首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four novel brominated flame retardants (NBFRs), i.e., decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), pentabromoethylbenzene (PBEB), and hexabromobenzene (HBB) were studied in 377 liquid samples and 288 solid samples collected from 20 wastewater treatment plants. Lagoon, primary, secondary, and advanced treatment processes were included, in order to investigate NBFR occurrence and the effects of WWTP operational conditions on NBFR removal. Median influent and effluent levels were 14 to 3,700 and 1.0 to 180 pg/L respectively, with DBDPE being the highest in both. Overall median removal efficiencies for DBDPE, BTBPE, HBB, and PBEB across all process types were 81 to 93, 76 to 98, 61 to 97, and 54 to 97 %, respectively with advanced treatment processes obtaining the best removals. NBFRs removal was related to retention time, surface loading rate, and biomass concentration. Median NBFR levels in treated biosolids were 80 to 32,000 pg/g, influenced by solids treatment processes.  相似文献   

2.
The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 μg/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment.  相似文献   

3.
Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.  相似文献   

4.
A method combining ultrasound-assisted emulsification–microextraction (USAEME) with gas chromatography–mass spectrometry (GC–MS) was developed for simultaneous determination of four acidic pharmaceuticals, ibuprofen, naproxen, ketoprofen, and diclofenac, as well as four phenols, 4-octylphenol, 4-n-nonylphenol, bisphenol A, and triclosan in municipal wastewaters. Conditions of extraction and simultaneous derivatization were optimized with respect to such aspects as type and volume of extraction solvent, volume of derivatization reagent, kind and amount of buffering salt, location of the test tube in the ultrasonic bath, and extraction time. The average correlation coefficient of the calibration curves was 0.9946. The LOD/(LOQ) values in influent and effluent wastewater were in the range of 0.002–0.121/(0.005–0.403) μg L?1 and 0.002–0.828/(0.006–2.758) μg L?1, respectively. Quantitative recoveries (≥94 %) and satisfactory precision (average RSD 8.2 %) were obtained. The optimized USAEME/GC–MS method was applied for determination of the considered pharmaceuticals and phenols in influents and treated effluents from nine Polish municipal wastewater treatment plants. The average concentration of acidic pharmaceuticals in influent and effluent wastewater were in the range of 0.06–551.96 μg L?1 and 0.01–22.61 μg L?1, respectively, while for phenols were in the range of 0.03–102.54 μg L?1 and 0.02–10.84 μg L?1, respectively. The removal efficiencies of the target compounds during purification process were between 84 and 99 %.  相似文献   

5.
The occurrence, behavior, and release of five acidic pharmaceuticals, including ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA), have been investigated along the different units in a tertiary-level domestic wastewater treatment plant (WWTP) in hyper-urbanization city of China (Shanghai). IBP was the most abundant chemicals among the measured in raw wastewater. The loads of the acidic pharmaceuticals in the WWTP influent ranged from 7.5 to 414 mg/day/1,000 inh, which were lower than those reported in the developed countries suggesting a less per capita consumption of pharmaceuticals in Shanghai. IBP obtained by highest removal (87 %); NPX and KEP were also significantly removed (69–76 %). However, DFC and CA were only moderately removed by 37–53 %, respectively. Biodegradation seemed to play a key role in the elimination of the studied pharmaceuticals except for DFC and CA. An annual release of acidic pharmaceuticals was estimated at 1,499 and 61.7 kg/year through wastewater and sludge, respectively, from Shanghai. Highest pharmaceuticals concentrations were detected in the effluent discharge point of the WWTP, indicating that WWTP effluent is the main source of the acidic pharmaceuticals to its receiving river. Preliminary results indicated that only DFC in river had a high risk to aquatic organisms. Nevertheless, the joint toxicity effects of these chemicals are needed to further investigate.  相似文献   

