首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In much of sub-Saharan Africa (SSA), the lack of organic soil amendments constitutes one of the principal causes for declining soil fertility in intensifying farming systems. The challenge, therefore, remains to increase the availability of organic inputs and to develop recommendations for their combination with inorganic fertilizers. An on-farm experiment was conducted in the northern Guinea savanna of Nigeria to evaluate the fertilizer effect of rice (Oryza sativa L.) mill waste (RMW) on a degraded Alfisol. The decomposition and nutrient (N and P) release patterns of RMW were studied using the litterbag technique, and the effect on maize yield and soil properties was determined. The RMW was applied at rates of 0, 5, 10, and 15 Mg DM ha−1 and was applied either unburnt or burnt (farmers’ practice). In both years, compound fertilizer was broadcast during land preparation on all plots at rates of 40 kg N ha−1, 17 kg P ha−1, and 33 kg K ha−1.Results obtained in the litterbag study showed that, at maize harvest, more than 90% of the P had been released from the decomposing RMW. However, around 60% of the organic C and 45% of the N still remained. Compared to the control treatment (0 Mg ha−1 RMW), which yielded 0.55 Mg ha−1, maize (Zea mays L.) grain yields were increased by 95% when 10 Mg ha−1 of unburnt RMW was applied, and by 147% with 15 Mg ha−1 (mean of 2 years). In contrast, burnt RMW did not result in significant yield increases. The cumulative application of 30 Mg ha−1 of unburnt RMW significantly increased the soil organic carbon in the surface soil from 0.7% (0 Mg ha−1 RMW) to 1.3%.The results of this investigation indicate that RMW constitutes a valuable organic input in the Guinea savanna if applied unburnt at rates of 10–15 Mg ha−1 in combination with inorganic fertilizer. The repeated application of unburnt RMW may contribute to the rehabilitation of degraded soils through the buildup of soil organic matter.  相似文献   

2.
Four on-farm experiments examined whether modest applications of fertilizers in combination with prunings from native agroforestry trees would be an alternative to maintain the fertility of ferralitic soils in Benin. An application of about 1.9 t ha−1 dry matter of mulch of Senna siamea combined with 30 kg N ha−1, 22 kg P ha−1 and 25 kg K ha−1 as compound fertilizer was compared with (1) 60 kg N ha−1, 43 kg P ha−1 and 50 kg K ha−1 as compound fertilizer alone, (2) mulch of S. siamea alone (about 3.2 t ha−1 dry matter), and (3) a control treatment. Criteria were soil properties, yields, nutrient uptakes, and nutrient budgets. Application of sole mulch had no significant effects (P>0.05) on maize yields, while combined application of prunings and NPK fertilizers or sole NPK increased yields significantly (P<0.05). The most limiting nutrient was P. The local maize cultivar was efficient in P uptake, but not in internal nutrient utilization efficiency; mulch increased significantly the internal P utilization efficiency (P<0.05). Soil properties were interpreted with the QUEFTS (quantitative evaluation of the fertility of tropical soils) computer program. The predicted and measured yields were almost the same for maize without NPK. The measured responses to NPK were much lower than the responses calculated by QUEFTS. The calculated nutrient budgets were split into balances for available nutrients and for those not immediately available (NIA). Nutrient budgets were negative for the control and sole mulch treatments, and positive for the NPK treatments. Mulch improved the balances of NIA nutrients. The present experiment could not prove that combining NPK with mulch is the best option for sustainable agriculture. It may be more economical to apply lower rates of fertilizer to local maize than those applied in the two NPK treatments in the present study.  相似文献   

