首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
详细综述了国内外废旧聚丙烯再生利用技术,并对未来废旧聚丙烯回收利用技术的发展趋势进行了预测.  相似文献   

2.
近几年,我国废旧铅酸蓄电池的回收处理工作取得了很大进展,但由于各种原因引起的环境污染现象仍触目惊心.回收处理废旧铅酸蓄电池提取再生铅,与原生铅相比更节能环保,符合资源回收和循环利用法则.但目前回收和处理市场很不规范,存在严重的环境污染问题,着重讨论用政策引导的方式规范废旧铅酸蓄电池回收处理市场,实现资源节约和环境保护的双重目的.  相似文献   

3.
我国已进入家用电器报废高峰期,废旧家用电器回收利用面临总量较少、集中困难、回收处理主体尚未确定等问题,应遵照循环经济思想,促进废旧家用电器回收利用.  相似文献   

4.
近日,重庆市供销合作总社与大足区签订协议,投资30亿元,在大足建设重庆再生资源产业园项目。 重庆再生资源产业园项目占地500hm^2,年处理废旧物品110万t以上,包括废旧有色金属、废旧电子电器、报废汽车、废金属、废塑料等回收、分拣、加工、再制造和再循环等。项目建设期约4年。分两期建设,全部建成后,预计年销售收入135亿元以上,年纳税额21亿元以上,可提供3000多个就业岗位。  相似文献   

5.
首先分析了报废汽车回收的意义和必要性,然后对国内外报废汽车回收利用的现状作了重点介绍,最后展望了未来发展趋势.  相似文献   

6.
近日从重庆市科委获悉,重庆市针对废旧汽车制定的《再生资源综合利用关键技术》项目目前被纳入国家科技支撑计划。预计到2010年底,该市将建成年综合利用废旧汽车轮胎50万条的示范工程,并出台一系列管理办法促进废旧汽车“绿色回收”。目前我国汽车的报废量每年约l00万辆,仅废旧轮胎,每年就达1亿条。一些废旧汽车轮胎、零部件随意丢弃,不仅造成巨大的经济浪费,同时对生态环境也造成严重污染:汽车轮胎80%的残余部分可通过回收处理进行综合利用。然后广泛用于建材、塑料、涂料等众多领域。  相似文献   

7.
目前我国的废旧冰箱已进入了一个报废高峰期,且大量废旧冰箱塑料的处理问题已成为当今地球环境保护的热点问题,而我国又是一个人均资源占有量很低的国家,因此,对废旧冰箱塑料进行回收与再生利用则具有极其重要的意义.介绍了废旧冰箱塑料的物理再生利用、化学再生利用、生物降解、能源回收利用的技术和方法.  相似文献   

8.
冰箱产品从其制造到废弃是一个庞大的产业领域,如何以较经济的方式实现废旧冰箱的可拆卸性与可回收性,已经成为当今国际社会关注的热点.目前我国已迎来了废旧冰箱报废的高峰期,而我国又是一个人均资源占有量很低的国家,对废旧冰箱进行可回收性利用则具有极其重要意义.对废旧冰箱的拆卸与回收的经济性、再生利用以及回收关键技术研究等方面进行了分析.  相似文献   

9.
随着经济的发展,市场上手机风格变化日新月异,大量手机由于报废或过时被淘汰下来,废旧手机的资源化回收利用成为一个新的环境问题.介绍了国内外废旧手机回收利用状况、处理方法和工艺流程,重点介绍了贵金属和废塑料的回收与利用,并针对我国手机回收和资源化管理存在的实际问题提出了切实的建议.  相似文献   

10.
随着人民生活水平的不断提高,居民家中淘汰的各类废旧纺织品的产生量快速增加。废旧纺织品作为一种可再生资源,其复杂性影响了回收后的资源化利用。废旧纺织品分类回收和再生纤维加工,提高了废旧纺织品回收及再利用水平,有助于弥补我国纺织原材料供给不足,实现织物资源的循环利用。  相似文献   

11.
A serious environmental problem was presented by waste batteries resulting from lack of relevant regulations and effective recycling technologies in China. The present work considered the enhancement of waste Ni-Cd and Ni-MH batteries recycling by mechanical treatment. In the process of characterization, two types of waste batteries (Ni-Cd and Ni-MH batteries) were selected and their components were characterized in relation to their elemental chemical compositions. In the process of mechanical separation and recycling, waste Ni-Cd and Ni-MH batteries were processed by a recycling technology without a negative impact on the environment. The technology contained mechanical crushing, size classification, gravity separation, and magnetic separation. The results obtained demonstrated that: (1) Mechanical crushing was an effective process to strip the metallic parts from separators and pastes. High liberation efficiency of the metallic parts from separators and pastes was attained in the crushing process until the fractions reached particle sizes smaller than 2 mm. (2) The classified materials mainly consisted of the fractions with the size of particles between 0.5 and 2 mm after size classification. (3) The metallic concentrates of the samples were improved from around 75% to 90% by gravity separation. More than 90% of the metallic materials were separated into heavy fractions when the particle sizes were larger than 0.5 mm. (4) The size of particles between 0.5 and 2 mm and the rotational speed of the separator between 30 and 60 rpm were suitable for magnetic separation during industrial application, with the recycling efficiency exceeding 95%.  相似文献   

