首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are present in both gaseous and particulate phases. These compounds are considered to be atmospheric contaminants and are human carcinogens. Many studies have monitored atmospheric particulate and gaseous phases of PAH in Asia over the past 5 years. This work compares and discusses different sample collection, pretreatment and analytical methods. The main PAH sources are traffic exhausts (AcPy, FL, Flu, PA, Pyr, CHR, BeP) and industrial emissions (BaP, BaA, PER, BeP, COR, CYC). PAH concentrations are highest in areas of traffic, followed by the urban sites, and lowest in rural sites. Meteorological conditions, such as temperature, wind speed and humidity, strongly affect PAH concentrations at all sampling sites. This work elucidates the characteristics, sources and distribution, and the healthy impacts of atmospheric PAH species in Asia.  相似文献   

2.
Multivariate statistical techniques were used to investigate source apportionment and source/sink relationships for polycyclic aromatic hydrocarbons (PAHs) in the urban and adjacent coastal atmosphere of Chicago/Lake Michigan in 1994–1995. The PAH signatures for the atmospheric particle phase, surface water particle phase and sediments indicate that atmospheric deposition is the major source of PAHs to the sediments and water column particulate phase of Lake Michigan. The PAH signature for the atmospheric gas phase and water dissolved phase indicate an intimate linkage between the lake and its overlying atmosphere. A modified factor analysis-multiple regression model was successfully applied to the source apportionment of atmospheric PAHs (gas+particle). Coal combustion accounted for 48±5% of the ΣPAH concentration in both the urban and adjacent coastal atmosphere, natural gas combustion accounted for 26±2%, coke ovens accounted for 14±3%, and vehicle emissions (gas+diesel) accounted for 9±4%. Each is an identified source category for the region. These results are consistent with the mix of fossil fuel combustion sources and ratios of indicator PAHs.  相似文献   

3.
Liu YN  Tao S  Dou H  Zhang TW  Zhang XL  Dawson R 《Chemosphere》2007,66(10):1922-1928
Exposure of on-duty traffic police in Beijing to polycyclic aromatic hydrocarbons (PAHs) was investigated during the summer, 2004 using a personal sampling technique in measuring both particulate and gaseous phase PAHs. The results were then compared with those from two control sites away from the street. Exposure levels to gaseous and particulate PAHs for the traffic police were found to be 1525 +/- 759 ngm(-3) and 148 +/- 118 ngm(-3), respectively, representing 2-2.5 times higher levels than those at the control sites. The daily inhalation exposure of the police was estimated to be 277 ngkg(-1)d(-1). Most of the PAHs exposure came from the vapor phase, particularly NAP, FLO and PHE. Based on calculated PAH diagnostic ratios, the major source of PAHs exposure was from vehicle exhaust. The effects of temperature, humidity and atmospheric stability on exposure levels are also discussed.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and cloud/fog water samples were collected at Mount Taishan in an autumn–winter period, and were analyzed by GS-MS. Higher molecular weight PAHs (4–6 rings) predominated in PM2.5 samples, whereas lighter PAH compounds contributed 61.71% of the total PAH concentration in cloud/fog samples. Particles tended to contain more PAHs and have a more intensive influence on the atmospheric environment on colder days. During cloud/fog events, the scavenging ratio based on PAHs associated with particles was estimated to be about 13.45%. PAHs in PM2.5 samples had a significant positive relationship with CO and SO2, suggesting that PAHs, SO2, and CO may originated from the same sources, such as residential coal combustion activities. Diagnostic ratio analysis and factor analysis indicated that the sources of PAHs were mainly from coal combustion during this period.  相似文献   

