首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   

2.
This paper describes the application of life cycle assessment for evaluating various waste management options in Singapore, a small-island city state. The impact assessment method by SimaPro is carried out for comparing the potential environmental impacts of waste treatment options including landfilling, incineration, recycling, and composting. The inventory data include gases and leachate from landfills, air emissions and energy recovery from incinerators, energy (and emission) savings from recycling, composting gases, and transport pollution. The impact assessment results for climate change, acidification, and ecotoxicity show that the incineration of materials imposes considerable harm to both human health and the environment, especially for the burning of plastics, paper/cardboard, and ferrous metals. The results also show that, although some amount of energy can be derived from the incineration of wastes, these benefits are outweighed by the air pollution (heavy metals and dioxins/furans) that incinerators produce. For Singapore, landfill gases and leachate generate minimal environmental damage because of the nation's policy to landfill only 10% of the total disposed wastes. Land transportation and separation of waste materials also pose minimal environmental damage. However, sea transportation to the landfill could contribute significantly to acidification because of the emissions of sulfur oxides and nitrogen oxides from barges. The composting of horticultural wastes hardly imposes any environmental damage. Out of all the waste strategies, the recycling of wastes offers the best solution for environmental protection and improved human health for the nation. Significant emission savings can be realized through recycling.  相似文献   

3.
This study was meant to determine environmental aspects of hospital waste management scenarios using a life cycle analysis approach. The survey for this study was conducted at the largest hospital in a major city of Pakistan. The hospital was thoroughly analyzed from November 2014 to January 2015 to quantify its wastes by category. The functional unit of the study was selected as 1 tonne of disposable solid hospital waste. System boundaries included transportation of hospital solid waste and its treatment and disposal by landfilling, incineration, composting, and material recycling methods. These methods were evaluated based on their greenhouse gas emissions. Landfilling and incineration turned out to be the worst final disposal alternatives, whereas composting and material recovery displayed savings in emissions. An integrated system (composting, incineration, and material recycling) was found as the best solution among the evaluated scenarios. This study can be used by policymakers for the formulation of an integrated hospital waste management plan.

Implications: This study deals with environmental aspects of hospital waste management scenarios. It is an increasing area of concern in many developing and resource-constrained countries of the world. The life cycle analysis (LCA) approach is a useful tool for estimation of greenhouse gas emissions from different waste management activities. There is a shortage of information in existing literature regarding LCA of hospital wastes. To the best knowledge of the authors this work is the first attempt at quantifying the environmental footprint of hospital waste in Pakistan.  相似文献   


4.
The State of Florida passed The Florida Solid Waste Management Act of 1988 mandating that county recycling programs be initiated by July 1, 1989. The legislation further expressed the goal that, at a minimum, recycling efforts reduce the amount of solid waste requiring final disposal or resource recovery by 30 percent by the end of 1994. This study was performed to determine the impact on recycle markets when the amounts of materials recycled from the municipal solid waste stream are increased by 30 percent in Florida.

The composition of the municipal waste stream was quantified in terms of the amounts of paper, plastic, metals, glass, and rubber. The effect of a 30 percent increase in the recycle rate of each class of material was calculated and compared to existing recycle rates in the State of Florida. It was determined that there are few capacity constraints on the increase in recycle rates for aluminum, steel (i.e., tin cans), and color separated glass. There are, however, serious constraints on increasing recycle rates for paper, plastics and rubber tires.  相似文献   

5.
ABSTRACT

In the last few years, Taiwan has set a bold agenda in solid waste recycling and incineration programs. Not only were the recycling activities and incineration projects promoted by government agencies, but the related laws and regulations were continuously promulgated by the Legislative Yen. The solid waste presorting process that is to be considered prior to the existing incineration facilities has received wide attention. This paper illustrates a thorough evaluation for the first refuse-derived fuel pilot process from both quantitative and qualitative aspects. The process is to be installed and integrated with a large-scale municipal incinerator. This pilot process, developed by an engineering firm in Tainan County, consists of standard unit operations of shredding, magnetic separation, trommel screening, and air classification. A series of sampling and analyses were initialized in order to characterize its potentials in the solid waste management system. The probabilistic modeling for various types o f waste pro perties derived in this analysis may provide a basic understanding of system reliability.  相似文献   