3.
Gaseous emissions from weaned pigs raised on different floor systems   总被引:1,自引:0,他引:1  
Gaseous emissions from agriculture contribute to a number of environmental effects. Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are greenhouse gases taking part to the global problem of climate change. Ammonia (NH3) emissions are responsible of soil acidification and eutrophication and contribute also to indirect emissions of N2O. This work evaluated the influence of the type of floor on the emissions of these gases in the raising of weaned pigs. Two trials were carried out. In the first trial, the animals were kept either on fully slatted floor or on straw-based deep litter and, in the second one, either on fully slatted floor or on sawdust-based deep litter. For each trial and on each type of floor, 2 successive batches of weaned pigs were raised without changing the litter or emptying the slurry pit between the 2 batches. The rooms were automatically ventilated to maintain a constant ambient temperature.The performance of the animals was not significantly different according to the floor type. In trial 1, the nitrogen contents of the straw deep litter (including the substrate) and slurry were respectively 276 and 389 g pig−1. In trial 2, the sawdust deep litter and slurry nitrogen contents were respectively 122 and 318 g pig−1.Raising pigs on straw deep litter produced proportionately around 100% more NH3 than raising pigs on slatted floor (0.61 g NH3-N d−1 pig−1 vs. 0.31 g NH3-N d−1 pig−1; P < 0.05). Differences in CO2, H2O and CH4 emissions were not significant between systems. Raising pigs on sawdust deep litter produced also proportionately more NH3 (+52%; 0.55 g NH3-N d−1 pig−1 vs. 0.36 g NH3-N d−1 pig−1; P < 0.01) but also more CO2 (+25%; 427 g d−1 pig−1 vs. 341 g d−1 pig−1; P < 0.001) and H2O (+65%; 981 g d−1 pig−1 vs. 593 g d−1 pig−1; P < 0.001) and less CH4 (−40%; 0.52 g d−1 pig−1 vs. 0.86 g d−1 pig−1; P < 0.001) than raising pigs on slatted floor. Practically no N2O emission was observed from rooms with slatted floor while the N2O emissions were 0.03 and 0.32 g N2O-N d−1 pig−1 for the straw and sawdust deep litter respectively. The warming potential of the greenhouse gases (N2O + CH4), were about 22, 34 and 168 g CO2 equivalents per day and per pig on fully slatted floor, straw or sawdust deep litter respectively.In conclusion, pollutant gas emissions from rearing of weaned pig seem lower with fully slatted plastic floor system than with deep litter systems.  相似文献   

4.
The seasonal pattern of extractable soil P and soil solution P was determined for topsoil samples taken from a Cirsio-Molinietum fen-meadow community, and also for an adjacent agriculturally improved pasture in Devon, UK. Phosphorus concentration was investigated using three methods during 1993; Olsen's reagent (sodium bicarbonate) for soil P, centrifuging and polymeric suction cups for soil solution P. Solutions were extracted at two-weekly intervals during the spring and at monthly intervals during the summer. Phosphorus removed from both sites by centrifuging was in the range 5–30 μg dm−3 soil, in comparison with 1–6 mg kg−1 for Olsen P. Olsen P on the Cirsio-Molinietum was significantly lower than on the improved pasture in mid-March and mid-June. The concentration of P in soil solution removed by suction cups was below the level of detection (<2 μg dm−3) on the Cirsio-Molinietum. Suction cup P on the improved pasture peaked in April and May at 16–19 μg dm−3 soil. Herbage yield and P concentration were measured throughout the growing season. Above-ground standing crop was greater on the Cirsio-Molinietum than the improved pasture at the beginning of the grazing season, because of the large litter component on the former. Total P content of this material was only 1.81 kg P ha−1 on the Cirsio-Molinietum, in comparison with 5.58 kg P ha−1 on the improved pasture. Phosphorus concentration of plant material obtained by repeated defoliation was approximately 1.0 mg P g−1 DM on the Cirsio-Molinietum, whereas a clear seasonal trend, peaking at 3.5 mg P g−1 DM, was observed on the improved pasture. Phosphorus concentration of litter, grass and sedge from ungrazed plots on the Cirsio-Molinietum indicated distinct seasonal variations for the grass, with no seasonal pattern for the sedge component.  相似文献   

5.
On Mediterranean calcareous soils, high fire frequency induces soil impoverishment and the development of stable Quercus coccifera garrigues. Organic amendment could increase soil fertility levels, and could alter the vegetation dynamics and the established dominance relationships. In this study, the plant cover evolution is monitored in an amended burnt shrub during two years. Three treatments are studied: control (D0), 50 t ha−1 (D50) and 100 t ha−1 (D100) of fresh co-composted sewage sludge and greenwastes.First, the spreading process leads to the squashing of the vegetation, whose intensity reaches a threshold on D100 and limits the woody species’ recovery after amendment. Consequently, the dominant herb Brachypodium retusum is favoured. On D50, woody species are favoured compared to herbs, probably due to the space colonization strategy of Q. coccifera after squashing. Thus, compost at both rates favours the two dominant resprouter species until they have colonized all the free space created by squashing.Secondly, compost has some fertilizing effects on Rosmarinus officinalis and Ulex parviflorus, that improves their cover on D50. However, compost also increases U. parviflorus’ sensitivity to drought.At the end of the experiment, a third compost effect appears, as seeder cover becomes greater than D0 on D50. After amendment, compost covers rocky stones, which creates a new territory where species with superficial rooting can establish (mulch effect).  相似文献   

