首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Prior investigations identified an association between low-level blood arsenic (As) and bladder cancer risk among Tunisian men but questions remain regarding confounding by cadmium (Cd), a well-established bladder carcinogen. A case–control study of Tunisian men was re-examined to assess the levels of cadmium in blood and reparse the association between the simultaneous exposure to these metals and bladder cancer risk. Levels of blood Cd were significantly twice higher among cases than in controls (P?<?0.05) and were positively correlated with smoking and age. Additionally, analysis of metal levels among non-smokers according to the region of residence showed very high blood Cd and As levels for the coastal regions of Sfax and central Tunisia. After controlling for potential confounders, for low blood As levels (<0.67 μg/L), the OR for blood Cd was 4.10 (95 % CI 1.64–10.81), while for higher levels (>0.67 μg/L), it was reduced to 2.10 (CI, 1.06–4.17). Adjustment for Cd exposure did not alter the risk associated to As exposure. This study is the first to report the relationship between Cd exposure and risk of bladder cancer occurrence in interaction with smoking and As exposure. Smoking is shown to be the main exposure source to Cd in the Tunisian population but also environmental pollution seems to be responsible of Cd exposure among non-smokers. Exposure assessment studies encompassing a wider population are needed.  相似文献   

2.
Although exposure to high levels of arsenic is associated with excess bladder cancer risk, lower exposures generally are not. This study represents the first biomonitoring of arsenic exposure in Tunisia and focuses on a possible association with bladder cancer risk. In this context, 124 male bladder cancer cases and 220 controls were recruited and blood samples were analyzed to determine the concentration of As. The study subjects were stratified into median groups based on concentrations of arsenic in their blood. Blood arsenic (B-As) was significantly two to threefold higher in bladder cancer cases than in controls (p?<?0.05). The arsenic concentrations were significantly higher among both smokers and workers in construction. However, neither drinking water nor seafood was found to be incriminated as exposure sources. The adjusted risk ratios for B-As concentration categories 0.1–0.67 and ≥0.67 μg/L were 0.18 (95% CI?=?0.014–2.95) and 2.44 (95% CI?=?1.11–5.35), respectively. Arsenic levels were not found to be associated with tumor grade or stage. The considerable risk in the category of highest cumulative exposure argues for an association between bladder cancer risk and low-level arsenic exposure. Future investigations with larger samples and using techniques that allow the distinction of the different arsenic species should better elucidate this association. Furthermore, the modulation of arsenic level according to the histological grade may be of potential to be used as a diagnostic marker of the disease process and its possible relationship etiologically.  相似文献   

3.
Arsenic contamination of groundwater is a major threat to human beings globally. Among various methods available for arsenic removal, adsorption is fast, inexpensive, selective, accurate, reproducible and eco-friendly in nature. The present paper describes removal of arsenate from water on zirconium oxide-coated sand (novel adsorbent). In the present work, zirconium oxide-coated sand was prepared and characterised by infrared and X-ray diffraction techniques. Batch experiments were performed to optimise different adsorption parameters such as initial arsenate concentration (100–1,000 μg/L), dose (1–8 g/L), pH of the solution (2–14), contact time (15–150 min.), and temperature (20, 30, 35 and 40 °C). The experimental data were analysed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Furthermore, thermodynamic and kinetic parameters were evaluated to know the mode of adsorption between ZrOCMS and As(V). The maximum removal of arsenic, 97 %, was achieved at initial arsenic concentration of 200 μg/L, after 75 min at dosage of 5.0 g/L, pH?7.0 and 27?±?2 °C. For 600 μg/L concentration, the maximum Langmuir monolayer adsorption capacity was found to be 270 μg/g at 35 °C. Kinetic modelling data indicated that adsorption process followed pseudo-second-order kinetics. The mechanism is controlled by liquid film diffusion model. Thermodynamic parameter, ΔH°, was ?57.782, while the values of ΔG° were ?9.460, ?12.183, ?13.343 and ?13.905 kJ/mol at 20, 30, 35 and 40 °C, respectively, suggesting exothermic and spontaneous nature of the process. The change in entropy, ΔS°?=??0.23 kJ/mol indicated that the entropy decreased due to adsorption of arsenate ion onto the solid adsorbent. The results indicated that the reported zirconium oxide-coated marine sand (ZrOCMS) was good adsorbent with 97 % removal capacity at 200 μg/L concentration. It is interesting to note that the permissible limit of arsenic as per World Health Organization is 10 μg/L, and in real situation, this low concentration can be achieved through this adsorbent. Besides, the adsorption capacity showed that this adsorbent may be used for the removal of arsenic from any natural water resource.  相似文献   

