首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
浒苔生物炭对雨水径流中氨氮的吸附特性及吸附机制   总被引:1,自引:0,他引:1  
为探究生物滞留池填料(浒苔生物炭)处理雨水径流氨氮(NH4+-N)的去除效果及机制,进行室内批量吸附实验,在对浒苔生物炭进行碱改性(1、2和3 mol·L-1 NaOH改性,分别标记为BC1、BC2和BC3)基础上,开展改性前后浒苔生物炭对NH4+-N吸附性能研究.结果表明:①适宜浓度的碱改性提高了浒苔生物炭的比表面积和表面微观结构,增加了O元素含量,丰富了表面官能团,其中BC2改性效果最好.②浒苔生物炭对NH4+-N的吸附在pH值9.0和生物炭投加量0.5 g·L-1时,吸附量最大,BC1和BC2的吸附量比BC分别提高6.4%和10.8%,BC3则降低13.7%,BC2吸附效果最好,饱和吸附量达16.76mg·g-1.③浒苔生物炭对NH4+-N的吸附机制为单分子层的化学吸附,吸附过程受到生物炭的高pH值、孔隙的静电吸引以及表面羟基(-OH)、羧基(-COOH)和碳氧单键(C-O)等官能团的络合氧化等的促进作用.综上所述,适量的NaOH来改性浒苔生物炭能够提高对NH4+-N的吸附效果,可作生物滞留池的填料来去除NH4+-N污染.  相似文献   

2.
FeCl3改性污泥生物炭对水中吡虫啉的吸附性能研究   总被引:1,自引:0,他引:1  
邹意义  袁怡  沈涛  周扬 《环境科学学报》2021,41(9):3478-3486
以脱水污泥为原料,制备污泥生物炭(SBC)和FeCl3改性污泥生物炭(Fe-SBC)处理低浓度吡虫啉(IMI)废水(浓度为10 mg·L-1),考察SBC和Fe-SBC对IMI的吸附性能及影响因素,并探究其吸附机理.采用SEM、XRD、FTIR、BET及元素分析等探得污泥生物炭FeCl3改性成功.Fe-SBC对IMI的最大吸附量为4.915 mg·g-1,是SBC的1.97倍,表现出更好的IMI吸附性能.pH和离子强度的变化对Fe-SBC的吸附性能影响较小,最大波动幅度分别为4.4%和7.8%.两种生物炭对IMI的吸附均符合准二级动力学模型,Freundlich模型可以更好地描述其等温吸附曲线.热力学研究表明,SBC吸附IMI是非自发吸附,而Fe-SBC是自发吸附.Fe-SBC对IMI的吸附机理包括静电作用力、氢键作用力及π-π键相互作用力.多次热解再生后的Fe-SBC对IMI的去除率仍可达93.088%.  相似文献   

3.
魏红  赵江娟  景立明  钮金芬  付冉  董雯 《环境科学》2023,44(12):6811-6822
采用NaHCO3活化荞麦皮生物炭,优化得到生物炭0.25N-BC[m(NaHCO3):m(荞麦皮)=0.25:1],通过SEM、BET、XRD、Raman、FTIR和XPS等方法进行表征,分析NaHCO3对生物炭理化性质的影响,探究其对非离子型碘代X射线造影剂碘帕醇(IPM)的吸附性能和机制.结果表明,与荞麦皮生物炭相比(BC),NaHCO3活化生物炭的结构缺陷程度更高(比表面积和孔体积分别由480.40 m2·g-1和0.29 cm3·g-1增至572.83 m2·g-1和0.40 cm3·g-1,ID/IG是BC的1.22倍),表面含碳和含氧官能团数量发生显著变化,极性增强[(N+O)/C由0.15增至0.24],能够有效吸附IPM,0.25N-BC对IPM最大吸附量达到74.94 mg·g-1,是BC (7.88 mg·g-1)的9.51倍.拟二级吸附动力学和Langmuir、Freundlich等温线模型可很好地拟合0.25N-BC对IPM的吸附,吸附过程主要以化学吸附和单层、非均质多层吸附为主;孔隙填充、氢键、π—π和n—π相互作用是0.25N-BC吸附IPM的主要机制.对比不同碱[KOH、Na2CO3、NaHCO3、KHCO3和Ca (HCO32]活化荞麦皮生物炭对IPM的吸附,0.25N-BC吸附效率高,达到吸附平衡时间短,能有效去除实际水体(二沉池出水和湖水)中IPM的残留,并具有良好的循环使用性能,吸附-解吸3次后对IPM的去除率仍保持在74.91%.研究表明NaHCO3活化荞麦皮生物炭是一种绿色有效,可持续去除含碘有机物的优良吸附剂.  相似文献   