6.
This research investigates the adsorption mechanisms of fluoride (F) on four clay minerals (kaolinite, montmorillonite, chlorite, and illite) under different F concentrations and reaction times by probing their fluoride superficial layer binding energies and element compositions using X-ray photoelectron spectroscopy (XPS). At high F concentrations (C 0 = 5–1000 mg·L−1), the amount of F adsorbed (Q F), amount of hydroxide released by clay minerals, solution F concentration, and the pH increase with increasing C 0. The increases are remarkable at C 0>50 mg·L−1. The QF increases significantly by continuously modifying the pH level. At C 0<5–100 mg·L−1, clay minerals adsorb H+ to protonate aluminum-bound surface-active hydroxyl sites in the superficial layers and induce F binding. As the C 0 increases, F, along with other cations, is adsorbed to form a quasi-cryolite structure. At C 0>100 mg·L−1, new minerals precipitate and the product depends on the critical Al3+ concentration. At [Al3+]>10−11.94 mol·L−1, cryolite forms, while at [Al3+]<10−11.94 mol·L−1, AlF3 is formed. At low C 0 (0.3–1.5 mg·L−1), proton transfer occurs, and the F adsorption capabilities of the clay minerals increase with time.  相似文献   

7.
A large proportion of total P in the soils of the area is unavailable to plants and consequently P is the second most limiting nutrient. The labile and moderately labile phosphorus fractions and adsorption characteristics of surface and subsurface horizons of eleven soil profiles in the derived savanna (DS) and the northern Guinea savanna (NGS) of West Africa were assessed. The labile P fractions are the resin and HCO3-extractable inorganic (Pi) and organic (Po) P. The moderately labile fractions are the NaOH-extractable portion of soil P in the Hedley sequential procedure. In the DS soils, the resin P, considered the most readily available fraction, varied from 1 to 14 mg kg−1, HCO3-Pi ranged from 3.3 to 11, and HCO3-PO was between 4 and 12 mg kg−1 in the surface horizon. In the NGS, the topsoil contained 1.5–3 mg kg−1 of resin P, 5–8 mg kg−1 of HCO3-Pi, and 7.5–9.7 mg kg−1 of HCO3-Po. Sodium hydroxide-Po was the largest of the fractions in all the soils studied. It ranged from 23 to 55 mg kg−1 in the topsoil. In general, the labile P levels were higher in soils of the DS than of the NGS and were related to the oxalate-extractable Fe (Feox), and Al (Alox) as well as to soil texture. The subsoil of Kasuwan Magani (profile KS 9–21 cm) required 153 mg P kg−1 to maintain 0.2 mg P l−1 in solution (standard P requirement), and Danayamaka (profile DD 7–32 cm) required 145 mg P kg−1. These could translate to 214 and 200 kg P ha−1 if a plow layer of 10 cm is assumed. Because these are within the plow layer, more P fertilizer would be needed for crop production than in the other soils. The standard P requirement and the adsorption maxima were related to Feox and Alox, dithionite-Fe (Fed), and texture. The increase in labile P content with decreasing Feox and Alox could imply that management practices capable of reducing the activities of Fe and Al in solution might improve P availability.  相似文献   