5.
Exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is a potential health concern for communities because many PAHs are known to be mutagenic and carcinogenic. However, information on ambient concentrations of PAHs in communities is very limited. During the Urban Community Air Toxics Monitoring Project, Paterson City, NJ, PAH concentrations in ambient air PM10 (particulate matter < or = 10 microm in aerodynamic diameter) were measured from November 2005 through December 2006 in Paterson, a mixed-use urban community located in Passaic County, NJ. Three locations dominated by industrial, commercial, and mobile sources were chosen as monitoring sites. The comparison background site was located in Chester, NJ, which is approximately 58 km west/southwest of Paterson. The concentrations of all of the individual PAHs at all three Paterson sites were found to be significantly higher than those at the background site (P < 0.05). The PAH profiles obtained from the three sites with different land-use patterns showed that the contributions of heavier PAHs (molecular weight > 202) to the total PAHs were significantly higher at the industrial site than those at the commercial and mobile sites. Analysis of the diagnostic ratios between PAH isomers suggested that the diesel-powered vehicles were the major PAH sources in the Paterson area throughout the year. The operation of industrial facilities and other combustion sources also partially contributed to PAH air pollution in Paterson. The correlation of individual PAH, total PAH, and the correlation of total PAHs with other air co-pollutants (copper, iron, manganese, lead, zinc, elemental carbon, and organic carbon) within and between the sampling sites supported the conclusions obtained from the diagnostic ratio analysis.  相似文献   

6.
This paper presents the first attempt to quantify the production, cycling, storage and loss of PAHs in the UK environment. Over 53 000 tonnes of sigmaPAHs (sum of 12 individual compounds) are estimated to reside in the contemporary UK environment, with soil being the major repository. If soils at contaminated sites are included, this estimate increases dramatically. Emission of PAHs to the UK atmosphere from primary combustion sources are estimated to be greater than 1000 tonnes sigmaPAHs per annum, with over 95% coming from domestic coal combustion, unregulated fires and vehicle emissions. It is estimated that approximately 210 tonnes of sigmaPAH are delivered to terrestrial surfaces each year via atmospheric deposition. Therefore, inputs of PAHs to the UK atmosphere outweigh the outputs by a factor of over 4. This may be explained by enhanced particulate deposition near point sources, PAH degradation in the atmosphere and transport away from the UK with prevailing winds. Disposal of waste residues is estimated to contribute a further 1000 tonnes of sigmaPAH per year to the terrestrial environment. It is illustrated that the use of creosote has the potential to release considerable quantities of PAHs to the UK environment. Temporal trends in PAH cycling are then considered. There is good evidence to suggest that air concentrations and fluxes to the UK surface are now lower than at any time throughout this century. Nonetheless, the UK sigmaPAH burden is still increasing at the present time, principally through retention by soils. However, there are marked differences in the behaviour of individual compounds: there is evidence, for example, that phenanthrene concentrations in soils have declined since the 1960s, although soil concentrations of benzo[a]pyrene and other heavier PAHs have continued to increase through this century. Volatilisation of low molecular weight PAHs accumulated in soils over previous decades may be making an important contribution to the current atmospheric burden. The major uncertainties identified by data on this budget are: (1) the lack of PAH concentrations in some environmental matrices; (2) the possible importance of contaminated soils as a major repository and source of PAHs; (3) the lack of emission data (especially vapour phase releases) for some PAH sources; (4) the importance of biodegradation and volatilisation as loss mechanisms for low molecular weight PAHs in soils; and (5) the importance of creosote use in the PAH cycle.  相似文献   

7.
The purpose of this study was to biomonitor metropolitan areas of Porto Alegre (Brazil) for PAHs associated with atmospheric particles and check their effects on the DNA of the land mollusk Helix aspersa. The sampling sites are located in an urban area with heavy traffic: (i) Canoas, (ii) Sapucaia do Sul, and (iii) FIERGS/Porto Alegre. The samples were collected during a continuous period of 24 hours during 15 days using Stacked Filter Units (SFU) on polycarbonate filters (two separated size fractions: PM10-2.5 and PM<2.5). The concentrations of 16 major PAHs were determined according to EPA. Comet assay on H. aspersa hemolymph cells was chosen for genotoxicity evaluation. This evaluation shows that, in general, the smaller PM-size fractions (PM<2.5) have the highest genotoxicity and contain higher concentrations of extractable organic matter. In addition, associations between chemical characteristics and PM carcinogenicity tend to be stronger for the smaller PM-size fractions.  相似文献   