4.
We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L?1) in a first year (group I) and for participants using water lower in arsenic (<50 μg L?1) in the next year (group II). Participants with and without arsenical skin lesions were considered in the statistical analysis. Median dose of arsenic intake through drinking water in groups I and II males was 7.44 and 0.85 μg kg body wt.?1 day?1 (p <0.0001). In females, it was 5.3 and 0.63 μg kg body wt.?1 day?1 (p <0.0001) for groups I and II, respectively. Arsenic dose through diet was 3.3 and 2.6 μg kg body wt.?1 day?1 (p?=?0.088) in males and 2.6 and 1.9 μg kg body wt.?1 day?1 (p?=?0.0081) in females. Median arsenic levels in urine of groups I and II males were 124 and 61 μg L?1 (p?=?0.052) and in females 130 and 52 μg L?1 (p?=?0.0001), respectively. When arsenic levels in the water were reduced to below 50 μg L?1 (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.?1 day?1 (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.  相似文献   

5.
Chronic exposure to heavy metals has long been recognized as being capable of increasing head and neck cancer (HNC) incidence, such as laryngeal (LC) and nasopharyngeal (NPC), among exposed human populations. The aim of the present study was to evaluate the concentrations of arsenic (As) and cadmium (Cd) in the blood of 145 patients (LC and NPC) and 351 controls in order to establish a potential relationship between these factors and the occurrence of LC and NPC. Mean blood levels of As and Cd in patients (5.67 and 3.51 μg/L, respectively) were significantly higher than those of controls (1.57 and 0.74 μg/L, respectively). The blood levels of As and Cd were mostly significantly higher than those of controls (p?<?0.05) after controlling the other risk factors of HNC including tobacco smoking and chewing, and alcohol drinking. Cd levels in blood increase significantly with the number of occupational exposure years for patients (p?<?0.05). However, seafood was not found to be contributing as an exposure source. Among these risk factors, smoking (>30 pack years) and occupational exposure (>20 years) presented the most significant association with HNC (OR?=?10.22 and 10.38, respectively, p?<?0.001). Cd level in blood sample of cases that are occupationally exposed/tobacco users (smokers and chewers) were higher than that of non-occupationally exposed/nontobacco users (p?<?0.001). The logistic regression model illustrated that HNC (LC?+?NPC) was significantly associated with blood levels of As (OR?=?2.41, p?<?0.001) and Cd (OR?=?4.95, p?<?0.001).  相似文献   

6.
Prenatal and early-life exposure to lead (Pb) is hypothesized to have adverse effects on childhood health. The aim of this study was to evaluate the prenatal exposure to Pb and its adverse effects on mothers and their infants who are residents of industrial (exposed) and domestic areas (referents) in Karachi, Pakistan. The biological samples (scalp hair and blood) of mother–infants pairs were analyzed for Pb levels by atomic absorption spectrometry after microwave-assisted acid digestion method. The Pb levels in scalp hair and blood samples of exposed mothers were found in the range of 7.52–8.70 μg/g and 115–270 μg/L, respectively, which were significantly higher than those values obtained for referent mothers (p?<?0.001). The Pb levels in the blood (umbilical cord) and hair of neonates of exposed mother that were found in the range of 83–178 μg/L and 4.95–7.23 μg/g, respectively, were significantly higher than the obtained values of referent neonates (p?>?0.001). The correlation between maternal and cord blood of both groups was found in the range of 0.708–0.724 (p?<?0.01). It was observed that there were higher Pb burdens in exposed mothers and their infants as compared to referent mothers–neonates.  相似文献   