8.
Soybean (Glycine max (L.) Merr.) is becoming increasingly important in the cereal-based cropping system of the Nigerian Guinea savanna zone and this justifies research on its effects on soil N. Although soybean can obtain 50% or more of its N requirement from the atmosphere, the N contribution of the crop to the system depends on the amount of N contained in roots, haulms, and fallen leaves after grain harvest. At four sites in the northern Guinea savanna, the effects on N balance of P fertilizer and soybean varieties of different duration were tested. The varieties received P fertilizer at the rates of 0, 30, and 60 kg P ha−1. The total N accumulated aboveground at harvest averaged 104 kg N ha−1 in the early and medium varieties, and 135 kg N ha−1 in the late varieties. Across all varieties and sites, total N content was increased by 40–47% when P was applied. Apparent N harvest index averaged 85% but was not significantly affected by variety or P rate. When only grain was exported, the calculated N balance of the early and the medium varieties was −2.6 to −12.2 kg N ha−1 while the longer duration varieties had positive N balances ranging from 2 to 10.9 kg N ha−1. The N accrual was negative when P was not applied and ranged from 2.4 to 5.2 kg N ha−1 with P application. The interaction of variety and site on the N balance was significant at P<0.05. N balance at the southernmost site was −14.2 kg N ha−1 compared with 2.6–10 kg N ha−1 at the northern sites where N2 fixation was higher. The estimate of N balance is reduced when soybean haulms are exported. A positive N contribution by soybean is, therefore, possible in a soybean–cereal rotation when: (i) P is applied, (ii) the soybean variety is late maturing, and (iii) only grain is exported.  相似文献   

9.
黄禹  陈曦  王迎红  刘子锐  唐贵谦  李杏茹 《环境科学》2021,42(10):4602-4610
为了解华北区域光化学污染特征,于2018年5月至2019年4月在石家庄和兴隆地区利用2,4-二硝基苯肼(DNPH)对空气中的羰基化合物进行采样,并利用高效液相色谱对采集样品进行分析,以了解该区域羰基化合物的组成、体积分数、来源、·OH损耗速率和臭氧生成潜势.本研究共测定了13种含羰基的挥发性有机物,其中体积分数最高的3种物质为丙酮、甲醛和乙醛[石家庄地区:(6.46±5.25)×10-9、(3.76±2.29)×10-9和(2.65±1.74)×10-9;兴隆地区:(1.85±1.27)×10-9、(1.29±1.02)×10-9和(0.72±0.48)×10-9];C1/C2和C2/C3值表明石家庄地区工业化水平较高,受机动车尾气和化石燃料燃烧等人为排放影响较明显;兴隆地区采样点处于背景区域,受自然源影响较大;石家庄地区对L·OH贡献最大的3种物质分别为乙醛(1.77 s-1)、甲醛(1.57 s-1)和丁醛(0.42 s-1);兴隆地区对L·OH贡献最大的3种物质为分别为甲醛(0.53 s-1)、乙醛(0.47 s-1)和丁醛(0.12 s-1);对O3生成贡献最大的羰基化合物物种为甲醛和乙醛[石家庄地区:34.61×10-9(以O3计,下同)和16.73×10-9;兴隆地区:11.77×10-9和4.47×10-9],且甲醛的最大臭氧生成潜势估算(OFP)远高于乙醛.  相似文献   

10.
生物质炭可影响土壤微生物量,但生物质炭对双季稻田土壤微生物生物量碳、氮(MBC、MBN)及可溶性有机碳、氮(DOC、DON)的影响还不清楚.基于此,本研究选取亚热带2种典型双季稻田土壤(花岗岩母质发育的水稻土S1和第四纪红壤发育的水稻土S2)作为研究对象,开展室内培养试验来研究不施氮肥条件下生物质炭添加对土壤微生物生物量碳、氮及可溶性有机碳、氮的影响.每种土壤设置3个小麦秸秆生物质炭添加量,即土重的0%、1%和2%,分别用CK、LB和HB表示.培养70 d后,2种水稻土的MBC均值:S1为877. 03、832. 11和849. 30 mg·kg~(-1),S2为902. 94、874. 19和883. 22mg·kg~(-1). S1+LB、S1+HB和S2+LB均显著降低了土壤MBC均值(P 0. 05),这可能是由生物质炭吸附土壤有机碳及其他有机物,阻碍了微生物的生长而造成的. S1土壤中低生物质炭添加量较对照显著降低了土壤MBN均值(P 0. 05),降幅达9. 45%.生物质炭对S1土壤MBC/MBN均值影响不明显,但LB降低了S2土壤MBC/MBN均值(P 0. 05).由于生物质炭本身含有部分可溶性有机碳及其高p H值,添加到2种水稻土中均增加了土壤DOC均值,增幅分别达4. 42%~22. 20%和10. 57%~35. 47%.但生物质炭(除S2+HB处理)显著降低了土壤DON均值,这可能归因于生物质炭对土壤有机氮的吸附作用及生物质炭本身有机碳分解过程中对N的消耗作用.生物质炭显著增加了2种水稻土的DOC/DON均值,且随着生物质炭添加量的增加而增加.综上所述,在双季稻田土壤中单施生物质炭虽然可增加土壤可溶性有机碳,但对土壤微生物量有一定的降低作用,且会加重土壤氮亏缺状况.因此,在亚热带双季稻田中生物质炭应与化肥等配合施用.  相似文献   