4.
KOH活化小麦秸秆生物炭对废水中四环素的高效去除   总被引:1,自引:0,他引:1  
活化是提高生物炭吸附性能的重要手段.以小麦秸秆为研究对象,KOH为活化剂,制备KOH活化生物炭(K-BC),同时制备原状生物炭(BC)作为对照.对生物炭进行比表面积和孔径、元素分析、XPS、FTIR、Raman、XRD和pHpzc等表征,考察KOH活化对生物炭理化性质的影响,并探究生物炭对水体中四环素的吸附性能和机制.结果表明,KOH活化之后生物炭的比表面积和孔体积可达996.4 m2·g-1和0.45 cm3·g-1.KOH活化会制造更多的碳结构缺陷,影响生物炭的官能团和表面电性.拟二级动力学和Langmuir模型可以较好地拟合生物炭吸附四环素的过程.环境温度升高能提高生物炭对四环素的吸附量.K-BC吸附四环素是自发、吸热和无序度增加的过程.K-BC对四环素的最大吸附量理论可达到491.19 mg·g-1(实验温度为45℃).结合吸附后生物炭的Raman、FTIR和XPS表征,发现孔隙填充和π-π作用是K-BC吸附四环素的主要机制,氢键和络合作用也发挥重要作用.此外,K-BC还具有良好的循环使用性能.综上所述,KOH活化小麦秸秆生物炭是有效和可行的,可用于废水中四环素的去除.  相似文献   

5.
生物炭及其改性材料由于具有较发达的比表面积和孔隙结构、丰富的表面官能团及较强的吸附能力等特性,被作为良好的环境修复材料而成为农田土壤重金属污染修复领域的研究热点.选取稻壳生物炭,采用K3PO4、KMnO4和NaOH进行改性处理,利用扫描电镜(SEM)和红外光谱(FT-IR)等对生物炭表面微观形态与结构进行表征分析,并开展了90 d土壤培养试验,比较分析3种改性生物炭对冶炼厂周边农田复合重金属污染土壤中Cd和Cu的有效性和形态的影响.结果表明,改性后生物炭表面粗糙,比表面积和孔容均有不同程度的增大,其中,NaOH改性生物炭变化最为明显,分别由改性前的4.96 m2·g-1和0.02 cm3·g-1增至60.79 m2·g-1和0.12 cm3·g-1,孔径变化则与之相反;改性生物炭的官能团吸收特征峰值均发生改变,其中K3PO4改性生物炭的变化最为明显.添加不同改性生物炭均能显著提高土壤pH值(P<0.05),K3PO4改性生物炭对土壤pH的增幅最大,为20.5%;K3PO4改性生物炭对土壤中Cu和Cd的有效态含量的影响也最为明显,分别降低了75.44%和67.70%;土壤中Cu和Cd的水溶态、可交换态和碳酸盐结合态比例均降低,其中K3PO4改性生物炭对Cu和Cd的钝化效果最好,添加量为2%时,钝化效率分别为61.06%和4.12%,Cu的钝化效率远高于Cd.综上所述,K3PO4改性生物炭对复合污染土壤中Cu和Cd具有较强的钝化效果.  相似文献   