8.
It is known that residential wood combustion (RWC) is an important source of fine particle emissions. The purpose of this work was to characterize the chemical composition of the particulate matter present in the Temuco urban atmosphere during winter, specifically the polycyclic aromatic hydrocarbon (PAH) profile, because PAHs are considered to be among the key compounds in particulate matter toxicity. During the 2008 winter monitoring campaign, samples of particulate matter with aerodynamic diameters of < or = 10 (PM10) and < or = 2.5 (PM2.5) microm were taken on days with contamination episodes. Sixteen U.S. Environmental Protection Agency (EPA) PAH compounds were extracted with toluene and determined by gas chromatography-mass spectrometry (GC-MS). The results show that phenantrene was the predominant compound associated with particulate matter at a concentration range between 300 and 600 ng m(-3), 18 times higher than the second most abundant PAH compound. High-molecular-mass compounds such as dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3,c,d]pyrene were also found, but they were minorities in the set. It was recognized from the PAH concentration ratios of the Temuco atmospheric aerosol that the main contamination source was in fact residential wood combustion; although not all the concentration ratios evaluated match the reported reference values, probably due to the kind of biomass used, the characteristics of Chilean heating appliances and climate.  相似文献   

9.
Martins M  Ferreira AM  Vale C 《Chemosphere》2008,71(8):1599-1606
Depth concentration profiles of PAHs, organic carbon and dissolved oxygen in non-colonised sediments and sediments colonised by Sarcocornia fruticosa from Mitrena salt marsh (Sado, Portugal) were determined in November 2004 and April 2005. Belowground biomass and PAH levels in below and aboveground material were also determined. In both periods, colonised sediments were oxygenated until 15-cm, rich in organic carbon (max 4.4%) and presented much higher PAH concentrations (max. 7.1 microg g(-1)) than non-colonised sediments (max. 0.55 microg g(-1)). Rooting sediments contained the highest PAH concentrations. The five- and six-ring compounds accounted to 50-75% of the total PAHs in colonised sediments, while only to 30% in non-colonised sediments. The elevated concentrations of PAHs in colonised sediments may be attributed to the transfer of dissolved PAH compounds towards the roots as plant uptake water and subsequent sequestration onto organically rich particles. A phase-partitioning mechanism probably explains the higher retention of the heavier PAHs. In addition oxygenated conditions of the rooting sediments favour the degradation of the lighter PAHs and explain the elevated proportion of the heavier compounds. Below and aboveground materials presented lower PAH concentrations (0.18-0.38 microg g(-1)) than colonised sediments. Only 3- and 4-PAHs were quantified in aboveground material, reflecting either preferential translocation of lighter compounds from roots or atmospheric deposition.  相似文献   

10.
The Niger Delta area in Nigeria has major oil producing and refining centers that characterized enormous industrial activities, especially in the petroleum sector. These industrial processes release different kinds of atmospheric pollutants, of which there is paucity of information on their levels and health implications. The objective of this study was to determine the ambient levels of polycyclic aromatic hydrocarbons (PAHs) in communities of a local government area (Eleme) where oil wells, petrochemical installations, a refinery, and a fertilizer complex are located. Respirable particulate matter (PM) in air were collected using Anderson high-volume sampler with PM with aerodynamic diameter > 10 microm (PM10) inlet for collecting filterable, particle-bound PAHs according to standard methods. PAHs were analyzed following standard methods for the 16 World Health Organization (WHO) prioritized components. The results were compared against the levels in another local government area (Ahoada East) with low industrial presence. The average total PAH concentration in Eleme of 9.2 microg/m3 was among the highest in the world; by contrast, the average concentration in Ahoada East was only 0.17 ng/m3. The most prominent PAHs at Eleme were those known to be carcinogenic and included benzo(a)pyrene (1.6 x 10(4) ng/m3 at bubu), benzo(k)fluoranthene (2.4 x 10(4) ng/m3 at Akpajo where a petrochemical is located), pyrene (3.1 x 10(3) ng/m3 at Ogale), and indeno(1,2,3-cd)pyrene (9.1 x 10(3) ng/m3 at Akpajo). Data from this study emphasize the need for a comprehensive source apportionment study and an assessment of the health effects of oil production on local communities of Nigeria where no such information currently exists.  相似文献   

11.

Background

Air samples collected on three different urban sites in East of France (Strasbourg, Besan?on, and Spicheren), from April 2006 to January 2007, were characterized to measure the concentrations of polycyclic aromatic hydrocarbons (PAHs) in the particulate phase (PM10) and to examine their seasonal variation, diurnal variations, and emission sources.

