O2] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD5/COD ratio also revealed an increase in the effluent’s biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.  相似文献   

8.
Sodium hypochlorite (NaClO) has been widely used as a chemical additive for enhancing nitrogen oxide (NOx; NO + NO2), sulfur dioxide (SO2), and mercury (Hg0) removals in a wet scrubber. However, they are each uniquely dependent on NaClO(aq) pH, hence making the simultaneous control difficult. In order to overcome this weakness, we sprayed low liquid-to-gas (L/G) ratio (0.1 L/Nm3) of NaClO(aq) to vaporize quickly at 165 °C. Results have shown that the maximized NOx, SO2, and Hg0 removals can be achieved at the pH range between 4.0 and 6.0. When NOx and Hg0 coexist with SO2, in addition, their removals are significantly enhanced by reactions with solid and gaseous by-products such as NaClO(s), NaClO2(s), OClO, ClO, and Cl species, originated from the reaction between SO2 and NaClO(aq). We have also demonstrated the feasibility of this approach in the real flue gases of a combustion plant and observed 50%, 80%, and 60% of NOx, SO2, and Hg0 removals, respectively. These findings led us to conclude that the spray of NaClO(aq) at a relatively high temperature at which the sprayed solution can vaporize quickly makes the simultaneous control of NOx, SO2, and Hg0 possible.

Implications: The simple spray of NaClO(aq) at temperatures above 165 °C can cause the simultaneous removal of gaseous NOx, SO2, and Hg0 by its quick vaporization. Their maximized removals are achieved at the pH range between 4.0 and 6.0. NOx and Hg0 removals are also enhanced by gaseous and solid intermediate products generated from the reaction of SO2 with NaClO(aq). The feasibility of this approach has been demonstrated in the real flue gases of a combustion plant.  相似文献   


9.
The effect of varying inorganic (chloride, nitrate, sulfate, and phosphate) and organic (represented by humic acid) solutes on the removal of aqueous micropollutant bisphenol A (BPA; 8.8 μM; 2 mg/L) with the oxidizing agents hydrogen peroxide (HP; 0.25 mM) and persulfate (PS; 0.25 mM) activated using zero-valent aluminum (ZVA) nanoparticles (1 g/L) was investigated at a pH of 3. In the absence of the solutes, the PS/ZVA treatment system was superior to the HP/ZVA system in terms of BPA removal rates and kinetics. Further, the HP/ZVA process was not affected by nitrate (50 mg/L) addition, whereas chloride (250 mg/L) exhibited no effect on the PS/ZVA process. The negative effect of inorganic anions on BPA removal generally speaking increased with increasing charge in the following order: NO3? (no inhibition)?<?Cl? (250 mg/L)?=?SO42??<?PO43? for HP/ZVA and Cl? (250 mg/L; no inhibition)?<?NO3??<?SO42??<?PO43? for PS/ZVA. Upon addition of 20 mg/L humic acid representing natural organic matter, BPA removals decreased from 72 and 100% in the absence of solutes to 24 and 57% for HP/ZVA and PS/ZVA treatments, respectively. The solute mixture containing all inorganic and organic solutes together partly suppressed the inhibitory effects of phosphate and humic acid on BPA removals decreasing to 46 and 43% after HP/ZVA and PS/ZVA treatments, respectively. Dissolved organic carbon removals were obtained in the range of 30 and 47% (the HP/ZVA process), as well as 47 and 57% (the PS/ZVA process) for the experiments in the presence of 20 mg/L humic acid and solute mixture, respectively. The relative Vibrio fischeri photoluminescence inhibition decreased particularly for the PS/ZVA treatment system, which exhibited a higher treatment performance than the HP/ZVA treatment system.  相似文献   

10.
Abstract

Atrazine (6‐chloro‐N‐ethyl‐N'‐isopropyl‐1,3,5‐triazinedyl‐2,4‐diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher.  相似文献   

11.
Two two-stage sequencing batch reactors (TSSBR), one attached-growth and one suspended-growth, were operated under three levels of wastewater concentration (approximately 4,000, 2,000 and 500 TOC mg/L), respectively, to compare the pH and ORP (oxidation-reduction potential) patterns and system performance. In both TSSBR systems, the pH and ORP profiles varied with organic loading yet exhibited consistent patterns with distinctive features suitable for real-time control. For all runs at the three levels of influent, both systems achieved similar levels of treatment for BOD5, TOC and TSS of over 97.5, 93.4, and 97.3%, respectively. The attached-growth system out performed the suspended-growth system in achieving the same levels of treatment at much shorter aeration cycle times. The treatment efficiency for NO3(-)-N and PO4(-3) was greatly affected by the carbon content in the wastewater, and the best treatment was achieved during the TOC approximately 4,000 mg/L runs with final effluent at 4.0 and 21.3 mg/L, respectively.  相似文献   

12.