6.
木屑生物炭在雨水径流中的氮磷淋出和吸附特性   总被引:2,自引:1,他引:1  
孟依柯  王媛  汪传跃 《环境科学》2021,42(9):4332-4340
现阶段生物滞留系统的填料存在氮磷营养素淋出及吸附净化效果不稳定的问题.为评估木屑生物炭作为生物滞留系统过滤层填料的可行性,选用传统填料(椰糠、堆肥、陶粒和火山石)作为对比材料,通过理化性质测试、批量淋洗实验、等温吸附和解吸实验,研究木屑生物炭的基本性质、淋出特性和吸附特性,探究木屑生物炭对生物滞留系统的优化效果与改良机制.结果表明,经高温热解生成的木屑生物炭具有疏松和多孔的特性,饱和含水率为195.65%,持水效果好;热解后木屑生物炭表面的氮磷元素转换为稳定的化合物,在批量淋洗实验中其氮素淋出量低、淋出速度快,磷素淋出滞缓但在人造雨水径流的淋洗中保持线型负值增长,吸附效果稳定;在典型雨水径流浓度(2mg·L-1的NH4+及2mg·L-1的PO43-)下,木屑生物炭可吸附34.6mg·kg-1的NH4+和59.5mg·kg-1的PO43-,具有突出的综合吸附能力;NH4+及PO43-吸附平衡后的木屑生物炭在去离子水中的平均解吸率为21.23%和17.43%,吸附效果稳定.综上所述,木屑生物炭的施用可解决填料营养盐过剩淋出的问题,且具有较好的氮磷吸附效果,可用作生物滞留系统的填料解决雨水径流污染问题.  相似文献   

7.
改性污泥基生物炭的性质与重金属吸附效果   总被引:8,自引:4,他引:4  
为提高污泥基生物炭在高钙溶液体系中对重金属阳离子的吸附能力,将Fe2O3、MnO2、ZnO与市政污泥以质量比1 ∶10(以过渡金属元素质量计)混合共热解,制备改性生物炭;表征改性生物炭的组成、官能团分布和表面性质,考察其对典型重金属阳离子Cd2+的吸附效果.过渡金属氧化物可促进污泥的热解,改性生物炭的H/C原子比均低于0.31,碳链裂解脱氢更彻底.改性生物炭中Fe、Mn保留较好,分别主要以单质和氧化物形态存在;而Zn流失较多.改性生物炭中的孔隙以介孔为主,平均孔径约3.8 nm,比表面积在50 m2·g-1以上.初始浓度约200 mg·L-1的Cd2+溶液中,Ca2+初始浓度从0 mg·L-1升高到约200 mg·L-1,Fe改性生物炭对Cd2+的吸附容量从43.17 mg·g-1降至27.88 mg·g-1,但仍较未改性生物炭高10 mg·g-1以上,在含钙溶液体系中表现出了对Cd2+更强的吸附性能.Fe2O3较MnO2和ZnO对市政污泥基生物炭吸附重金属的强化效果更好.  相似文献   

8.
磁性高交联纳米吸附树脂的合成及其对酚类的吸附   总被引:1,自引:0,他引:1  
杨其文  王圃 《环境科学学报》2021,41(8):3235-3242
采用油酸双层包覆Fe3O4纳米粒子,然后进行共聚和交联反应,制备出耐酸性的磁性高交联纳米吸附树脂YQ-3.YQ-3树脂的比表面积为653.5 m2·g-1,平均孔径为4.12 nm,磁化强度为1.72 emμ·g-1,具有超顺磁性.苯酚(PN)、对苯二酚(HN)、对硝基苯酚(PNP)在YQ-3上的吸附等温线符合Freundlich方程,主要通过疏水和 π-π作用进行吸附.3种酚的饱和吸附量顺序为PNP>PN>HN,与其疏水性顺序一致.准一级动力学和颗粒内模型适合拟合YQ-3对酚的吸附,由于YQ-3磁性树脂具有较小的粒径和丰富的中-大孔隙,其动力学速率比传统超高交联树脂更快.  相似文献   