11.
In central Mexico, it is common for farmers to retain useful trees in abandoned lands after maize cultivation, creating a park-like landscape of scattered trees for extensive livestock grazing, among other land uses (mature forests, secondary forests, and livestock grazing in secondary forests). Among these trees Acacia cochliancantha and Ipomoea arborescens are the most common species associated with this land use in the region. The objective of this study was to assess the effects of both tree species on soil N and P recycling. To this end, we measured N and P concentrations in leaves of both species; and the seasonal N and P (total and dissolved) content in the litter, and total N and P, inorganic N, and bicarbonate-extractable-P concentrations, and the N transformations in the soil, in samples collected under crown of Acacia and Ipomoea and in open areas. Trees of different species varied in their capacity to cycle N. The leaves of Acacia were richer in N than those of Ipomoea (29.7 and 25.0 mg N g−1, respectively), and nutrient resorption was higher in leguminous trees than in Ipomoea (by 20% in the case of N, and 35% in the case of P). Acacia trees had higher effects on soils than Ipomoea trees, like consistent increases of N concentrations (by 30% in the case of total N, and by 50% in the case of inorganic N) and transformations (N mineralization and nitrification in rainy season increases by a factor of 20 and 36, respectively). On the other hand, Ipomoea produced senescent leaves and accumulated forest litter with less P concentration (0.8 and 0.7 mg P g−1, respectively) in relation to Acacia (senescent leaves: 1.3 mg P g−1; litter: 1.1 mg P g−1), reflecting the lower availability of the nutrient in the soil. The total litter N and P pools decreased in the rainy season under crown of both species, as the dissolved P pool did. The total soil N and P concentrations did not change with sampling season. However, potential N transformations and bicarbonate P under both species were higher in dry season than in rainy season samples. Comparison with other land uses in the region suggests that the AcaciaIpomoea system cycles low quantity of nutrients, but there are no notable differences in the availability of P in the soils. These results demonstrate that scattered trees improve the N and P cycling following the discontinuation of agricultural practices, and the effects will vary depending on the tree species.  相似文献   

12.
The harvest of crops such as sugar beet (Beta vulgaris L.), potato (Solanum tuberosum L.), leek (Allium porrum L.) and carrot (Daucus carota L.) causes soil loss from arable land because soil adhering to the crop and soil clods that failed to be separated by the harvesting machine, are exported from the field together with these harvested crops. These soil losses can be of the same order of magnitude as soil losses caused by water erosion processes, but are often neglected in soil erosion research. In this article we developed a methodology to investigate the spatial and long-term (1846–2004) variability of soil loss due to crop harvesting (SLCH) in Belgium and the spatial distribution of the importance of SLCH relative to soil losses caused by water erosion processes in Flanders. The study is based on long-term time series of soil tare data of crop processing factories and area and crop yield statistics. Until the middle of the 20th century, potato and roots and tubers grown as second crop, had the largest share in the SLCH-crop growing area in Belgium. Sugar beet gained importance from the end of the 19th century onwards and has now, of all SLCH crops, the largest growing area. We could estimate that, partly due to increasing crop yields and the mechanisation of the harvesting process, SLCH per hectare of cropland increased from 0.4 Mg ha−1 year−1 in 1846 to 2.4 Mg ha−1 year−1 in the 1970s and early 1980s. Since then mean annual soil losses decreased again to 1.8 Mg ha−1 year−1 in 2004. It was assessed that total yearly SLCH in Belgium rose from more than 575,000 Mg in the middle of the 19th century to more than 1.7 × 106 Mg in the 1970s and early 1980s, while current SLCH values are 1.4 × 106 Mg. We estimated that since 1846, more than 163 × 106 Mg soil was exported from cropland in Belgium through this erosion process, which corresponds to 109 hm3 or an average soil profile truncation of 1.15 cm. Average sediment export from cropland in Flanders was 3.7 Mg ha−1 year−1 in 2002, of which 46% was due to SLCH and 54% was due to water erosion processes. The relative importance of SLCH varied, depending on the agricultural region, between 38% and 94%.  相似文献   

