首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
According to regulations, sows with piglets on organic farms must graze on pastures. Volatilization of ammonia (NH3) from urine patches may represent a significant source of nitrogen (N) loss from these farms. Inputs of N are low on organic farms and losses may reduce crop production. This study examined spatial variations in NH3 volatilization using a movable dynamic chamber, and the pH and total ammoniacal nitrogen (TAN) content in the topsoil of pastures with grazing sows was measured during five periods between June 1998 and May 1999. Gross NH3 volatilization from the pastures was also measured with an atmospheric mass balance technique during seven periods from September 1997 until June 1999. The dynamic chamber study showed a high variation in NH3 volatilization because of the distribution of urine; losses were between 0 and 2.8 g NH3–N m−2 day−1. Volatilization was highest near the feeding area and the huts, where the sows tended to urinate. Ammonia volatilization rate was linearly related to the product of NH3 concentration in the boundary layer and wind speed. The NH3 in the boundary layer was in equilibrium with NH3 in soil solution. Gross NH3 volatilization was in the range 0.07–2.1 kg NH3–N ha−1 day−1 from a pasture with 24 sows ha−1. Ammonia volatilization was related to the amount of feed given to the sows, incident solar radiation and air temperature during measuring periods, and also to temperature, incident solar radiation and rain 1–2 days before measurements. Annual ammonia loss was 4.8 kg NH3–N sow−1.  相似文献   

2.
Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg? 1) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg? 1) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha? 1 in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH3 volatilization. Results indicated a greater NH3 loss from soils amended with SM compared to that with PL. The cumulative NH3volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH3 was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH3 from soils. A significant portion (> 50%) of cumulative NH3 emission over 19 d occurred during the first 5–7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (≤ 5.60 Mg ha? 1) is recommended to minimize NH3 emissions.  相似文献   

3.
Ammonia, nitrous oxide, and methane emission from animal farming of South, Southeast, and East Asia, in 2000, was estimated at about 4.7 Tg NH3–N, 0.51 Tg N2O–N, and 29.9 Tg CH4, respectively, using the FAO database and countries’ statistic databases as activity data, and emission factors taking account of regional characteristics. Most of these atmospheric components, up to 60–80%, were produced in China and India. Pakistan, Bangladesh, and Indonesia, which were large source countries next to China and India, contributed more than a few percent of total emission of each atmospheric component. The largest emission livestock were cattle whose contribution was considerably high in South, Southeast, and East Asia; more than one-fourth of ammonia and nitrous oxide emissions: more than half of methane emission. The other major livestock for nitrous oxide and ammonia emissions were pigs. For methane emission, buffaloes were second source livestock. To provide spatial distributions of these gases, the emissions of county and district level were allocated into each 0.5° grid by means of the weighting by high-resolution land cover datasets. The regions with considerable high emissions of all components were able to be found at the Ganges delta and the Yellow River basin. The spatial distributions for ammonia and nitrous oxide emissions were similar but had a substantial difference from methane distribution.  相似文献   

4.
The objective of this study was to determine the impact of manure placement depth on crop yield and N retention in soil. Experimental treatments were deep manure injection (45 cm), shallow manure injection (15 cm), and conventional fertilizer-based management with at least three replications per site. Water infiltration, and changes in soil N and P amounts were measured for up to 30 months and crop yield monitored for three seasons following initial treatment. Deep and shallow manure injections differed in soil inorganic N distributions. For example, in the manure slot the spring following application, NO3-N in the surface 60 cm was higher (p < .01) when injected 15 cm (21.4 μ g/g) into the soil than 45 cm (11.7 μ g/g), whereas NH4-N had opposite results with shallow injection having less (p = 0.045) NH4-N (102 μ g/g) than deep (133 μ g/g) injection. In the fall one year after the manure was applied, NO3-N and NH4-N were lower (p = 0.001) in the shallow injection than the deep injection. The net impact of manure placement on total N was that deep injection had 31, 59, and 44 more kg N ha? 1 than the shallow injection treatment 12, 18, and 30 months after application, respectively. Deep manure injection did not impact soybean (Glycine max L.) yield, however corn (Zea mays L.) yield increased if N was limiting. The higher corn yield in the deep injected treatment was attributed to increased N use efficiency. Higher inorganic N amounts in the deep injection treatment were attributed to reduced N losses through ammonia volatilization, leaching, or denitrification. Results suggest that deep manure placement in glacial till soil may be considered a technique to increase energy, N use efficiency, and maintain surface and ground water quality. However, this technique may not work in glacial outwash soils due to the inability to inject into a rocky subsurface.  相似文献   