6.
In Europe, the European Union Landfill Directive aims to reduce the negative environmental impacts of landfilling. This is mainly to be achieved by reducing the quantity of organic matter deposited, through measures such as the separate collection and recycling of the organic waste stream or pretreatment of residual wastes before landfilling. Other than incineration or other thermal processes, mechanical biological treatment is playing an increasingly important role. This study was conducted to seek the benefits of municipal solid waste (MSW) pretreatment, as well as the differences in methane production from the landfilling of untreated and mechanically/biologically treated (MBT) MSW using GasSim simulation. Results demonstrated that methane production rates vary significantly among waste fractions. Those that contribute most to methane generation (organic material and potentially reusable or recyclable material) could be targeted and treated before landfilling. The statistic relationship from the first phase of the study indicated that to match the increasingly stringent landfill waste organic content allowance, local councils should prioritize the reduction/sorting of certain targeted fractions, such as paper, card, green waste, and other putrescibles from MSW. Moreover, mechanical treatment alone produces organic-rich waste called mechanically sorted organic residues (MSORs), which can be viewed as an organic content concentration process. Mechanically and biologically pretreated waste, on the other hand, differs significantly from untreated MSW and MSORs. This work demonstrated that if efficient mechanical-biological treatment is used, considerable reductions in biological activity, landfill gas production, and energy content/total organic carbon could be achieved. Using GasSim, reductions in methane production of >74% have been simulated if a 90% organic content reduction can be achieved during biological treatment on MSORs. A 50-60% organic content reduction by following biological treatment can turn MSOR properties only into normal MSW equivalent though considerably less volume.  相似文献   

7.
There is an increasing interest in the end-of-life management of polymers present in waste electrical and electronic equipment (WEEE). This is mainly due to high recycling and recovery quotas set by the European WEEE directive, which can only be fulfilled by including the plastic fraction in recycling and recovery approaches. Previous studies identified a high material diversity and various contaminants in WEEE plastics, including heavy metals, polybrominated biphenyls (PBB), diphenyl ethers (PBDE), as well as polybrominated dibenzodioxins and dibenzofurans (PBDD/F). These substances are regulated by European directives that limit their levels in marketable products. Consequently, both material diversity and contaminants are strong arguments against material recycling and point to hazardous waste treatment. However, recent developments in the production of flame retardants and electrical and electronic goods aimed to reduce contaminants and material diversity. Thus, the present study summarises updated contaminant levels of plastic fractions of European WEEE, as well as data on materials in waste housing polymers. Material characterisation revealed housing fractions to be interesting sources for polymer recycling, which however has to implement potent material separation and/or bromine elimination techniques. With respect to contaminants, our data indicate an effective phase-out of PBB, but still high levels of PBDE and PBDD/F are found. Sources and implications for the material recycling and thermal recovery approaches are discussed in detail.  相似文献   

8.
城市垃圾预处理改善焚烧特性的探讨   总被引:3,自引:0,他引:3  
针对目前我国城市垃圾的高水分、低热值的特性,提出了2种改善城市垃圾焚烧特性的有效措施:生物质垃圾源分类和生物干燥.在我国建立生物质垃圾源分类体系,将生物质垃圾源头分类后,剩余垃圾的热值可以提高约50%~120%,已适合直接入炉焚烧,同时分离出来的生物质垃圾也更易于好氧堆肥或厌氧消化.另外一项技术措施是在焚烧前利用生物干燥技术,降低城市垃圾的水分含量,提高入炉垃圾的热值,这种方法主要是利用生物反应热来干燥城市生活垃圾,只需要在垃圾投入焚烧炉前增加一个预处理步骤,不必改变目前的垃圾收运体系,而且进行生物干燥后的垃圾更易于分选其中的可回收物质.  相似文献   

9.
Abstract

Synthetic polymers reach municipal landfills as components of products such as waste household paints, packaging films, storage containers, carpet fibers, and absorbent sanitary products. Some polymers in consumer products that reach landfills are designed to photodegrade or biodegrade. This article examines the significance of degradable polymers in management of solid waste in municipal landfills. Most landfills are not designed to photodegrade or biodegrade solid waste. Landfill disposal of stable polymers such as polyacrylics and polyethylenes is not associated with significant polymer degradation or mobility. Stability to photodegradation and biodegradation is an advantage when municipal landfills are used for disposal of polymer products as solid waste. Use of landfill disposal can be a responsible means to manage polymer waste and can be part of an overall waste management plan which includes source reduction, recycling, reuse, composting, and waste-to-energy incineration.  相似文献   