9.
秸秆生物炭吸附对乙酰氨基酚的机制及其位能分布特征   总被引:1,自引:1,他引:0  
作为药品和个人护理产品(PPCPs)中用量最大的一类,对乙酰氨基酚广泛存在于水环境中,具有潜在的环境风险;因此,有必要对其去除机制开展研究.基于我国农业秸秆资源高值转化的需求,通过热解制备秸秆生物炭吸附净化水中对乙酰氨基酚具有良好的应用前景.然而秸秆生物炭对对乙酰氨基酚的吸附过程和机制尚不清楚.选用4种秸秆(稻秆、麦秆、玉米秆和大豆秆)作为原料,通过热裂解在400℃和500℃制备生物炭,进行序批吸附实验,同时研究腐殖酸和pH对吸附过程的影响.结果表明,基于Freundlich模型和位置能量分布模型可知,500℃生物炭对对乙酰氨基酚的吸附量显著高于400℃生物炭(吸附系数KF高出1.16~2.53倍),且具有较多的高能吸附位点.高温热解生物炭的主要吸附机制为孔道吸附和π-π作用;低温热解生物炭的主要吸附机制为表面氢键作用.腐殖酸对对乙酰氨基酚在生物炭上的去除具有协同效应,这归因于所选腐殖酸具有一定芳香性,可促进与对乙酰氨基酚的相互作用.pH升高抑制生物炭吸附主要归因于对乙酰氨基酚团聚.吸附机制研究表明,可通过提高热解温度促进对乙酰氨基酚在秸秆生物炭上的孔道吸附和π-π作用;腐殖酸和pH影响研究表明,秸秆生物炭与对乙酰氨基酚的相互作用不受腐殖酸影响,在低pH环境下也具有良好吸附性能.  相似文献   

10.
改性生物炭固定床对模拟湖库水体中Mn2+的吸附   总被引:1,自引:0,他引:1  
赵洁  叶志隆  王佳妮  蔡冠竟 《环境科学》2022,43(11):4971-4981
湖库是社会生产发展的重要水资源,而湖库饮用水中锰离子(Mn2+)的季节性超标成为威胁人类的生活健康和社会安全生产的重要因素之一.首先,开展了NaOH改性生物炭的静态吸附研究,并考察了热解温度(400、500和600℃)和改性条件(未改性、碱前处理改性和碱后处理改性)对吸附性能的影响,研究表明碱前处理改性能提高生物炭的吸附容量,在400℃时获得最大吸附容量为41.06 mg ·g-1.之后,开展了改性生物炭固定床对Mn2+的动态吸附研究.结果表明,碱改性生物炭在静态吸附状态下的吸附能力越强,其在固定床动态吸附过程中的穿透点(ct/c0=0.1)和饱和点(ct/c0=0.9)时间越长;当分别提高Mn2+初始浓度和进水流速时,固定床吸附的穿透点时间由360 min分别缩短至160 min和200 min,饱和点时间由865 min分别缩短至700 min和600 min.Thomas吸附模型能较好地拟合生物炭固定床吸附过程,表明动态吸附过程中,生物炭对Mn2+的去除由化学吸附主导,研究结果可为实际运行提供科学指导.  相似文献   

11.
以市政污泥为前驱体,采用硼酸掺杂改性共热解法,制备了污泥生物炭(BC600)和B掺杂污泥生物炭(BBC600),采用SEM、BET、FTIR、Zeta电位和静态接触角等手段对材料进行了结构表征,研究了BC600和BBC600对水中1,2-二氯乙烷(1,2-DCA)的吸附行为、机制和影响因素.结构表征结果表明,B掺杂改性后,生物炭中B元素含量、比表面积和孔容分别提高了76%、48%和30%;B掺杂改性对生物炭表面电荷及亲疏水性影响不大,BC600和BBC600表面均带有负电荷,接触角均<90°,两者均具有较好的亲水性.吸附实验结果表明,BBC600对1,2-DCA的吸附性能优于BC600,缘于BBC600更大的比表面积和强度更高的含氧官能团;准一级动力学方程可以较好描述BC600吸附1,2-DCA过程,准二级动力学方程能较好拟合BBC600吸附1,2-DCA过程,颗粒内扩散不是影响吸附速率的唯一限速步骤;碱性条件下生物炭材料更加分散和稳定,且其含氧官能团去质子化,供电子能力增强,有利于对1,2-DCA的吸附;腐殖酸(HA)对BC600吸附1,2-DCA呈现低浓度促进,高浓度抑制的作...  相似文献   