5.
低温等离子体氧化氨气影响因素及动力学研究   总被引:1,自引:0,他引:1  
采用电晕放电低温等离子体处理模拟氨气恶臭气体,考察了输入功率、初始浓度、气体湿度、停留时间等因素对降解效果和能量效率的影响,同时对反应过程进行了动力学研究。研究表明,输入功率以及停留时间对氨气降解的影响是积极的,但能量效率随着两者的增加先增大后减小。氨气的降解率随着初始浓度的增加而降低,而能量效率随着输入功率的增加而增加。氨气降解率和能量效率均随着气体湿度的增加而增加,当气体湿度为45%时达到最大值,然而随着气体湿度的进一步增加,其降解率和能量效率反而降低。反应尾气中臭氧浓度随着输入功率的增加而不断升高,而氨气的存在却使臭氧浓度有不同程度的降低。对电晕放电低温等离子体处理NH3的反应动力学进行了分析,得到NH3的反应速率常数为kNH3=0.0707 m3/(W·h)。  相似文献   

6.
Abstract

Sewage sludge and yard waste compost were used as biofilter materials and tested with respect to their capacity for removing ammonia from air at different water contents. Ammonia removal was measured in biofilters containing compost wetted to different moisture contents ranging from air dry to field capacity (maximum water holding capacity). Filters were operated for 15 days and subsequently analyzed for NH3/NH4 +, NO2 -, and NO3 -. The measured nitrogen species concentration profiles inside the filters were used to calculate ammonia removal rates. The results showed that ammonia removal is strongly dependent on the water content in the filter material. At gravimetric water contents below 0.25 g H2O g solids-1 for the yard waste compost and 0.5 g H2O g solids-1 ammonia removal rates were very low but increased rapidly above these values. The sewage sludge compost filters yielded more than twice the ammonia removal rate observed for yard waste compost likely because of a high initial concentration of nitrifying bacteria originating from the wastewater treatment process and a high air-water interphase surface area that facilitates effective ammonia dissolution and transport to the biofilm.  相似文献   

7.
The present study aimed to investigate the NH3 volatilization loss from field-applied compost and chemical fertilizer and evaluate the atmosphere–land exchange of NH3 and particulate NH4+ (pNH4) at an upland field with volcanic ash soil (Andosol) in Hokkaido, northern Japan. Two-step basal fertilization was conducted on the bare soil surface. First, a moderately fermented compost of cattle manure was applied by surface incorporation (mixing depth, 0–15 cm) at a rate of 117 kg N ha−1 as total nitrogen (T-N) corresponding to 9.9 kg N ha−1 as ammoniacal nitrogen (NH4–N). Twelve days later, a chemical fertilizer containing 10% (w/w) of NH4–N as a mixture of ammonium sulfate and ammonium phosphates was applied by row placement (cover depth, 3 cm) at a rate of 100 kg N ha−1 as NH4–N. The study period was divided into the first-half, beginning after the compost application (CCM period), and the second-half, beginning after the chemical fertilizer application (CF period). The mean air concentrations of NH3 and pNH4 (1.5 m height) were 7.6 and 3.0 μg N m−3, respectively, in the CCM period; the values were 3.7 and 3.9 μg N m−3, respectively, in the CF period. The composition ratios of NH3 to the sum of NH3 and pNH4 (1.5 m height) were 72% and 49% in the CCM and CF periods, respectively. The NH3 volatilization loss from the compost was 0.8% of the applied T-N (or 9.3% of the applied NH4–N) and that from the chemical fertilizer was near zero. Excluding the period immediately after the compost application, the upland field acted as a net sink for NH3 and pNH4.  相似文献   