The high pollutant load of sanitary landfill leachates poses a huge challenge in the search for efficient and environment friendly solutions for their treatment. The objective of this work was to study an integrated solution of environmentally friendly technologies — immediate one-step lime precipitation (IOSLP), carbonation (CB), and phytoremediation (Phyt) — to treat a sanitary landfill leachate. In the leachate sample treatment by IOSLP, the influence of CaO concentration (18.2–33.3 gCaO L?1) and stirring time (2–60 min) on the sludge sedimentability and pollutant removal was studied. Organic load and ammonia nitrogen (AN) removal increases with CaO added, as well as sludge volume. Stirring time has a small influence on organic load and AN removal, presenting a minimum for sludge volume. Thus, the best operational conditions were chosen as 27.6 gCaO L?1, and 40-min stirring time, with 64% chemical oxygen demand (COD) removal. Sludge humidity was 2.1%, making dewatering needless. IOSLP supernatant was submitted to CB by atmospheric CO2, and 100% removals in AN and hardness were attained. Effluents from IOSLP and IOSLP?+?CB were utilized in Phyt tests, with Vetiver (Chrysopogon zizanioides (L.) Roberty). The best COD removal (37%) during Phyt was attained for the samples treated by IOSLP?+?CB.

  相似文献   

13.
A combined approach of biological treatment, solids digestion and nutrient recovery was tested on dairy manure. A sequencing batch reactor (SBR) was operated in three modes, in order to optimize nutrient (nitrogen and phosphorus) removals. The highest average removal efficiencies of 91% for NH4-N, 59% for PO4-P and 80% for total chemical oxygen demand (COD) were achieved. Staining experiments suggested the coexistence of glycogen and phosphorus accumulating organisms. Anaerobic digestion of wasted bio-solids was able to produce a PO4-P concentration of 70 mgL?1 in the supernatant. A pilot-scale experiment, designed to recover phosphorus in the supernatant as struvite (magnesium ammonium phosphate), was able to remove 82% of soluble PO4-P.  相似文献   

14.
电-Fenton法预处理干法腈纶生产废水   总被引:2,自引:0,他引:2  
以Ti金属网为阴极,Ti基RuO2涂层形稳电极为阳极,采用外加H2O2和Fe2+的方式,研究了电-Fenton氧化预处理干法腈纶生产废水的工艺,考察了H2O2投加量、Fe2+投加量、pH值和电流强度等因素对污染物降解过程的影响,分析了废水可生化性和污染物变化规律。结果表明,电-Fenton法可以有效降解废水中有机污染物,使废水COD迅速降低,在初始pH值为3.0,Fe2+投加量为5.0 mmol/L,H2O2投加量为60.0 mmol/L,电流强度0.2 A的条件下,反应120 min后COD去除率可以达到44.0%以上;反应过程中H2O2的投加方式对电-Fenton法的处理效果具有明显影响,H2O2分6次投加可以使COD去除率由一次性投加时的44.8%提高至54.1%;处理后废水的BOD5/COD由0.29升高至0.68;GC-MS结果表明,经电-Fenton法预处理后,废水中多数芳香族化合物和特征污染物能被有效降解。  相似文献   

15.
The removal of PAHs during the wastewater treatment process was examined in an activated sludge mode conventional facility. Concentrations reported are taken from an earlier measuring campaign. Removals of PAHs ranged between 28 and 67% in the primary, <1-61% in the secondary stage, and 37-89% in the whole process. Significant positive relationships were observed for removal efficiencies and the log K(ow) of PAHs in the primary and the log K(H) of PAHs in the secondary stage. Experimental removals were compared to those obtained from the FATE model. In the primary stage, predicted removals were lower than those experimentally calculated while in the secondary stage were higher. Predicted removals were apportioned mainly to sorption with negligible contribution from volatilization and biodegradation. Remarkable consistency between experimental and modeled removal efficiencies (-20-+20%) was observed for almost all PAHs in the whole treatment process.  相似文献   