10.
The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.  相似文献   

11.
The United Nations Framework Conventions on Climate Change (UNFCCC) asks their Parties to submit a National Inventory Report (NIR) for greenhouse gas (GHG) emissions on an annual basis. However, when many countries are quickly growing their economy, resulting in substantial GHG emissions, their inventory reporting systems either have not been established or been able to be linked to planning of mitigation measures at national administration levels. The present research was aimed to quantify the GHG emissions from an environmental sector in Taiwan and also to establish a linkage between the developed inventories and development of mitigation plans. The "environmental sector" consists of public service under jurisdiction of the Taiwan Environmental Protection Administration: landfilling, composting, waste transportation, wastewater treatment, night soil treatment, and solid waste incineration. The preliminary results were compared with that of the United States, Germany, Japan, United Kingdom, and Korea, considering the gaps in the scopes of the sectors. The GHG emissions from the Taiwanese environmental sector were mostly estimated by following the default methodology in the Intergovernmental Panel on Climate Change guideline, except that of night soil treatment and waste transportation that were modified or newly developed. The GHG emissions from the environmental sectors in 2004 were 10,225 kilotons of CO2 equivalent (kt CO2 Eq.). Landfilling (48.86%), solid waste incineration (27%), and wastewater treatment (21.5%) were the major contributors. Methane was the most significant GHG (70.6%), followed by carbon dioxide (27.8%) and nitrous oxide (1.6%). In summary, the GHG emissions estimated for the environmental sector in Taiwan provided reasonable preliminary results that were consistent and comparable with the existing authorized data. On the basis of the inventory results and the comparisons with the other countries, recommendations of mitigation plans were made, including wastewater and solid waste recycling, methane recovery for energy, and waste reduction/sorting.  相似文献   

12.
In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and 12C content were analyzed; and in particular, CO2 concentration in incineration gases and 12C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively.

Implications: This study intends to compare greenhouse gas emissions calculated using 12C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using 12C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and 12C content were calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.  相似文献   


13.
Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. A sustainable MSWM strategy should consider not only economic efficiency but also life-cycle assessment of environmental impact. This study employs the fuzzy multiobjective linear programming (FMOLP) technique to find the optimal compromise between economic optimization and pollutant emission reduction for the MSWM strategy. Taichung City in Taiwan is evaluated as a case study. The results indicate that the optimal compromise MSWM strategy can reduce significant amounts of pollutant emissions and still achieve positive net profits. Minimization of the sulfur oxide (SOx) and nitrogen oxide (NOx) emissions are the two major priorities in achieving this optimal compromise strategy when recyclables recovery rate is lower; however, minimization of the carbon monoxide (CO) and particulate matter (PM) emissions become priority factors when recovery rate is higher.

Implications: This paper applied the multiobjective optimization model to find the optimal compromise municipal solid waste management (MSWM) strategy, which minimizes both life-cycle operating cost and air pollutant emissions, and also to analyze the correlation between recyclables recovery rates and optimal compromise strategies. It is different from past studies, which only consider economic optimization or environmental impacts of the MSWM system. The result shows that optimal compromise MSWM strategy can achieve a net profit and reduce air pollution emission. In addition, scenario investigation of recyclables recovery rates indicates that resource recycling is beneficial for both economic optimization and air pollutant emission minimization.  相似文献   

14.
The paper reports on global release and mass partitioning in the flux of residues of PCDD/Fs, evaluated with dedicated field campaigns at a municipal solid waste incineration plant during normal and transient operation. Results are compared with those obtained in other installations equipped with furnaces, energy recovery options and flue gas treatment technologies representative of most of the European incineration plants currently in operation. Levels of the pollutants of interest were determined in all the solid, liquid and gaseous residues produced by every single facility, and the results analysed in terms of the effects arising from the fed waste and the configuration of the plant. PCDD/Fs total release between 1.5 and 45 microg I-TEQ per ton of burned waste was evaluated, with lower values resulting from the adoption of catalytic conversion process for flue gas treatment. Most of the mass flux emitted is associated with solid residues deriving from activated carbon PCCD/F dry removal options, with significant contributions also from fly ash produced by particulate removal devices located immediately downstream the boiler and from scrubber blowdowns treatment sludge. During transient operating conditions the dioxin total release may increase by 50% with comparison to steady-state functioning.  相似文献   