8.
9.
Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH3) is a central intermediate in plant N metabolism. NH3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH3 to glutamate to form glutamine (Gln), and the second step transfers the NH3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic N compounds (HMWONCs) such as proteins and nucleic acids.  相似文献   

10.
The integrated modelling system INITIATOR was applied to a landscape in the northern part of the Netherlands to assess current nitrogen fluxes to air and water and the impact of various agricultural measures on these fluxes, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil. Average model results on NH3 deposition and N concentrations in surface water appear to be comparable to observations, but the deviation can be large at local scale, despite the use of high resolution data. Evaluated measures include: air scrubbers reducing NH3 emissions from poultry and pig housing systems, low protein feeding, reduced fertilizer amounts and low-emission stables for cattle. Low protein feeding and restrictive fertilizer application had the largest effect on both N inputs and N losses, resulting in N deposition reductions on Natura 2000 sites of 10% and 12%, respectively.  相似文献   

11.
We investigated the influence of elevated CO2 and O3 on soil N cycling within the soybean growing season and across soil environments (i.e., rhizosphere and bulk soil) at the Soybean Free Air Concentration Enrichment (SoyFACE) experiment in Illinois, USA. Elevated O3 decreased soil mineral N likely through a reduction in plant material input and increased denitrification, which was evidenced by the greater abundance of the denitrifier gene nosZ. Elevated CO2 did not alter the parameters evaluated and both elevated CO2 and O3 showed no interactive effects on nitrifier and denitrifier abundance, nor on total and mineral N concentrations. These results indicate that elevated CO2 may have limited effects on N transformations in soybean agroecosystems. However, elevated O3 can lead to a decrease in soil N availability in both bulk and rhizosphere soils, and this likely also affects ecosystem productivity by reducing the mineralization rates of plant-derived residues.  相似文献   

12.
The Community Multi-Scale Air Quality model (CMAQ) is used to assess regional air quality conditions for a wide range of chemical species throughout the United States (U.S.). CMAQ representation of the regional nitrogen budget is limited by its treatment of ammonia (NH3) soil emission from, and deposition to underlying surfaces as independent rather than tightly coupled processes, and by its reliance on soil emission estimates that do not respond to variable meteorology and ambient chemical conditions. The present study identifies an approach that addresses these limitations, lends itself to regional application, and will better position CMAQ to meet future assessment challenges. These goals were met through the integration of the resistance-based flux model of Nemitz et al. (2001) with elements of the United States Department of Agriculture EPIC (Environmental Policy Integrated Climate) model. Model integration centers on the estimation of ammonium and hydrogen ion concentrations in the soil required to estimate soil NH3 flux. The EPIC model was calibrated using data collected during an intensive 2007 field study in Lillington, North Carolina. A simplified process model based on the nitrification portion of EPIC was developed and evaluated. It was then combined with the Nemitz et al. (2001) model and measurements of near-surface NH3 concentrations to simulate soil NH3 flux at the field site. Finally, the integrated flux (emission) results were scaled upward and compared to recent national ammonia emission inventory estimates. The integrated model results are shown to be more temporally resolved (daily), while maintaining good agreement with established soil emission estimates at longer time-scales (monthly). Although results are presented for a single field study, the process-based nature of this approach and NEI comparison suggest that inclusion of this flux model in a regional application should produce useful assessment results if nationally consistent sources of driving soil and agricultural management information are identified.  相似文献   

13.
Abstract

Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 μg m?3 and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head?1 day?1, showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   