Results

The average concentrations of ??PAHs were 12.6, 9.5, and 8.9?ng?m?3 for the Strasbourg, Besan?on, and Spicheren sites, respectively. Strong seasonal variations of individual PAH concentrations were found at the three sampling sites, with higher levels in the winter that gradually decreased to the lowest levels in the summer. The diurnal variations of PAH concentrations in summer presented highest concentrations during the morning (04:00?C10:00) and the evening (16:00?C22:00) times, indicating the important contribution from vehicle emissions, in the three sampling sites. Furthermore, the ratio of BaP/BeP suggests that the photochemical degradation of PAHs can suppress their concentrations in the midday/afternoon (10:00?C16:00), time interval of highest global irradiance. In winter, concentrations of PAH were highest during the evening (16:00?C22:00) time, suggesting that domestic heating can potentially be an important source for particulate PAH, for the three sampling sites.

Conclusion

Diagnostic ratios were used to identify potential sources of PAHs. Results showed that vehicle emissions may be the major source of PAHs, especially in summer, with a prevalent contribution of diesel engines rather than gasoline engines at the three sites studied, independently of the seasons.  相似文献   

12.
Due to concerns about adverse health effects associated with inhalation of atmospheric polycyclic aromatic hydrocarbons (PAHs), 30 ambient air samples were obtained at an air quality monitoring station in Palm Beach County, Florida, from March 2013 to March 2014. The ambient PAH concentration measurements and fractional emission rates of known sources were incorporated into a chemical mass balance model, CMB8.2, developed by EPA, to apportion contributions of three major PAH sources including preharvest sugarcane burning, mobile vehicles, and wildland fires. Strong association between the number of benzene rings and source contribution was found, and mobile vehicles were identified to be the prevailing source (contribution ≥56%) for the observed PAHs concentration with lower molecular weights (four or fewer benzene rings) throughout the year. Preharvest sugarcane burning was the primary contributing source for PAHs with relatively higher molecular weights (five or more benzene rings) during the sugarcane burning season (from October to May of the next year). Source contribution of wildland fires varied among PAH compounds but was consistently lower than for sugarcane burning during the sugarcane harvest season. Determining the major sources responsible for ground-level PAHs serves as a tool to improving management strategies for PAH emitting sources and a step toward better protection of the health of residents in terms of exposure to PAHs. The results obtain insight into temporal dominance of PAH polluting sources for those residential areas located near sugarcane burning facilities and have implications beyond Palm Beach County, in areas with high concerns of PAHs and their linked sources.

Implications: Source apportionment of atmospheric polycyclic hydrocarbons (PAHs) in Palm Beach County, Florida, meant to estimate contributions of major sources in PAH concentrations measured at Belle Glade City of Palm Beach County. Number of benzene rings was found to be the key parameter in determining the source with the prevailing contribution. Mobile vehicle sources showed a higher contribution for species with four or fewer benzene rings, whereas sugarcane burning contributed more for species with five or more benzene rings. Results from this study encourage more control for sugarcane burns and help to better manage authorization of the sugarcane burning incidents and more restrictive transportation plans to limit PAH emissions from mobile vehicles.  相似文献   

13.

Seasonal and regional distributions of 17 polycyclic aromatic hydrocarbons (PAHs) in surface waters from four different main water functional regions of the Baiyangdian Lake were analyzed through GC/MS/MS during spring and summer season. The aim was to identify their possible pollution sources and evaluate their health risk for human and ecotoxicological risk for aquatic organisms. Results showed that the range of total PAH concentration is 35.38–88.06 ng/L (average 46.57 ng/L) in spring and 25.64–301.41 ng/L (average 76.23 ng/L) in summer. PAH contamination was observed slightly lower in the summer season from the pollution characteristics of water bodies in most areas of the Baiyangdian Lake, and the levels of PAH pollution in the water body of urban residential regions and rural residential regions were relatively higher than those in tourist regions and low human disturbance regions. Source analysis based on diagnostic ratios confirmed that combustion sources and petroleum sources were two main sources for PAHs entering into the waters of the Baiyangdian Lake. Human health risk assessment showed that PAHs in surface waters from the Baiyangdian Lake will not cause a potential non-carcinogenic risk to local residents and the carcinogenic risk could mostly be accepted, but the potential lifetime carcinogenic risk for infants in rural residential regions should be concerned about. Urban residential regions and rural residential regions were subject to higher cumulative non-carcinogenic and carcinogenic risk when compared to the other functional regions. Ecotoxicological risk assessment found a moderate risk to aquatic organisms presented by individual PAH and a low risk by total PAHs, and PAHs in the water body of urban residential regions and rural residential regions also have relatively higher harm effects to aquatic organisms compared with the other two functional regions. This study revealed the pollution characteristics of PAHs and their possible sources in waters of the Baiyangdian Lake, clarified its correlation to regional anthropogenic activities, and provided corresponding risk management strategies for human and aquatic organisms.