13.
Chlorella salina was successfully cultivated in secondarily treated domestic sewage effluent of salinity (14%) in an outdoor cultivation tank. Removal efficiencies of NH4+ -N, NO3 -N, and PO43− -P by this alga from secondarily treated sewage effluent were 89–100%, 35–66% and 100%, respectively. The high removal efficiencies of inorganic N and P means that this process can be used as a tertiary sewage treatment. The yield of the sewage-grown algae was 5.1 g m−2 day−1 for a retention time of 6 days. The high protein content (46.8%), relatively good amino-acid profile and low metal content enabled the use of algal biomass as feed supplement for the silver carp (Hypophthalmichthys molitrix). The food conversion ratios (FCR) of 5% and 10% sewage-grown algae supplemented fish food were better than on the control diet (i.e. artificial fish food alone), while the FCR of 20% sewage-grown algae supplemented fish food and live sewage-grown algae alone were inferior to that on the control diet. These results indicate that cultivation of C. salina in secondarily treated sewage effluent of high salinity can be used as a tertiary sewage treatment to remove inorganic N and P from secondarily treated sewage effluent to reduce pollution problems, and to produce algal protein suitable as a supplement for fish feed in aquaculture.  相似文献   

14.
Biological nitrogen fixation (BNF) by promiscuous cultivars of soybeans (Glycine max (L.) Merr.) in cereal-based cropping systems of Nigeria’s moist savanna zone offers a potential for minimizing the investment made by resource-poor farmers on nitrogen fertilizers. A 3-year trial was conducted on five farmers’ fields in the southern Guinea savanna zone of Nigeria to assess the residual effects of two successive crops of promiscuous soybean cultivars on the yield of a following maize (Zea mays L.) crop. The soybean cultivars, TGX1456-2E (medium maturity) and TGX1660-19F (late maturity), were grown in 1996 and 1997. Treatments, imposed only in the first year of the trial, were: (i) uninoculated, (ii) inoculated with a mixture of two Bradyrhizobium strains, and (iii) fertilized with 60 kg N ha−1. A fourth treatment was a plot left to fallow. In 1998, all the previous soybean and fallow plots were sown to maize without any fertilizer application. Results in 1996 and 1997 showed a soybean response to inoculation in the first year, but differences due to the residual effect of inoculation in the second year were not significant. Both cultivars showed a similar response to inoculation but responses at the five sites were varied. Soybean cultivar 1456-2E fixed 43–52% of its N amounting to 56–70 kg N ha−1 and cultivar 1660-19F derived 39–54% of its N from N2-fixation which amounted to 51–78 kg N ha−1. Both cultivars had a high N harvest index resulting in a net removal of 52–95 kg N ha−1 when both grain and stover were exported. Even when the stover was returned, there was a depletion of 23–65 kg N ha−1, with 1456-2E removing more N than 1660-19F. Arbuscular-mycorrhizal infection on maize roots was 11–27% and dependent on previous soybean treatments and farmers’ fields. Plant height, shoot biomass, grain yield, and N uptake of maize were significantly greater in plots previously sown to soybean than in the fallow plots. In general, plots sown to the late maturing cultivar 1660-19F exhibited better residual effect, producing larger yield parameters than the plots planted with medium maturing 1456-2E.  相似文献   

15.
微生物碳源利用效率(CUE)是指微生物将吸收的碳(C)转化为自身生物量C的效率,土壤微生物CUE的研究对深入认识土壤C循环过程十分重要.利用18 O-H2 O-DNA标记法,研究戴云山不同海拔(980~1765 m)天然林土壤微生物CUE、微生物生长速率(Cgrowth)和呼吸速率(Crespiration)的变化特征和影响机制.结果表明,微生物CUE在0.1~0.4之间变化,并随海拔升高而增加;微生物CUE与CgrowthCrespiration和单位微生物生长正相关,而与呼吸熵负相关,说明随海拔的增加,微生物通过增加个体生长和抑制个体呼吸来提高CUE;温度是影响CUE的主要因素,微生物CUE与温度负相关,说明随海拔增加,温度下降是促进土壤微生物CUE升高的关键因素.  相似文献   