14.
Six N-flow models, used to calculate national ammonia (NH3) emissions from agriculture in different European countries, were compared using standard data sets. Scenarios for litter-based systems were run separately for beef cattle and for broilers, with three different levels of model standardisation: (a) standardized inputs to all models (FF scenario); (b) standard N excretion, but national values for emission factors (EFs) (FN scenario); (c) national values for N excretion and EFs (NN scenario). Results of the FF scenario for beef cattle produced very similar estimates of total losses of total ammoniacal-N (TAN) (±6% of the mean total), but large differences in NH3 emissions (±24% of the mean). These differences arose from the different approaches to TAN immobilization in litter, other N losses and mineralization in the models. As a result of those differences estimates of TAN available at spreading differed by a factor of almost 3. Results of the FF scenario for broilers produced a range of estimates of total changes in TAN (±9% of the mean total), and larger differences in the estimate of NH3 emissions (±17% of the mean). The different approaches among the models to TAN immobilization, other N losses and mineralization, produced estimates of TAN available at spreading which differed by a factor of almost 1.7. The differences in estimates of NH3 emissions decreased as estimates of immobilization and other N losses increased. Since immobilization and denitrification depend also on the C:N ratio in manure, there would be advantages to include C flows in mass-flow models. This would also provide an integrated model for the estimation of emissions of methane, non-methane VOCs and carbon dioxide. Estimation of these would also enable an estimate of mass loss, calculation of the N and TAN concentrations in litter-based manures and further validation of model outputs.  相似文献   

15.
The stomatal ammonia compensation point for ammonia (NH3) of an intensively managed pasture of rye grass (Lolium perenne L.) was followed from mid January till November 2000. Leaf samples were taken every week. Simultaneously, the ambient NH3 concentration was measured. Meteorological data (temperature, wind speed, rainfall and radiance) were collected from a nearby field station. The vacuum infiltration technique was used to isolate the apoplastic solution of the leaves. From the determined ammonium (NH4+) concentration and pH in the apoplast, the gaseous NH3 concentration inside the leaves was calculated, i.e. the so-called stomatal compensation point (χs).Temperature appeared to have a predominant effect on χs, partly by affecting the equilibrium between gaseous NH3 inside the leaf and NH3 dissolved in the apoplast and partly by affecting physiological processes influencing the NH4+ concentration in the apoplast. Results of the present study suggest that these temperature effects were counteracting. On one hand temperature increase during early spring stimulated NH3 volatilisation from the apoplast, on the other hand it led to a decline in apoplastic NH4+ from 0.9 to 0.2 mM, thereby diminishing the emission potential of the leaf. The low NH4+ concentrations during spring and summer coincided with a low total leaf N content (<3% dw). However, there was no clear relationship between these two variables. The total N content of the leaf tissue is therefore an inadequate parameter for prediction of the potential NH3 emission from rye grass leaves. No annual trend was found for the apoplast pH. With a few exceptions, pH varied between 5.9 and 6.5 throughout the experimental period.The calculated values for χs varied between 0.5 and 4 μg m−3. The gaseous NH3 concentrations inside the grass leaves were, with a few exceptions, always smaller than the measured ambient NH3 concentrations. The present study indicates that under the current ambient NH3 concentrations in the Netherlands, the grass canopy is unlikely to be a major source of NH3 emission.  相似文献   

16.
Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.  相似文献   

17.
Abstract

Annual applications of (NH4)2SO4 NH4NO3 and urea on a Solonetzic soil at 112 kg N/ha for 10 consecutive years reduced pH levels from 5.6 for the check to 4.4, 4.9 and 5.3, respectively for (NH4)2SO4, NH4NO3 and urea. (NH4)2SO4 generated twice as much exchange acidity as NH4NO3 and four times as much as urea. Net extractable cations leached from the Ap horizon closely approximated the amount of exchange acidity generated by (NH4)2SO4 and NH4NO3 fertilizers. The levels of soil extractable Al and Mn were greatly enhanced by (NH4)2SO4 as were plant contents. Similar acidifying effects to that produced by the (NH4)2SO4 occurred when NH4NO3 was applied at 300 kg N/ha annually for 12 consecutive years in another field experiment on the same soil. Liming samples of the field (NH4)2SO4 acidified soils in the greenhouse, significantly increased yields and lowered the Al and Mn contents of the plants to normal levels.  相似文献   