12.
木屑生物炭对填料土的氮磷吸附及雨水持留改良影响   总被引:1,自引:1,他引:0  
孟依柯  王媛  汪传跃  王报 《环境科学》2021,42(12):5876-5883
现阶段生物滞留系统的填料土存在氮磷营养盐净化效果不稳定、雨水持留能力下降等问题.为评估木屑生物炭作为生物滞留系统填料土添加剂的改良效果,选用对照填料土和施用了木屑生物炭的改良填料土进行对比研究,通过理化性质测试、等温吸附实验、土柱实验和土水特征曲线测定,研究木屑生物炭对填料土的改良影响与优化机制.结果表明,木屑生物炭孔隙率大、比表面积大、饱和含水率高和CEC高,可优化填料土的结构,提升填料土的离子交换能力;木屑生物炭对填料土的氮磷吸附改良效果突出,对NH4+-N的最大吸附量提高了 2.80倍,去除率由31.30%提高至64.10%,对PO43--P的最大吸附量提高了 1.28倍,去除率由61.90%提高至90.00%;经木屑生物炭改良后,填料土的饱和含水率提高1.63倍,渗透系数提高2.43倍,在各含水率下的基质吸力明显增加.木屑生物炭的添加可优化生物滞留系统填料土的性能,加强对雨水径流中氮磷营养盐的吸附,提高系统的渗透性和雨水持留能力.  相似文献   

13.
窄孔径含磷棉秆生物质炭的制备及对四环素的吸附机制   总被引:1,自引:0,他引:1  
曾少毅  李坤权 《环境科学》2023,44(3):1519-1527
以棉秆为生物质原料,磷酸为改性剂,一步碳化制备了兼具高比表面积(1 916 m2·g-1)和孔体积(1.398 2 mL·g-1)的窄孔径含磷棉秆生物质炭(CSP),并研究了其对四环素(TC)的吸附行为.结果表明,磷酸改性制备的窄孔径含磷棉秆生物质炭对TC吸附量高达669mg·g-1,是未改性棉秆炭的43.6倍;红外光谱(FTIR)、 X射线(XPS)和等温吸附研究表明,CSP对TC的高吸附量是表面络合、氢键、孔隙填充和π-π色散等多种吸附力共同作用的结果,其中磷酸改性赋予的高活性磷酸酯类基团(P—O—C)与TC分子间的化学络合作用强且贡献度高,是吸附量显著提升的最关键因素.静态等温吸附与热力学研究结果进一步证实TC在含磷棉秆炭吸附过程中化学吸附起主要作用,吸附过程属于自发的吸热过程.研究结果可为利用棉秆资源定向制备高效吸附TC的高活性磷掺杂生物质炭提供了一种潜在的简便高效途径.  相似文献   

14.
斯林林  周静杰  吴良欢  胡兆平 《环境科学》2018,39(12):5383-5390
在太湖流域,通过田间试验研究了控释肥(CRF)、生物炭配施控释肥(BC+CRF)、生物炭配施稳定性肥(BC+SF)、生物炭配施控释肥和稳定性肥(BC+CRF+SF)4种施肥处理对稻田田面水p H、氮素动态变化、氮素径流流失的影响.结果表明,田面水平均p H介于5.64~8.15,生物炭配施控释肥和稳定性肥田面水p H降低3.16%~4.48%.田面水平均全氮(TN)质量浓度介于19.05~25.23 mg·L~(-1),生物炭配施控释肥和稳定性肥田面水TN质量浓度显著降低4.75%~6.58%.田面水无机氮素以铵态氮(NH_4~+-N)为主,NH_4~+-N和硝态氮(NO_3~--N)平均质量浓度分别介于0.01~17.26 mg·L~(-1)和0.24~3.11mg·L~(-1).与单施控释肥相比,各处理田面水NH_4~+-N和NO_3~--N质量浓度分别显著降低35.89%~48.78%和20.54%~37.01%.生物炭配施稳定性肥显著降低了田面水NH_4~+-N和NO_3~--N质量浓度,有效减少无机氮素径流流失风险.TN、NH_4~+-N、NO_3~--N径流流失量分别介于16.24~18.09、1.76~2.22、0.76~1.38 kg·hm~(-2).与单施控释肥相比,各处理TN、NH_4~+-N、NO_3~--N径流流失均有不同程度削减.生物炭配施控释肥和稳定性肥显著削减了氮素径流流失,有效降低区域稻田氮素面源污染风险.  相似文献   

