首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
针对含油污泥热解处理后的热解残渣仍属危险废物,其处理处置已成为制约含油污泥热解技术发展的重要问题之一,文章对含油污泥热解残渣的应用进行研究总结。将几种用作绿植化的污泥与含油污泥热解残渣的组成、性质等进行分析对比,发现其性质组成具有很大的相似性,所以其他污泥的绿植化方法对含油污泥热解残渣的绿植化处理具有一定的参考价值,可以通过向含油污泥热解残渣中添加城市污泥或有机质及氮、磷、钾等营养物质,同时选择耐盐碱的超富集植物对含油污泥热解残渣进行绿植化处理。绿植化技术具有处理量大、应用范围广、二次污染小等特点,具有一定的应用前景。  相似文献   

2.
稠油污泥资源化处理技术研究进展   总被引:1,自引:1,他引:0  
石油开采和加工过程会产生大量的含油污泥,其成分复杂、稳定性高、处理难度大,已成为影响石油生产的主要污染因素,因此寻找出合理的含油污泥资源化处理技术十分必要。文章综述了稠油污泥的处理方法和不同油田针对其污泥采用的工艺流程,着重介绍了热解处理的原理和试验方法,并且对含油污泥处理技术未来的发展方向做出展望。  相似文献   

3.
介绍了含油污泥热解技术及热解实验方法,提出热解产生的残渣进行适当处理可成为具有吸附性的材料。进行了含油污泥热解正交实验,得出影响最大的因素分别是热解温度、热解时间、升温速率,并得出最佳的热解温度、热解时间、升温速率等。分析了含油污泥热解的机理,探讨了热解含油污泥制备吸附材料的活化改性,并在此基础上对所制备吸附材料的脱硫性和除油性进行了研究。  相似文献   

4.
含油污泥资源化技术研究进展*   总被引:4,自引:3,他引:1  
含油污泥资源化技术的研究,应该重视多种热源热解技术开发,包括微波热解技术的研究。文章着重对含油污泥热解技术的研究进行了总结,包括微波热解技术的进展情况。研究得出:热解技术有望在固体废物处置及其资源化、有机质热解作低碳能源等方面发挥越来越重要的作用。开展含油污泥资源化研究,对解决我国国民经济持续发展过程中面临的能源短缺和环境挑战问题具有重要意义。  相似文献   

5.
含油污泥热解残渣吸附性能初探*   总被引:2,自引:1,他引:1  
含油污泥热解残渣的处理和应用是石油石化企业生产领域急需解决的难题。以含油污泥热解残渣为研究对象,在对其进行无害化处理的基础上,对热解残渣的吸附性能进行了探讨。通过能谱分析可知,热解残渣由碳和无机元素组成,碳元素含量达36.92%;通过SEM电镜扫描、比表面积和孔结构等吸附性质表征研究,含油污泥热解残渣吸附性能优良,对含油污水中的石油类和COD有较好的去除作用。研究结果表明:含油污泥热解残渣可作为一种吸附材料,这项研究为含油污泥热解残渣的资源化利用提供了一条途径。  相似文献   

6.
新疆油田含油污泥处理技术研究与应用   总被引:6,自引:4,他引:2       下载免费PDF全文
新疆油田在借鉴并结合国内外含油污泥处理新技术特点的基础上,开展了含油污泥处理的技术研究应用。通过研究分析新疆油田含油污泥特点,针对新疆油田区域地理气候特征,结合国内外含油污泥处理技术的新进展,先后开展了热洗法、"回转炉"热解处理工艺、萃取+生物处理法、多级热洗+助溶剂等含油污泥处理技术的研究与应用,以探寻出高效且实用性强的处理方法。  相似文献   

7.
含油污泥的热解处理与利用   总被引:4,自引:5,他引:4  
文章对油田和炼油含油污泥进行了热解处理室内实验,测定了回收油气组成、热解残渣含碳量和Al2O3含量,开展了热解残渣对沥青的吸附性能和再生处理的絮凝性能测试分析。结果表明,含油污泥热解处理具有较好的油气回收和残渣再生利用价值,可实现污泥“零排放”,具有显著的直接经济效益和社会效益。污泥热解的产油率一般可达10%以上,废白土可达20%~30%,油回收率高;污水处理污泥热解残渣的Al2O3含量可达20%以上,有较高的铝含量,初步再生评价对污水有较好的絮凝作用,可再生循环利用;废白土热解残渣的吸附性能与活性白土相当,可循环使用。  相似文献   

8.
针对含油污泥危害性大、难处理的环保难题,以实现含油污泥资源化利用为目标,开展了含油污泥热解实验研究,优化了热解工艺,并对热解产物进行了分析。在催化剂加量1.2%、热解温度为420℃、停留时间3.0 h、加热速率12℃/min、N2流速为90 mL/min条件下对含油污泥进行热解,结果表明:热解油回收率 可达72.35%;热解回收油品质有较大的改善,产生的不凝气体组分可用于燃烧供热,热解残渣热值较高,可制成燃料重复利用,实现了含油污泥的资源化利用。  相似文献   

9.
针对采用"筛选流化—热化学清洗—离心脱水"处理工艺建设的含油污泥处理处置工程,分别调研了A油田、B油田以及C油田含油污泥处理站采用此技术处理含油污泥的现状、效果,指出了该工艺在不同油田应用中存在的问题,并分析总结了原因;提出开发高效、自动化程度高的预处理筛选设备;依托已建含油污泥处理站配套后续电化学、生物或者热解等深度处理技术,实现已建站高效、稳定、达标处理的同时,满足国家日益严格的要求。  相似文献   