12.
Nickel–metal hydride (NiMH) batteries contain high amount of industrial metals, especially iron, nickel, cobalt and rare earth elements. Although the battery waste is a considerable secondary source for metal and chemical industries, a recycling process requires a suitable pretreatment method before proceeding with recovery step to reclaim all valuable elements. In this study, AA- and AAA-type spent NiMH batteries were ground and then sieved for size measurement and classification. Chemical composition of the ground battery black mass and sorted six different size fractions were determined by an analytical technique. Crystal structures of the samples were analyzed by X-ray diffraction. Results show that after mechanical treatment, almost 87 wt% of the spent NiMH batteries are suitable for further recycling steps. Size classification by sieving enriched the iron content of the samples in the coarse fraction which is bigger than 0.25 mm. On the other hand, the amounts of nickel and rare earth elements increased by decreasing sample size, and concentrated in the finer fractions. Anode and cathode active materials that are hydrogen storage alloy and nickel hydroxide were mainly collected in finer size fraction of the battery black mass.  相似文献   

13.
A total of 26.1 Mg of residual waste from 3129 households in 12 Danish municipalities was analysed and revealed that 89.6 kg of Waste Electrical and Electronic Equipment (WEEE), 11 kg of batteries, 2.2 kg of toners and 16 kg of cables had been wrongfully discarded. This corresponds to a Danish household discarding 29 g of WEEE (7 items per year), 4 g of batteries (9 batteries per year), 1 g of toners and 7 g of unidentifiable cables on average per week, constituting 0.34% (w/w), 0.04% (w/w), 0.01% (w/w) and 0.09% (w/w), respectively, of residual waste. The study also found that misplaced WEEE and batteries in the residual waste constituted 16% and 39%, respectively, of what is being collected properly through the dedicated special waste collection schemes. This shows that a large amount of batteries are being discarded with the residual waste, whereas WEEE seems to be collected relatively successfully through the dedicated special waste collection schemes. Characterisation of the misplaced batteries showed that 20% (w/w) of the discarded batteries were discarded as part of WEEE (built-in). Primarily alkaline batteries, carbon zinc batteries and alkaline button cell batteries were found to be discarded with the residual household waste. Characterisation of WEEE showed that primarily small WEEE (WEEE directive categories 2, 5a, 6, 7 and 9) and light sources (WEEE directive category 5b) were misplaced. Electric tooth brushes, watches, clocks, headphones, flashlights, bicycle lights, and cables were items most frequently found. It is recommended that these findings are taken into account when designing new or improving existing special waste collection schemes. Improving the collection of WEEE is also recommended as one way to also improve the collection of batteries due to the large fraction of batteries found as built-in. The findings in this study were comparable to other western European studies, suggesting that the recommendations made in this study could apply to other western European countries as well.  相似文献   

14.
 This paper deals with the present scenario of hazardous waste management practices in Thailand, and gives some insights into future prospects. Industrialization in Thailand has systematically increased the generation of hazardous waste. The total hazardous waste generated in 2001 was 1.65 million tons. It is estimated that over 300 million kg/year of hazardous waste is generated from nonindustrial, community sources (e.g., batteries, fluorescent lamps, cleansing chemicals, pesticides). No special facilities are available for handling these wastes. There are neither well-established systems for separation, storage, collection, and transportation, nor the effective enforcement of regulations related to hazardous wastes management generated from industrial or nonindustrial sectors. Therefore, because of a lack of treatment and disposal facilities, these wastes find their way into municipal wastewaters, public landfills, nearby dump sites, or waterways, raising serious environmental concern. Furthermore, Thailand does not have an integrated regulatory framework regarding the monitoring and management of hazardous materials and wastes. In addition to the absence of a national definition of hazardous wastes, limited funding has caused significant impediments to the effective management of hazardous waste. Thus, current waste management practices in Thailand present significant potential hazards to humans and the environment. The challenging issues of hazardous waste management in Thailand are not only related to a scarcity of financial resources (required for treatment and disposal facilities), but also to the fact that there has been no development of appropriate technology following the principles of waste minimization and sustainable development. A holistic approach to achieving effective hazardous waste management that integrates the efforts of all sectors, government, private, and community, is needed for the betterment of human health and the environment. Received: February 26, 2001 / Accepted: October 11, 2002  相似文献   

15.
At a local Government level there have been many interventions and changes made to household waste collection services to meet new regulatory requirements. These changes include separate collection of recyclable and organic materials. This paper has used a time series model to quantify the success of interventions introduced by a LA.The case study was a medium sized UK LA, Charnwood Borough Council (CBC), the research analyses monthly data of quantities of recyclates, garden waste for composting and residual waste for landfill disposal. The time series model was validated with a five year data set and used to measure the impacts of the various changes to identify which intervention was the most successful, while controlling for season and number of working days. The results show the interventions analysed both had abrupt and permanent positive impacts on the yield of recyclable materials, and a corresponding negative impact on the residual waste.The model could be added to the National data base to help LAs to compare interventions and to understand which schemes encourage householder participation and improve recycling performance.  相似文献   