18.
An updated national ammonia (NH3) emissions inventory was employed to study the relationship between NH3 emissions and livestock industries in Canada. Emissions from animal agriculture accounted for 322 kilotonnes (kt) or 64% of Canadian NH3 emissions in 2002. Cattle and swine accounted for the bulk of livestock emissions. The provinces of Alberta, Ontario, Quebec, and Saskatchewan accounted for 28.1%, 22.0%, 18.7%, and 13.1% of total livestock emissions, respectively. Emissions from Ontario and Quebec were attributed to the intensive production of dairy, hogs and poultry. Dairy cattle emissions per hectolitre of milk were higher in Ontario and Québec than in other provinces, while swine emissions per livestock unit were higher than either beef or dairy cattle. A review of the abatement literature indicated diet manipulation to improve N efficiency and land spreading methods are very effective techniques to lower NH3 emissions. Future research is required to evaluate the feasibility of biofilters and feces/urine separation methods.  相似文献   

19.
Livestock production and the use of synthetic fertilizer are responsible for about half of the global emission of NH3. Depending on the animal category between 10 and 36% of the N in animal excreta is lost as NH3. The current annual NH3 emission in developing countries of 15 million ton N accounts for of the global emission from animal excreta. In addition, 7.2 million tons NH3N of synthetic N fertilizers are lost as NH3 in developing countries. This is 80% of the global NH3 emission from synthetic fertilizer's use. Along with human population increase and economic growth, livestock production in developing countries may even increase by a factor of 3 between now and 2025. The net result of rapid increase of livestock production combined with higher efficiency is an increase in NH3 emissions of only 60% from 15 to 24 million tons NH3N between 1990 and 2025 in developing countries. Livestock production is an important consumer of feedstuffs, mainly cereals, thereby inducing additional demand for synthetic fertilizers. Despite the projected major increase of synthetic fertilizer use from 42 to 106 million ton N between 1990 and 2025, the NH3 loss in developing countries may decrease if a shift towards other fertilizer types, that are less vulnerable to NH3 volatilization, is realized. According to the scenario, the total emission of NH3 associated with food production in developing countries will increase from 22 to 30 million ton N yr−1 between 1990 and 2025. Although the NH3 emission increases more slowly than food production, in particular, animal production may show geographic concentration in certain regions, which may lead to high local emission densities and associated environmental problems.  相似文献   

20.
A measurement technique was developed to reliably quantify organic nitrogen (ON) in ambient, wet-only precipitation. Samples were frozen during collection and subsequently divided into two aliquots. One set was stored at −170°C and analyzed for total N (TN) via high-temperature combustion to NO and detection by chemiluminescence; the other set was sterilized with CHCl3, stored refrigerated, and analyzed for NH4+ by automated colorimetry and for NO3, and NO2 by ion chromatography. ON was inferred by difference. Analysis of paired, untreated aliquots stored for 30 and 41 days at different temperatures revealed substantial conversion of NH4+ to ON at room temperature and significant losses (16% and 23%) of NH4+ (presumably to biota growing on bottle walls) in refrigerated samples. Analytes in frozen and sterilized samples were stable. Volume-weighted ON concentrations for precipitation sampled at Charlottesville, Virginia (VA), Newark, Delaware (DE), and New Castle, New Hampshire (NH; 3.1, 4.2, and 0.6 μM N, respectively) and corresponding contributions to volume-weighted TN (6.5%, 7.8%, and 2.6%, respectively) are at the lower limit of published values for eastern North America and elsewhere. Methodological differences contribute to the apparent variability among these reported sample statistics. Volume-weighted ON concentrations were generally highest during spring and were lowest during summer. Due to the combined influence of unmeasured ON and loss of NH4+ from inadequately preserved samples, current estimates for the wet deposition of atmospheric N to eastern North America based on data from national networks may be underestimated by 10–20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号