  相似文献   

14.
The origin of polycyclic aromatic hydrocarbons (PAH) contamination in bulk atmospheric deposition at two sites of the Seine estuary, one urban and one industrial, has been investigated. The PAH profiles indicate that PAHs mainly have a pyrolytic origin, both in urban and industrial areas. PAH sources vary during the year with an increase of high molecular weight PAH proportions (especially for carcinogenic PAHs) in winter, that means an increase of combustion processes such as domestic heating. Ratios of indicator PAHs (FTH/FTH+PYR and IcdP/IcdP+BghiP) confirm the pyrolytic origin of PAHs. In summer, ratios show the presence of industrial sources. In addition to these two methods, a factor analysis/multiple linear regression model was applied and gave an approximation of PAH source apportionment. PAH were found to be associated predominantly with emissions from road traffic (gasoline and diesel), that accounts for 17-34%. Domestic heating is a very important PAH source in urban areas and accounts for up to 85% of PAHs in winter. Industrial emissions (refineries...) account for 25% in the industrial area in summer. Each is an identified source category for the region and these results are consistent with fly-ashes identified by scanning electron microscopy. This study demonstrates that a combination of source identification methods is a far more efficient than one method alone.  相似文献   

15.
Levels of nine selected polycyclic aromatic hydrocarbons, PAHs, in surface soils from areas in southern and central Norway are presented. Levels in central Norway are generally low, while the southern Norway soils are about ten-fold higher with respect to 4 and 5 ring PAHs. Comparison with air quality data indicates long-range atmospheric transport to be the major source of the excess 4 and 5 ring PAHs in the south. Analyses of peat cores from ombrotrophic bogs support this assumption, and these provide a potentially useful approach for temporal studies of atmospheric PAH deposition. Analytical data for naphthalene in soils depend very much on the sampling and storage of the samples before analysis.  相似文献   

16.
Persistent organic pollutants (POPs) such as PAHs are subject to long-range atmospheric transport, which can result in the contamination of remote areas such as the Arctic. A simple model was developed to describe the removal processes of four PAHs; fluorene (FLU), phenanthrene (PHEN), fluoranthene (FLA) and benzo[a]pyrene (B[a]P) transported over a 5 day period from a source area over the UK to the Russian Arctic. The purpose of this model was to study processes affecting the PAHs within the atmosphere, rather than their interaction with the earth's surface. The components to the model included gas/particle partitioning, reaction with OH radicals and dry and wet deposition (both rain and snow). Atmospheric/meteorological parameters for the geographical region of interest were generated from three-dimensional atmospheric models. Air concentrations were prescribed in the source area with no additional PAH inputs along the transect, both winter and summer scenarios were modelled. Reaction with OH was a major removal mechanism for gas-phase FLU, PHEN and FLA, most notably in the temperate atmosphere. Wet deposition in the form of snow accounted for the majority of PAH loss in the winter, although the gas and particle scavenging ratios used in this model ranged over several orders of magnitude. Using a 5 day transport scenario in a `1-hop’ event, the model predicted that a primary emission of FLA and B[a]P to the atmosphere of the southern UK, would not reach the Russian Arctic at a distance of ∼3500 km, assuming a constant windspeed of 10 m s−1. However, both FLU and PHEN with calculated half-lives of >60 h during the winter could be transported to this area under this scenario.  相似文献   