16.
Batch leaching tests and simulated landfill lysimeter tests were performed to evaluate the contents of heavy metals leached from spent batteries in the municipal solid waste. The toxicity characteristic leaching procedure was utilized to perform the batch leaching tests of 36 spent batteries. Four lysimeters were prepared with battery contents ranging from 0% to 100% by weight for column tests, and the experiments were performed at ambient temperature. The age of all the batteries used in the study ranged from freshly disposed up to approximately 3 years old. The results from the batch tests showed that the type of battery influenced the heavy metal concentrations in the leached solutions. The lysimeter experiment results illustrated that at lower pH levels more metals are leached than at higher pH levels. The increasing amount of batteries disposed in landfills can contribute to the leaching of more metals, especially Mn and Zn, into the environment. These results indicate that the direct disposal of spent household batteries into a MSW landfill can increase the heavy metal contents in the landfill leachate.  相似文献   

17.
Used household batteries are considered as hazardous wastes in many countries due to the potential environmental and human health risks associated with the heavy metals present in batteries. This article presents the current situation of waste household batteries and policies in Iran. Iran with more than 70 million people is a developing country where latest technologies like cell phones and laptops are in widespread use and battery consumption increases accordingly. The household battery demand in Iran has rapidly grown since 2001 and it is expected to increase more quickly in next years, due to increasing technological development. Based on the available data, more than 9800 metric tons of household batteries were imported into Iran in recent decade, with the market value of about US$ 42.6 million. At present, there is no program available in Iran regarding to collection, separation, recycling or safe disposal of used batteries. Therefore, almost all of the spent household are discarded into municipal solid waste (MSW) and sent to sanitary landfills. Appropriate policies to meet safe disposal of household batteries in Iran is also discussed in this investigation.  相似文献   

18.
Civil engineering-related construction and demolition debris is an important source of waste disposed of in municipal solid waste landfills. After clay materials, gypsum waste is the second largest contributor to the residential construction waste stream. As demand for sustainable building practices grows, interest in recovering gypsum waste from construction and demolition debris is increasing, but there is a lack of standardized tests to evaluate the technical and environmental viability of this solid waste recycling process. By recycling gypsum waste, natural deposits of gypsum might be conserved and high amounts of the waste by-product could be reused in the civil construction industry. In this context, this paper investigates a physical property (i.e., resistance to axial compression), the chemical composition and the ecotoxicological potential of ceramic blocks constructed with different proportions of clay, cement and gypsum waste, and assesses the feasibility of using a minimal battery of tests to evaluate the viability of this recycling process. Consideration of the results for the resistance to axial compression tests together with production costs revealed that the best formulation was 35% of plastic clay, 35% of non-plastic clay, 10% of Portland cement and 20% of gypsum waste, which showed a mean resistance of 4.64 MPa. Energy dispersive X-ray spectrometry showed calcium and sulfur to be the main elements, while quartz, gypsum, ettringite and nacrite were the main crystalline compounds found in this formulation. Ecotoxicity tests showed that leachate from this formulation is weakly toxic toward daphnids and bacteria (EC20% = 69.0 and 75.0, respectively), while for algae and fish the leachate samples were not toxic at the EC50% level. Overall, these results show that the addition of 20% of gypsum waste to the ceramic blocks could provide a viable substitute for clay in the ceramics industry and the tests applied in this study proved to be a useful tool for the technical and environmental evaluation of this recycling process, bacterial and daphnid tests being more sensitive than algae and fish tests.  相似文献   

19.
The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.  相似文献   

20.
The current situation of solid waste management in China   总被引:1,自引:1,他引:1  
With economic development, the quantity of solid waste is increasing rapidly in China; the total quantities of municipal solid waste (MSW), industrial solid waste (ISW), and hazardous waste (HW) in 2002 were 136.5 million tons, 945 million tons, and 10 million tons, respectively. In 2002, the quantity of MSW disposed of was 74.04 million tons, 89.30% of which was landfilled, 3.72% was incinerated, and 6.98% was composted. There are currently 651 disposal facilities for MSW in China. Mining gangue is the largest component of ISW, making up 27.5% of the total. In the Chinese industrial sector, the coal mining and processing industry contributed most to the total quantity of ISW, with 16.0% of the total quantity of ISW generated by this sector. In total, 44% of HW was recycled, 27% was stored, 13.5% was disposed of, and 15.4% was discharged. Of the total HW generated, 40% was produced by the chemical materials and chemical products industry. Five categories of HW, i.e., waste alkali, waste acid, inorganic fluoride waste, copper waste, and inorganic cyanide waste, made up 57.8% of the total HW generated. Solid waste pollution has become a huge challenge faced by those involved in Chinese environmental management, but this can be seen as an opportunity to improve environmental quality. This article introduces the strategies taken to improve solid waste management in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号