10.
随着近年来含油污泥绿色环保、高效经济处理技术的研究成果越来越多,对相关文献进行梳理,分析研究热点及未来发展态势,可为今后含油污泥处理技术研究提供科学支撑。文章基于文献计量学方法,运用CiteSpace软件,以中国知网作为目标数据库,通过发文数量、发文机构、发文学者、关键词共现、聚类及时间线图谱分析,梳理了国内含油污泥处理的研究现状及演进趋势。研究结果表明含油污泥处理研究领域的关注热度处于稳定上升期,研究热点分别为资源化、无害化、减量化、热解、焚烧、脱水及调剖,结合聚类分析及时间线图谱分析,含油污泥资源化利用将成为下一步研究的重点,处理后尾渣铺垫井场及路基、制作建材、作为燃料、填埋场封场等利用方式是未来的研究趋势。  相似文献   

11.
文章介绍了一种自动清罐与罐底泥处理相结合的清罐洗泥一体化技术,采用真空抽吸及循环自动清洗的方法进行自动清罐,同时采用热化学调质及离心分离的方法,对清罐底泥进行处理。室内实验研究表明在工艺温度80℃、pH值为9~11、洗泥调质时间100~180min的情况下,清罐及罐底泥处理能达到最优效果,并优选出合适的化学药剂。同时介绍了该技术的实际应用情况,该技术可自动清洗油罐,且实现罐底泥的油、泥、水三相分离,回收95%的原油,污水可以100%回用于清罐工艺流程中。  相似文献   

12.
含油污泥热解的影响因素初探*   总被引:1,自引:0,他引:1  
以含油污泥"无害化"为目的,考察了温度、升温速率及含水率对热解反应效果的影响。实验结果表明:温度越高,热解剩余残渣率和残渣含油率越低,热解产气率越高;含油污泥中有机质发生热解反应的主要温度为350~500℃和575~625℃,若热解残渣含油率控制在3.0‰以下,热解温度选择600℃较为适宜;升温速率对热解产气率、剩余残渣率和残渣含油率基本无影响,但升温速率越快,热解反应的产气量曲线峰越向前迁移,热解反应的时间缩短;含油污泥含水率越低,则热解产气率及残渣率越高,但含水率对残渣含油率和热解反应时间无影响。  相似文献   

13.
针对目前我国城市污水处理厂产生大量污泥,二次污染现象日益严重的状况,阐述了污泥的性质特点及主要处理处置方法,介绍并分析了污泥减量热解机热解焚烧技术的工作原理、工作流程、技术特点,以及污泥热解处理系统的主要设备。  相似文献   

14.
针对彩南油田原有水处理技术不能满足工艺要求的现状,对水质净化工艺技术进行改进研究。确定预催化—强化絮凝净水的技术路线,并选定了最优药剂体系、加药量和加药位置;结合以往污水处理经验和现场实际情况,在预催化—强化絮凝净水技术基础上自行研发了新型污水反应器,对斜板沉降罐进出水系统、沉降罐收油槽、调储罐、污泥沉降池和杀菌技术进行了改进。通过现场实际运行,处理后含油污水水质达到Q/SY XJ0039—2001《彩南油田注水水质标准》。  相似文献   

15.
介绍了欢三联含油污泥热解处理工程的工艺流程、技术要点、设计参数、运行效果和效益情况。调试工作表明,热解炉系统工艺作为一个整体,能够稳定有效运行,残渣的测验结果表明,残渣可以达到无害化程度,含油率小于0.3%(满足GB 4284-84《农用污泥中污染物控制标准》的要求)。以12t/d的处理量运行,能耗成本为74.47元/t,产生的经济效益为125.50元/t,同时产生较好的社会效益。另外,热解固态产物也有较好的利用价值,可以进一步研究利用。  相似文献   

16.
含油污泥特性分析与研究   总被引:2,自引:1,他引:1  
含油污泥的性质决定其处理工艺及无害化、资源化利用的方式。通过对某油田原油处理系统和污水处理系统产生的含油污泥的理化性质及成分进行检测分析,探讨含油污泥的含油率、含水率、挥发固体、灰分、硫含量、pH值的测定方法,并从以上几个方面对含油污泥的理化性质进行了分析,为下一步含油污泥减量化、资源化、无害化处理提供技术选择的依据。  相似文献   

17.
机械清罐技术与传统的人工清罐相比,缩短了清罐周期,避免了人员与油品的直接接触,降低了施工过程的安全风险。文章分析了油泥的产生、机械清罐的现场应用,将人工清罐和机械清罐进行对比。机械清罐技术原油的回收率高达98%,有效减少了对环境的污染。  相似文献   

18.
The Bio-oil was produced from the pyrolysis of agricultural wastes (Eucalyptus sawdust) and discarded soybean frying oil. The temperature of the pyrolysis system was initiated at 28°C and increased to 850°C. Atmospheric distillation of crude bio-oil was performed and a fraction at a temperature range 160–240°C (pyrolysis oil) was separated and subjected to GC-MS, 1H-NMR, TGA and FTIR analysis to identify the different properties and compounds present in pyrolysis oil. It was noticed that there was an abundance of oxygen and nitrogen containing compounds as well as other reactive species in pyrolysis oil. To reduce the amount of these species, the pyrolysis oil was subjected to hydrogenation in the presence of NiMo as a catalyst. After hydrogenation, the atmospheric distillation of hydrogenated bio-oil was performed and another fraction at temperature range 160–240°C (hydrogenated bio-oil) was separated and analyzed by the same techniques. It was noticed that during hydrogenation, more than 60% oxygenated and other reactive species were converted into hydrocarbons. Hydrogenated bio-oil showed very similar physico-chemical properties such as distillation curve, density, viscosity, freezing point, flash point, the presence of hydrocarbons and enthalpy of combustion as aviation kerosene also known as QAV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号