7.
In the present study, potential health risks posed to human population from Ropar wetland and its vicinity, by consumption of inorganic arsenic (i-As) via arsenic contaminated rice grains and groundwater, were assessed. Total arsenic (t-As) in soil and rice grains were found in the range of 0.06–0.11 mg/kg and 0.03–0.33 mg/kg, respectively, on dry weight basis. Total arsenic in groundwater was in the range of 2.31–15.91 μg/L. i-As was calculated from t-As using relevant conversion factors. Rice plants were found to be arsenic accumulators as bioconcentration factor (BCF) was observed to be >1 in 75% of rice grain samples. Further, correlation analysis revealed that arsenic accumulation in rice grains decreased with increase in the electrical conductivity of soil. One-way ANOVA, cluster analysis and principal component analysis indicated that both geogenic and anthropogenic sources affected t-As in soil and groundwater. Hazard index and total cancer risk estimated for individuals from the study area were above the USEPA limits of 1.00 and 1.00 × 10?6, respectively. Kruskal-Wallis H test indicated that groundwater intake posed significantly higher health risk than rice grain consumption (χ 2(1) = 17.280, p = 0.00003).  相似文献   

8.
Iron (Fe) is an essential element for many organisms, but high concentrations of iron can be toxic. The complex relation between iron, arsenic (As), bacteria, and organic matter in sediments and groundwater is still an issue of environmental concern. The present study addresses the effects of humic acids and microorganisms on the mobilization of iron in sediments from an arsenic-affected area, and the microbial diversity was analyzed. The results showed that the addition of 50, 100, and 500 mg/L humic acids enhanced ferrous iron (Fe(II)) release in a time-dependent and dose-dependent fashion under anaerobic conditions. A significant increase in the soluble Fe(II) concentrations occurred in the aqueous phases of the samples during the first 2 weeks, and aqueous Fe(II) reached its maximum concentrations after 8 weeks at the following Fe(II) concentrations: 28.95?±?1.16 mg/L (original non-sterilized sediments), 32.50?±?0.71 mg/L (50 mg/L humic acid-amended, non-sterilized sediments), 37.50?±?1.85 mg/L (100 mg/L humic acid-amended, non-sterilized sediments), and 39.00?±?0.43 mg/L (500 mg/L humic acid-amended, non-sterilized sediments). These results suggest that humic acids can further enhance the microbially mediated release of sedimentary iron under anaerobic conditions. By contrast, very insignificant amounts of iron release were observed from sterilized sediments (the abiotic controls), even with the supplementation of humic acids under anaerobic incubation. In addition, the As(III) release was increased from 50?±?10 μg/L (original non-sterilized sediments) to 110?±?45 μg/L (100 mg/L humic acid-amended, non-sterilized sediments) after 8 weeks of anaerobic incubation. Furthermore, a microbial community analysis indicated that the predominant class was changed from Alphaproteobacteria to Deltaproteobacteria, and clearly increased populations of Geobacter sp., Paludibacter sp., and Methylophaga sp. were found after adding humic acids along with the increased release of iron and arsenic. Our findings provide evidence that humic acids can enhance the microbially mediated release of sedimentary ferrous iron in an arsenic-affected area. It is thus suggested that the control of anthropogenic humic acid use and entry into the environment is important for preventing the subsequent iron contamination in groundwater.  相似文献   

9.
Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L?1) for an initial concentration of 1,000 μg L?1. Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.  相似文献   

10.
This study focused on the exposure of the common ragworm Hediste diversicolor (Müller 1776) to sediments enriched with different arsenic compounds, namely arsenate, dimethyl-arsinate, and arsenobetaine. Speciation analysis was carried out on both the spiked sediments and the exposed polychaetes in order to investigate H. diversicolor capability of arsenic bioaccumulation and biotransformation. Two levels of contamination (acute and moderate dose) were chosen for enriched sediments to investigate possible differences in the arsenic bioaccumulation patterns. The highest value of arsenic in tissues was reached after 15 days of exposure to dimethyl-arsinate (acute dose) spiked sediment (1,172?±?176 μg/g). A significant increase was also obtained in worms exposed both to arsenate and arsenobetaine. Speciation analysis showed that trimethyl-arsine oxide was the predominant chemical form in tissues of H. diversicolor exposed to all the spiked sediments, confirming the importance of this intermediate in biological transformation of arsenic.  相似文献   