17.
Vertical snow sampling and moss bag transplants were used to estimate the local inorganic and organic pollutant load deposited from traffic along a major highway in Finland. The pH and concentrations of Cl(-), NO(3)(-), SO(4)(2-), Ca(2+), Na(+) and polyaromatic hydrocarbons (PAHs) were determined from snow samples collected in winter at different sites along the highway. In summer, moss bags containing 20 g of fresh red-stemmed feather moss (Pleurozium schreberi) were transplanted at the same sites. The moss bag transplants remained exposed to roadside traffic for a period of one month following which the samples were collected and the PAH profiles and concentrations were analysed. The deposition of inorganic and organic pollutants from road traffic was observed up to 60 m from the road. The prevailing winds had a significant effect on the dispersion of pollutants. Snow appears to be a good collector of inorganic pollutants from the atmosphere and can be used to monitor local airborne pollution from road traffic. Snow packs can also be used as passive collectors of organic pollutant loads from road traffic on a local scale. To monitor organic PAH deposition from the road traffic, moss bags appeared to be better indicators compared to snow sampling. The efficiency of moss bags in accumulating PAH compounds indicate that vegetation may be an important sink for traffic pollution.  相似文献   

18.
Fang GC  Wu YS  Chang CN  Ho TT 《Chemosphere》2006,64(7):1233-1242
Fine (PM(2.5)) and Coarse (PM(2.5-10)) particulates concentrations of ambient air particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously from February 2004 to January 2005 at the Taichung Harbor (TH) sampling site near Taiwan of central Taiwan. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on quartz filters, the collected sample used soxhlet analytical method extracted with a dichloromethane (DCM)/n-hexane mixture (50/50, v/v) for 24h, and then the extracts were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. The results indicated that vehicle emissions, coal combustion, incomplete combustion and pyrolysis of fuel and oil burning were the main source of PAHs near Taiwan Strait of central Taiwan. Diagnostic ratio and principal component analysis (PCA) were also used to characterize and identify PAHs emission source in this study.  相似文献   

19.
This study analyzed the seasonal distribution and the possible sources of polycyclic aromatic hydrocarbons (PAHs) in the atmospheric environment of Tamil Nadu, India. Passive air sampling was performed at 32 locations during the period from April 2009 to January 2010, and PAHs were quantified using a gas chromatograph-mass spectrometer. Analysis showed that the concentrations of PAHs were in the range of 5–47.5 ng/m3 with uniform distribution in urban areas in all seasons. Pre-monsoon season showed the highest cumulative concentration of PAHs in both agricultural and coastal areas. Among PAHs, phenanthrene, fluoranthene, and pyrene levels were found to be predominant in all the samples, contributing up to 36%, 35.5%, and 24.5% of total PAHs, respectively. The signature of the PAHs obtained through diagnostic ratio and principal component analysis revealed that diesel emissions was the probable source of PAHs in all locations. Based on Word Health Organization guidelines, the human lung cancer risk due to observed level of PAH concentration (i.e., PAHs exposure) is meager. However, the risk is predicted to be more in the coastal area during summer (18 individuals among 0.1 million people). To the knowledge of these authors, this report is the first on the seasonal analysis of PAHs using passive air sampling in India.  相似文献   

20.
In Brazil, sugar-cane crops are burned to facilitate harvesting, and this causes environmental pollution from the large amounts of smoke and soot that are released into the atmosphere. The smoke and soot contain numerous organic compounds such as PAHs. In this study, PM10 and PAH concentrations in the air of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugar-cane plantations) were determined during the harvest and non-harvest seasons. The sampling strategy included two campaigns in each season, with 20 samples per season. PM10 was collected using a Hi-vol sampler with Teflon? – coated glass fiber filters. PM10 ranged from 41 to 181 μg m?3 during the harvest season, and from 12 to 47 μg m?3 during the non-harvest season. The mean total concentration of PAHs was 2.5 ng m?3 (non-harvest season) and 11.6 ng m?3 (harvest season). In all sampling periods, the most abundant polycyclic aromatic hydrocarbons were phenanthrene and fluoranthrene, and the least abundant was anthracene. The cluster analysis of the total PAH concentrations for each day of sampling and the corresponding meteorological data suggested that the atmospheric concentration of PAHs was independent of the differences in the weather between the seasons. For both sampling seasons, the statistical treatment (PCA, Varimax rotation and HCA) indicated the presence of vehicle sources (diesel, gasoline, and natural-gas engines); but for the harvest season, the main source was attributed to sugar-cane burning. The data generated by this study indicated the burning of sugar-cane as the main contributor to the high levels of PAHs detected in samples during the sugar-cane harvest season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号