15.
This study aimed to investigate the effects on the environment of small clinics solid waste management by applying a life cycle analysis approach. Samples were collected from 371 private clinics situated in densely populated areas of Hyderabad, Pakistan. The solid waste from surveyed clinics was categorically quantified on daily basis for 30 consecutive days. The functional unit for waste was defined as 1 tonne. System limitations were defined as landfilling, incineration, composting, material recovery, and transportation of solid waste. The treatment and disposal methods were assessed according to their greenhouse gas emission rate. For the evaluation, three different scenarios were designed. The second scenario resulted in the highest emission value of 1491.78 kg CO2 eq/tonne of solid waste due to mixed waste incineration, whereas the first scenario could not offer any saving because of uncovered landfilling and 67.5% higher transport fuel consumption than the proposed network. The proposed third scenario was found to be a better solution for urban clinics solid waste management, as it resulted in savings of 951.38 kg CO2 eq/tonne of solid waste. This integrated design is practicable by resource-constrained economy. This system consists of composting, material recovery, and incineration of hazardous waste. The proposed system also includes a feasible transportation method for urban area collection networks. The findings of the present study can play a vital role in documenting evidence and for policymakers to plan the solid waste management of clinics, as previously no studies have been conducted on this particular case.

Implications: This study aims to highlight the impact of small clinics solid waste management scenarios on the environment in a developing country’s urban area. Life cycle analysis is used for comparison of greenhouse gase emission from different scenarios, including the purposed integrated method. Small clinics play a very important role in health care, and their waste management is a very serious issue; however, there are no previous studies on this particular case to the best knowledge of the authors. This study can be considered as forerunner effort to quantify the environmental footprint of small clinics solid waste in urban areas of a developing country.  相似文献   


16.
Environmental Science and Pollution Research - This paper deals with the techniques to use plastic waste for co-processing in cement kiln for energy recovery. Plastics, a versatile material and...  相似文献   

17.
The aim of this paper is to apply life cycle assessment in the waste management sector, in order to compare the environmental performance of different waste management methods. The methods that are studied are: landfilling, aerobic and anaerobic biological treatment, incineration and recycling, focusing on mass and energy balances and the environmental performance of each applied scenario. The Peloponnese Region in Greece was selected as a case for the application of this methodology and more specifically its largest municipalities, where a significant amount of waste is presented. The conducted LCA study proves the necessity of the adoption of an integrated waste management system and indicates its principal objectives by measuring environmental impacts. Thermal scenario contributes significant to the mitigation on the Greenhouse Gases. On the other hand, separation at source and recycling practices provides significant benefits to the abiotic depletion impact.  相似文献   

18.
在转式垃圾焚烧炉和固定床加热炉中,研究了有机垃圾焚烧过程中温度、水分、无机氯及有机氯对几种重金属分布的影响。研究结果表明,焚烧垃圾过程中焚烧温度对重金属分布特性的影响特性不一,重金属锌和铅容易转移到气相中去,而重金属镍和铬大部分是以固态形式残留在底渣中;水能与重金属及其化合物发生反应,引起物质转变,影响重金属的分布;氯的存在也影响重金属的分布特性,氯的参与使重金属更易向飞灰或烟气中迁移。  相似文献   

19.

With the aim of upgrading current food waste (FW) management strategy, a novel FW hydrothermal pretreatment and air-drying incineration system is proposed and optimized from an energy and exergy perspective. Parameters considered include the extracted steam quality, the final moisture content of dehydrated FW, and the reactor thermal efficiency. Results show that optimal working condition can be obtained when the temperature and pressure of extracted steam are 159 °C and 0.17 MPa, the final moisture content of dehydrated FW is 10%, and the reactor thermal efficiency is 90%. Under such circumstance, the optimal steam energy and exergy increments reach 194.92 and 324.50 kJ/kg-FW, respectively. The novel system is then applied under the local conditions of Hangzhou, China. Results show that approximately 2.7 or 11.6% (from energy or exergy analysis perspective) of electricity can be additionally generated from 1 ton of MSW if the proposed novel FW system is implemented. Besides, comparisons between energy and exergy analysis are also discussed.

  相似文献   

20.
生活垃圾安全无害化处理是目前迫切需要解决的问题,直接气化熔融焚烧垃圾技术以降低二恶英排放方面巨大优势得到广泛关注,在此基础上提出纯氧熔融焚烧垃圾技术,几乎可以实现所有二次污染物近零排放。以350 t/d回转窑垃圾焚烧炉为例,对纯氧代替空气应用在回转窑上熔融焚烧垃圾系统进行了详细热力计算及分析。结果表明,纯氧熔融焚烧垃圾系统的锅炉效率可达90.56%,回转窑熔融焚烧系统还可以在垃圾焚烧后灰渣达到熔融温度的条件下,保持该系统热量平衡,稳定燃烧。并参考回转窑设计标准对该纯氧熔融焚烧城市生活垃圾的回转窑参数进行确定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号