16.
In the present study, the amounts of polycylic aromatic hydrocarbons (PAHs) penetrating into air during PAH removal applications from the urban treatment sludge were investigated. The effects of the temperature, photocatalyst type, and dose on the PAH removal efficiencies and PAH evaporation were explained. The sludge samples were taken from an urban wastewater treatment plant located in the city of Bursa, with 585,000 equivalent population. The ultraviolet C (UV-C) light of 254 nm wavelength was used within the UV applications performed on a specially designed setup. Internal air of the setup was vacuumed through polyurethane foam (PUF) columns in order to collect the evaporated PAHs from the sludge during the PAH removal applications. All experiments were performed with three repetitions. The PAH concentrations were measured by gas chromatography–mass spectrometry (GC-MS). It was observed that the amounts of PAHs penetrating into the air were increased with increase of temperature, and more than 80% of PAHs migrated to the air consisted of 3-ring compounds during the UV and UV-diethylamine (DEA) experiments at 38 and 53 °C. It was determined that 40% decrease was ensured in Σ12 (total of 12) PAH amounts with UV application and 13% of PAHs in sludge penetrated into the air. In the UV-TiO2 applications, a maximum 80% of Σ12 PAH removal was obtained by adding 0.5% TiO2 of dry weight of sludge. The quantity of PAH penetrating into air did not exceed 15%. UV-TiO2 applications ensured high levels of PAH removal in the sludge and also reduced the quantity of PAH penetrating into the air. Within the scope of the samples added with DEA, there was no increase in PAH removal efficiencies and the penetration of PAHs into air was not decreased. In light of these data, it was concluded that UV-TiO2 application is the most suitable PAH removal alternative that restricts the convection of PAH pollution.
Implications: Polycyclic aromatic hydrocarbon (PAH) evaporation rates from sludge samples obtained from an urban wastewater treatment plant were investigated here for the first time by employing removal applications. TiO2 and diethylamine were used as photocatalysts in this study. A special device was designed and successfully used in this study. Treatment sludge can be a significant source of PAHs for the atmosphere. The data highlight the need for removal of PAHs in treatment sludge via methods limiting their evaporation to the air. It was observed that UV-TiO2 application was the most suitable PAH removal alternative that restricts the convection of PAH pollution.  相似文献   

17.
ABSTRACT

A hybrid nonlinear regression (NLR) model and a neural network (NN) model, each designed to forecast next-day maximum 1-hr average ground-level O3 concentrations in Louisville, KY, were compared for two O3 seasons—1998 and 1999. The model predictions were compared for the forecast mode, using forecasted meteorological data as input, and for the hindcast mode, using observed meteorological data as input. The two models performed nearly the same in the forecast mode. For the two seasons combined, the mean absolute forecast error was 12.5 ppb for the NLR model and 12.3 ppb for the NN model. The detection rate of 120 ppb threshold exceedances was 42% for each model in the forecast mode. In the hindcast mode, the NLR model performed marginally better than the NN  相似文献   

18.
Abstract

In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67–86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

19.
Abstract

Two types of media, a natural medium (wood chips) and a commercially engineered medium, were evaluated for sulfur inhibition and capacity for removal of hydrogen sulfide (H2S). Sulfate was added artificially (40, 65, and 100 mg of S/g of medium) to test its effect on removal efficiency and the media. A humidified gas stream of 50 ppm by volume H2S was passed through the media-packed columns, and effluent readings for H2S at the outlet were measured continuously. The overall H2S baseline removal efficiencies of the column packed with natural medium remained >95% over a 2-day period even with the accumulated sulfur species. Added sulfate at a concentration high enough to saturate the biofilter moisture phase did not appear to affect the H2S removal process efficiency. The results of additional experiments with a commercial granular medium also demonstrated that the accumulation of amounts of sulfate sufficient enough to saturate the moisture phase of the medium did not have a significant effect on H2S removal.

When the pH of the biofilter medium was lowered to 4, H2S removal efficiency did drop to 36%. This work suggests that sulfate mass transfer through the moisture phase to the biofilm phase does not appear to inhibit H2S removal rates in biofilters. Thus, performance degradation for odor-removing biofilters or H2S breakthrough in field applications is probably caused by other consequences of high H2S loading, such as sulfur precipitation.  相似文献   

20.
Abstract

Public housing developments across the United States are being demolished, potentially increasing local concentrations of particulate matter (PM) in communities with high burdens of severe asthma. Little is known about the impact of demolition on local air quality. At three public housing developments in Chicago, IL, PM with an aerodynamic diameter <10 μm (PM10) and <2.5 μm were measured before and during high-rise demolition. Additionally, size-selective sampling and real-time monitoring were concurrently performed upwind and downwind of one demolition site. The concentration of particulates attributable to demolition was estimated after accounting for background urban air pollution. Particle microscopy was performed on a small number of samples. Substantial increases of PM10 occurred during demolition, with the magnitude of that increase varying based on sampler distance, wind direction, and averaging time. During structural demolition, local concentrations of PM10 42 m downwind of a demolition site increased 4- to 9-fold above upwind concentrations (6-hr averaging time). After adjusting for background PM10, the presence of dusty conditions was associated with a 74% increase in PM10 100 m downwind of demolition sites (24-hr averaging times). During structural demolition, short-term peaks in real-time PM10 (30-sec averaging time) occasionally exceeded 500 μg/m3. The median particle size downwind of a demolition site (17.3 μm) was significantly larger than background (3 μm). Specific activities are associated with real-time particulate measures. Microscopy did not identify asbestos or high concentrations of mold spores. In conclusion, individuals living near sites of public housing demolition are at risk for exposure to high particulate concentrations. This increase is characterized by relatively large particles and high short-term peaks in PM concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号