16.
Agricultural sources of atmospheric methane include flooded rice (Oryza sativa L.) paddies. However, certain soil nutrient management and cultural practices offer opportunities to reduce methane emissions. The effect of application of ammonium thiosulphate, a potential source of nitrogen and sulphur and also an inhibitor of nitrification and urease on methane production and emission from flooded alluvial (Typic Haplaquept) rice soil in India, was examined. Methane production and emission from control and urea-amended soil samples were almost identical. Application of ammonium thiosulphate to laboratory-incubated flooded soil (30 and 60 μg N g−1 soil) and flooded rice fields (45.6 and 60 kg N ha−1) effected a distinct inhibition of methane production and emission. Ammonium thiosulphate stimulated the population of sulphate-reducing bacteria (SRB) to a greater extent at 60 μg N g−1 soil than at 30 μg N g−1 soil. In ammonium thiosulphate-applied rice field plots, mean methane efflux decreased by about 38 and 60% at 45.6 and 60 kg N ha−1, respectively, over that of control. Inhibition of methane production by ammonium thiosulphate is, at least in part, due to the stimulation of SRB. Results suggest the mitigation potential of ammonium thiosulphate on methane emission from flooded rice paddies.  相似文献   

17.
对广西木论国家级自然保护区喀斯特常绿落叶阔叶混交林旱季生态系统CO2净交换(NEE)的变化特征及其与环境因子的关系进行初步分析,计算研究期间碳汇大小,与其他相似气候条件下的不同生态系统进行对比,以期为准确估算该生态系统的年碳汇量提供基础。利用涡度相关法对该地区旱季(2018年10月1日~2019年3月31日)CO2通量进行连续观测,同时开展降水量(P)、光合有效辐射(PAR)、空气温度(Tair)、土壤温度(Tsoil)以及土壤含水量(SWC)等环境因子监测。观测期内该生态系统CO2通量及浓度具有明显的"单谷"状日变化特征,白天表现为明显的碳汇,夜间则表现为明显的碳源,NEE在12:00最强,为-0.309±0.330 mg CO2/(m2·s),18:30最弱,为0.074±0.061 mg CO2/(m2·s);观测期内NEE、生态系统呼吸(Re)、生态系统总生产力(GEP)分别为-121.4、209.2、330.6 g C/m2,该生态系统在2019年2月的碳吸收能力最强,ReGEP在2018年10月达到最强;光合有效辐射是白天生态系统CO2净交换(NEEd)变化的主要控制因素(R2=0.40,p<0.01),空气温度与夜间生态系统CO2净交换(NEEn)存在指数关系(R2=0.1267,p<0.01);观测期内的降雨抑制了该生态系统的碳汇能力,即降水对NEE产生了抑制作用。旱季该生态系统整体表现出明显的碳汇,碳汇值为1.214 t C/ha,明显低于相似气候条件下的其他生态系统。  相似文献   

18.
The paper describes a model designed for analysing interrelated nitrogen (N) fluxes in farming systems. It combines the partial N balance, farm gate balance, barn balance and soil surface balance, in order to analyse all relevant N fluxes between the subsystems soil–plant–animal–environment and to reflect conclusive and consistent management systems. Such a system approach allows identifying the causes of varying N surplus and N utilisation.The REPRO model has been applied in the experimental farm Scheyern in southern Germany, which had been subdivided into an organic (org) and a conventional (con) farming system in 1992. Detailed series of long-term measuring data are available for the experimental farm, which have been used for evaluating the software for its efficiency and applicability under very different management, yet nearly equal site conditions.The organic farm is multi-structured with a legume-based crop rotation (N2 fixation: 83 kg ha−1 yr−1). The livestock density is 1.4 LSU ha−1. The farm is oriented on closed mass cycles.The conventional farm is a simple-structured cash crop system based on mineral N (N input 145 kg ha−1 yr−1). Averaging the years 1999–2002, the organic crop rotation reached, with regard to the harvested products, about 81% (6.9 Mg ha−1 yr−1) of the DM yield and about 93% (140 kg ha−1 yr−1) of the N removal of the conventional rotation. Related to the cropped area, the N surplus calculated for the organic rotation was 38 kg ha−1 yr−1 versus 44 kg ha−1 yr−1 for the conventional rotation. The N utilisation reached 0.77 (org) and 0.79 (con), respectively. The different structure of the farms favoured an enhancement of the soil organic nitrogen stock (35 kg ha−1 yr−1) in the organic crop rotation and caused a decline in the conventional system (−24 kg ha−1 yr−1). Taking account of these changes, which were substantiated by measurements, N surplus in the organic rotation decreased to 3 kg ha−1 yr−1, while it increased to 68 kg ha−1 yr−1 in the conventional system. The adjusted N utilisation value amounted to 0.98 (org) and 0.69 (con), respectively.  相似文献   