15.
生物滞留设施对城市地表径流低浓度磷吸附基质研究   总被引:2,自引:2,他引:0  
城市地表径流是淡水水体磷的重要来源之一.国际上生物滞留设施被广泛应用于城市地表径流污染的控制,其中基质组成是影响生物滞留设施除磷效果的主要因素.本研究探讨了紫色土与河砂混合作为生物滞留设施基质吸附去除城市地表径流低浓度磷的可行性.结果表明:山地城市重庆不透水地表(包括居住区道路、商业区道路、停车场以及交通干道)径流TP浓度变化范围为0.04~7.00 mg·L-1,均值为(0.75±1.08)mg·L-1;TDP浓度变化范围为0.02~0.46 mg·L-1,均值为(0.15±0.10)mg·L-1.根据重庆降雨特征与不透水地表径流磷污染特征,生物滞留设施规模为10%不透水面积,预期服务时间10a,基质对城市地表径流P的预期吸附量需达到7.5 mg·kg-1.中、酸性紫色土草酸浸提态Fe、Al含量影响P吸附能力,紫色土P吸附能力与草酸浸提态Fe和Al含量与磷含量之比(OR)呈显著正相关,20%紫色土与80%河砂混合基质可以满足重庆生物滞留设施基质对城市地表径流P的预期吸附量要求.20%紫色土与80%河砂混合基质(厚度60 cm)对P浓度0.30mg·L-1的进水长期模拟运行,出水P浓度均低于0.05 mg·L-1.利用紫色土和河砂混合基质吸附去除水文过程与水质变化情况下的城市地表径流低浓度P是可行的.  相似文献   

16.
以盐渍土壤为研究对象,通过吸附试验和室内土壤培养试验,分析生物炭及木醋液酸化生物炭与尿素配施后对盐渍土壤活性氮、脲酶活性和氨挥发的影响,为提高盐渍土壤氮素有效性提供理论和技术支撑.吸附试验表明,木醋液酸化生物炭提高了对铵态氮的吸附量,与生物炭相比,提高了2.28%~18.18%.土壤培养试验表明,与单施尿素处理相比,生物炭和木醋液酸化生物炭与尿素配施处理使土壤硝态氮、铵态氮分别减少了0.72%和25.26%、 1.11%和16.93%;提高了土壤可溶性有机氮和可溶性全氮含量.木醋液酸化生物炭与尿素配施提高了脲酶活性,而生物炭与尿素配施处理则降低了土壤脲酶活性.木醋液酸化生物炭与尿素配施处理氨挥发累积量在不同培养时期均低于单施尿素处理及生物炭与尿素配施处理,且能降低土壤的pH,而未改性的生物炭则提高了土壤pH.因此,在盐渍土区,采用木醋液对生物炭进行酸化后再与氮肥配合施用,不仅有效降低了土壤pH,提高土壤脲酶活性以及可溶性有机氮含量,还可以适当降低土壤铵态氮和硝态氮含量,减少氨挥发,有利于减少土壤无机氮素的损失和提高盐渍土壤氮素有效性.  相似文献   

17.
传统生物炭材料对水中氨氮(NH+4-N)的吸附效果不佳.以生物炭为载体负载纳米零价铁制得生物炭基纳米零价铁复合吸附剂nZVI@BC,通过吸附实验,考察nZVI@BC对NH+4-N的吸附特性,并采用SEM-EDS、 BET、 XRD和FTIR分析nZVI@BC的组成和结构特性,探讨nZVI@BC吸附NH+4-N的主要机制.结果表明,在298K下铁/生物炭质量比为1∶30时制备的复合吸附剂(nZVI@BC1/30)对NH+4-N的吸附性能最佳,比负载前生物炭的吸附量提高了45.96%,饱和吸附量可达16.60 mg·g-1.伪二级动力学模型和Langmuir模型更符合nZVI@BC1/30对NH+4-N的吸附过程.共存阳离子与NH+4-N之间存在竞争吸附,其对nZVI@BC1/30吸附NH+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号