11.
Triclosan is a common antimicrobial agent that is found in significant levels in the aquatic environment and may elicit effects on aquatic organisms through unexpected modes of action. In this study, triclosan was quantified in fish from the Kaveri River, India, by using the gas chromatography and mass spectrometry technique and it was found in the range of 0.73–50 ng/g wet weight (ww). The mean bioaccumulation factor based on water (BAFw 820) and sediment (BAFs 2.12) in the Kaveri River showed that triclosan is accumulative in fish, and reflects its feeding behavior. The bioaccumulation indicates triclosan's persistence or prevalence throughout the river stretch. Human risk assessment through dietary intake demonstrated that the triclosan exposure is five orders of magnitude lower than the acceptable daily intake (50 μg/kg bw) and US EPA reference dose (300 μg/kg bw/day). This investigation is the first to report the bioaccumulation of triclosan in freshwater fish from India. Further, the results indicate that this fish acts as a biomarker of exposure for triclosan and thus shall be used to report triclosan pollution in the future.  相似文献   

12.
The concentration of nine metals was measured in liver, kidney, heart, muscle, plastron, and carapace of Aspideretes gangeticus from Rasul and Baloki barrages, Pakistan. The results indicated that metal concentration were significant different among tissues of Ganges soft-shell turtles. However, higher concentrations of Co (5.12 μg/g) and Ni (1.67 μg/g) in liver, Cd (0.41 μg/g) in heart, Fe (267.45 μg/g), Cd (2.12 μg/g) and Mn (2.47 μg/g) in kidney, Cd (0.23 μg/g), Cu (2.57 μg/g), Fe (370.25 μg/g), Mn (5.56 μg/g), and Pb (8.23 μg/g) in muscle of A. gangeticus were recorded at Baloki barrage than Rasul barrage. Whereas mean concentrations of Pb (3.33 μg/g) in liver, Co (1.63 μg/g), Cu (11.32 μg/g), Pb (4.8 μg/g) and Zn (144.69 μg/g) in heart, Co (4.12 μg/g) in muscle, Ni (1.31 μg/g), Pb (2.18 μg/g), and Zn (9.78 μg/g) in carapace were recorded higher at Rasul barrage than Baloki barrage. The metals followed the trend Fe > Zn > Ni > Cu > Mn > Pb > Cr > Co > Cd. Metals of toxicological concern such as Cr, Pb, and Cd were at that level which can cause harmful effects to turtles. The results provide baseline data of heavy metals on freshwater turtle species of Pakistan.  相似文献   

13.
14.
Based on acute cytotoxicity studies, selenosulfate (SeSO3 ?) has been suggested to possess a generally higher toxic activity in tumor cells than selenite. The reason for this difference in cytotoxic activity remained unclear. In the present study, cytotoxicity tests with human hepatoma (HepG2), malignant melanoma (A375), and urinary bladder carcinoma cells (T24) showed that the selenosulfate toxicity was very similar between all three tested cell lines (IC50 6.6–7.1 μM after 24 h). It was largely independent of exposure time and presence or absence of amino acids. What changed, however, was the toxicity of selenite, which was lower than that of selenosulfate only for HepG2 cells (IC50?>?15 μM), but similar to and higher than that of selenosulfate for A375 (IC50 4.7 μM) and T24 cells (IC50 3.5 μM), respectively. Addition of amino acids to T24 cell growth medium downregulated short-term selenite uptake (1.5 versus 12.9 ng Se/106 cells) and decreased its cytotoxicity (IC50 8.4 μM), rendering it less toxic than selenosulfate. The suggested mechanism is a stronger expression of the xc ? transport system in the more sensitive T24 compared to HepG2 cells which creates a reductive extracellular microenvironment and facilitates selenite uptake by reduction. Selenosulfate is already reduced and so less affected. The cytotoxic activity of selenosulfate and selenite to tumor cells therefore depends on the sensitivity of each cell line, supplements like amino acids as well as the reductive state of the extracellular environment.  相似文献   