19.
Lowland rice fields constitute a semi aquatic environment, which is potentially suitable for fish production. Little is known about the effect of fish on greenhouse gas emissions from integrated rice–fish systems. An experiment was carried out at the Bangladesh Agricultural University to assess the effect of the stocking of fish on methane emissions from rice fields. Common carp, Cyprinus carpio L., and Nile Tilapia, Oreochromis niloticus (L.) were stocked in a mixed culture and subjected to three different input regimes: (1) urea fertilization according to the recommendation of the Bangladesh Rice Research Institute (BRRI), (2) supplementary feeding at 2 × maintenance level and (3) an elevated feeding schedule where 4 × maintenance level was fed initially and 2 × maintenance level towards the end of the growth period. Rice only with urea fertilization according to BRRI-recommendation was included as the control. The presence of fish increased methane emissions in all three rice–fish treatments. Average emission over the cropping season was 34, 37, and 32 mg m−2 h−1 in the rice–fish treatments, respectively, and 20 mg m−2 h−1 in rice only. Apart from an increase in methane emission, a significant drop (p < 0.05) in floodwater pH and dissolved oxygen concentration was observed in the rice–fish plots. Both parameters were the lowest in the treatment where a higher feeding rate was provided. Due to the fish activity, floodwater in the rice–fish treatments was more turbid, as reflected in higher particulate inorganic matter (PIOM). An elevated level of dissolved methane was observed in the floodwater of the feed supplemented rice–fish plots. Methane emissions showed negative correlation with morning and afternoon pH of the floodwater (r = −0.46; r = −0.56, p < 0.001) and morning and afternoon dissolved oxygen level (r = −0.53; r = −0.46, p < 0.001). Positive correlations were recorded between morning and afternoon floodwater temperature (r = 0.49; r = 0.44, p < 0.001) and with air temperature (r = 0.54, p < 0.001). The results suggest that the stocking of fish has an increasing effect on methane emissions from rice fields.  相似文献   

20.
This paper reports on the influence that residue and fertilizer management have on nutrient balances, soil organic matter (SOM) dynamics, and crop yields of a flooded rice system in northeast Thailand (1992–1997) and a wheat–forage legume rotation in eastern Australia (1992–1998). Both soils had been subject to at least 18 years of cultivation and had lost up to 90% of the original labile (CL) and 85% of the total carbon (CT).For the rainfed rice cropping systems of northeast Thailand, a system is described in which small applications of leaf litter from locally grown trees are applied annually to rice paddy soils prior to transplanting. Annual applications of 1500 kg ha−1 of leaf litter from different locally grown shrubs for five seasons resulted in increases in rice grain yield in 1997 of between 20 and 26% above the no-leaf litter control. Nutrient balances, determined by the difference between the inputs (fertilizer and added leaf litters) and outputs (grain and straw), indicated net positive balances of up to 457 kg N ha−1, and 60 kg P ha−1, after five seasons of leaf litter applications. Sulfur and potassium balances resulted in net deficits of up to −13 kg S ha−1 and −52 kg P ha−1, where no leaf litter was applied and rice straw was removed following harvest. Soil carbon (C) concentrations increased significantly only where higher fertilizer rate and rice stubble retention were combined.The poor management of fertilizers and crop residues, and excessive cultivation has also resulted in large soil fertility losses in the grain growing areas of Eastern Australia. After five wheat and two legume/fallow crops, negative N balances of up to −303 kg ha−1 were calculated for the treatments where wheat stubble was not retained and bare fallow leys were used. The balance of nutrients such as K, which are contained in larger proportions in stubble, were found to be up to −362 kg ha−1 on the straw-removed treatments and up to +29 kg ha−1 on the straw-retained treatments. Forage legume leys resulted in short term increases in CL and the carbon management index (CMI).Sustainable farming systems require that crop yields are stable through the maintenance of soil fertility and the balance of nutrients in the system. Increases in soil C levels require sustained periods of balanced fertilization and residue retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号