15.
Trichloroacetic acid (TCA), a common water disinfection byproduct and a persistent metabolite of trichloroethylene (TCE), has been examined for its genotoxic potential in human lymphocytes. Chromosomal aberration (CA) and cytokinesis-block micronucleus (CBMN) assay were employed to assess the toxicity of TCA. Lymphocytes obtained from three healthy donors were exposed to 25, 50, and 100 μg/ml concentration of TCA separately. TCA exposure resulted in chromosomal anomalies and the formation of micronuclei in lymphocytes. Chromosome analysis revealed the dose-dependent and significant induction of CA. Chromatid break/chromosome break, fragments, and chromatid exchanges were commonly observed. Exposure of higher concentration (50 and 100 μg/ml) significantly inhibited mitotic index. Data obtained with CBMN assay indicated that the induction of micronucleus (MN) formation was greater than that of CA. At 25 μg/ml, TCA induced significant frequencies of MN as compared to control cells. Significant induction of MN at the lowest concentration indicates TCA may also interact with mitotic spindles. Lower percentage of CA and MN at 100 μg/ml as compared to 50 μg/ml indicates occurrence of severe cytotoxicity on exposure of 100 μg/ml TCA in lymphocytes. Collectively, results of both cytogenetic assays indicate that exposure of TCA can induce significant genotoxic and cytotoxic effects.  相似文献   

16.
Embryos, unlike adults, are typically sessile, which allows for an increase in the available metrics that can be used to assess chemical toxicity. We investigate Daphnia magna development rate and oxygen consumption as toxicity metrics and compare them to arrested embryo development using four different techniques with potassium cyanide (KCN) as a common toxicant. The EC50 (95 % CI) for arrested development was 2,535 (1,747–3,677) μg/L KCN. Using pixel intensity changes, recorded with difference imaging, we semi-quantitatively assessed a decrease in development rate at 200 μg/L KCN, threefold lower than the arrested development lowest observed effect concentration (LOEC). Respirometry and self-referencing (SR) microsensors were two unique techniques used to assess oxygen consumption. Using respirometry, an increase in oxygen consumption was found in the 5 μg/L KCN treatment and a decrease for 148 μg/L, but no change was found for the 78 μg/L KCN treatment. Whereas, with SR microsensors, we were able to detect significant changes in oxygen consumption for all three treatments: 5, 78, and 148 μg/L KCN. While SR offered the highest sensitivity, the respirometry platform developed for this study was much easier to use to measure the same endpoint. Oxygen consumption may be subject to change during the development process, meaning consumption assessment techniques may only be useful only for short-term experiments. Development rate was a more sensitive endpoint though was only reliable four of the six embryonic developmental stages examined. Despite being the least sensitive endpoint, arrested embryo development was the only technique capable of assessing the embryos throughout all developmental stages. In conclusion, each metric has advantages and limitations, but because all are non-invasive, it is possible to use any combination of the three.  相似文献   

17.
Wastewater treatments can eliminate or remove a substantial amount of pharmaceutical active compounds (PhACs), but there may still be significant concentrations of them in effluents discharged into surface water bodies. Beirolas wastewater treatment plant (WWTP) is located in the Lisbon area and makes its effluent discharges into Tagus estuary (Portugal). The main objective of this study is to quantify a group of 32 PhACs in the different treatments used in this WWTP. Twelve sampling campaigns of wastewater belonging to the different treatments were made in 2013–2014 in order to study their removal efficiency. The wastewaters were analysed by solid phase extraction (SPE) and ultra-performance liquid chromatography coupled with tandem mass detection (UPLC–MS/MS). The anti-diabetics were the most frequently found in wastewater influent (WWI) and wastewater effluent (WWE) (208 and 1.7 μg/L, respectively), followed by analgesics/antipyretics (135 μg/L and < LOQ, respectively), psychostimulants (113 and 0.49 μg/L, respectively), non-steroidal anti-inflammatory drugs (33 and 2.6 μg/L, respectively), antibiotics (5.2 and 1.8 μg/L, respectively), antilipidemics (1.6 and 0.24 μg/L, respectively), anticonvulsants (1.5 and 0.63 μg/L, respectively) and beta blockers (1.3 and 0.51 μg/L, respectively). A snapshot of the ability of each treatment step to remove these target PhACs is provided, and it was found that global efficiency is strongly dependent on the efficiency of secondary treatment. Seasonal occurrence and removal efficiency was also monitored, and they did not show a significant seasonal trend.  相似文献   

18.
Chronic exposure to arsenic (As) in rice has raised many health and environmental problems. As reported, great variation exists among different rice genotypes in As uptake, translocation, and accumulation. Under hydroponic culture, we find that the Chinese wild rice (Oryza rufipogon; acc. 104624) takes up the most arsenic among tested genotypes. Of the cultivated rice, the indica cv. 93-11 has the lowest arsenic translocation factor value but accumulates the maximum concentration of arsenic followed by Nipponbare, Minghui 86, and Zhonghua 11. Higher level of arsenite concentration (50 μM) can induce extensive photosynthesis and root growth inhibition, and cause severe oxidative stress. Interestingly, external silicate (Si) supplementation has significantly increased the net photosynthetic rate, and promoted root elongation, as well as strongly ameliorated the oxidative stress by increasing the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and peroxidase in roots and/or leaves of 93-11 seedlings. Notably, 1.873 mM concentration of Si considerably decreases the total As uptake and As content in roots, but significantly increases the As translocation from roots to shoots. In contrast, Si supplementation with 1.0 mM concentration significantly increases the total As uptake and As concentrations in roots and shoots of 93-11 seedlings after 50 μM arsenite treatment for 6 days.  相似文献   

19.
The study aimed to monitor heavy metal (chromium, Cr; cadmium, Cd; nickel, Ni; copper, Cu; lead, Pb; iron, Fe; manganese, Mn; and zinc, Zn) footprints in biological matrices (urine, whole blood, saliva, and hair), as well as in indoor industrial dust samples, and their toxic effects on oxidative stress and health risks in exposed workers. Overall, blood, urine, and saliva samples exhibited significantly higher concentrations of toxic metals in exposed workers (Cr; blood 16.30 μg/L, urine 58.15 μg/L, saliva 5.28 μg/L) than the control samples (Cr; blood 5.48 μg/L, urine 4.47 μg/L, saliva 2.46 μg/L). Indoor industrial dust samples also reported to have elevated heavy metal concentrations, as an example, Cr quantified with concentration of 299 mg/kg of dust, i.e., more than twice the level of Cr in household dust (136 mg/kg). Superoxide dismutase (SOD) level presented significant positive correlation (p?≤?0.01) with Cr, Zn, and Cd (Cr?>?Zn?>?Cd) which is an indication of heavy metal’s associated raised oxidative stress in exposed workers. Elevated average daily intake (ADI) of heavy metals resulted in cumulative hazard quotient (HQ) range of 2.97–18.88 in workers of different surgical units; this is an alarming situation of health risk implications. Principal component analysis-multiple linear regression (PCA-MLR)-based pie charts represent that polishing and cutting sections exhibited highest metal inputs to the biological and environmental matrices than other sources. Heavy metal concentrations in biological matrices and dust samples showed a significant positive correlation between Cr in dust, urine, and saliva samples. Current study will help to generate comprehensive base line data of heavy metal status in biomatrices and dust from scientifically ignored industrial sector. Our findings can play vital role for health departments and industrial environmental management system (EMS) authorities in policy making and implementation.  相似文献   

20.
Mixture of metals and herbicides in rivers may pose relevant risks for the health of surrounding communities. Humans may be exposed to river pollution through intake of contaminated water and fish, as well as irrigated agricultural products. The aim of this study was to assess the human health risks of environmental exposure to metals and herbicides through water and fish intake in the Pardo River. Metals (Al, As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V, and Zn) were analyzed in river water and in edible fish. Herbicides (ametryn, atrazine, diuron, hexazinone, simazine, and tebuthiuron) were analyzed in river water. Seasonal variances were also studied. Aluminum, Cd, Cu, Mn, Pb, and Zn levels in river water were higher than the USEPA benchmarks. Non-carcinogenic risks due to pollutants mixture exposure were above the limit, and carcinogenic risks of As exposure were >10?6 in the sampling points during the rainy season. Metal levels in fish were lower than the Brazilian legislation and do not pose a threat to public health. Herbicides were detected in four sampling points, with atrazine concentrations (range 0.16–0.32 μg/L) below the Brazilian standard (2.0 μg/L), but above the European Union standard (0.1 μg/L). Considering the water supply needs of cities located in the Pardo River Basin and the persistence of metals and herbicides, the present study indicated that there was a seasonal influence on non-carcinogenic and carcinogenic risks to human health, especially in the rainy season. Studies for water treatment plants implantation should consider the risks of exposure to persistent substances, in order to protect the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号