6.
Background, aim, and scope

Pharmaceutically active substances are a class of emerging contaminants, which has led to increasing concern about potential environmental risks. After excretion, substantial amounts of unchanged pharmaceuticals and their metabolites are discharged into domestic wastewaters. The absence of data on the environmental exposure in Eastern Europe is significant, since use patterns and volumes differ from country to country. In Romania, the majority of wastewater, from highly populated cities and industrial complex zones, is still discharged into surface waters without proper treatment or after inefficient treatment. In respect to this, it is important to determine the environmental occurrence and behavior of pharmaceuticals and personal care products (PPCPs) in wastewaters and surface waters. The objective of the present study was to investigate the occurrence of selected PPCPs during the transport in the Somes River by mass flow analysis before and after upgrading a municipal wastewater treatment plant (WWTP) in Cluj-Napoca, which serves 350,000 inhabitants and is the largest plant discharging into the Somes River. The concentrations of PPCPs at Cluj-Napoca can be correlated with the high population and a high number of hospitals located in the catchment area leading to higher mass flows. The results of this study are expected to provide information, with respect to the Romanian conditions, for environmental scientists, WWTP operators, and legal authorities. The data should support the improvement of existing WWTPs and implementation of new ones where necessary and, therefore, minimize the input of contaminants into ambient waters.

Materials and methods

The PPCPs were selected on the basis of consumption at the regional scale, reported aquatic toxicity, and the suitability of the gas chromatography/mass spectrometry (GC/MS) method for the determination of the compounds at trace levels. The studied PPCPs, caffeine (stimulant), carbamazepine (antiepileptic), pentoxifylline (anticoagulant), cyclophosphamide (cytostatic), ibuprofen (analgesic), and galaxolide (musk fragrance), were determined in samples of the Somes River. The analytes were enriched by solid-phase extraction and subsequently determined by GC/MS. Caffeine, pentoxifylline, and galaxolide were determined underivatized, whereas the acidic pharmaceuticals carbamazepine, cyclophosphamide, and ibuprofen were determined after derivatization with N-methyl-N-(trimethylsilyl)-trifluoroacetamide.

Results and discussion

The concentrations in the Somes River varied from below 10 ng/L up to 10 μg/L. A substantial decrease of the exposure in the Somes River could be observed due to the upgrade of the municipal WWTP in Cluj-Napoca. The loads in the river stretch between Cluj-Napoca and Dej (Somes Mic) varied strongly: caffeine (400–2,000 g/day), carbamazepine (78–213 g/day), galaxolide (140–684 g/day), ibuprofen (84–108 g/day). After the upgrade of the WWTP Cluj-Napoca, the concentrations in the Somes of caffeine, pentoxifylline, cyclophosphamide, galaxolide, and tonalide were significantly reduced (over 75%). One might be cautious comparing both studies because the relative efficiency of the WWTP’s removal of PPCP was not evaluated. However, the significantly lower concentrations of most compounds after the upgrade of the WWTP Cluj-Napoca allow one to infer that the technical measures at the source substantially reduced inputs of contaminants to the receiving river. Dej loads of the poorly biodegradable substance carbamazepine increased by a factor of 2–3 as a result of wastewater discharges into the river. The disproportionate increase in caffeine loads by a factor of 4 below Cluj-Napoca indicates inputs of untreated wastewater from the Somes Mare due to the discharge of untreated wastewater derived from Bistrita, Nasaud, and Beclean (115,000 inhabitants).

Conclusions

The relative contribution of treated and untreated wastewater in surface water might be assessed by measuring chemical markers. Recalcitrant pharmaceuticals like carbamazepine are suitable as chemical markers for estimating the relative contribution of wastewater in surface water. The easily degradable caffeine might be a good indicator for raw sewage and hardly treated wastewaters.

Recommendations and perspectives

Municipal WWTPs have the potential of a significant contribution in reducing the load of contaminants to ambient waters. The efficiency of the wastewater treatment in Cluj-Napoca improved considerably after the upgrade of the WWTP. Therefore, it is crucial that several WWTPs must be implemented or improved in the Somes Valley Watershed in order to reduce the discharge of contaminants in the Somes River from these point sources.

  相似文献   

7.

Purpose

This study aimed to investigate the removal mechanisms of pharmaceutical active compounds (PhACs) and musks in a wastewater treatment plant (WWTP). Biological removal and adsorption in the activated sludge tank as well as the effect of UV radiation used for disinfection purposes were considered when performing a mass balance on the WWTP throughout a 2-week sampling campaign.

Methods

Solid-phase extraction (SPE) was carried out to analyse the PhACs in the influent and effluent samples. Ultrasonic solvent extraction was used before SPE for PhACs analysis in sludge samples. PhAC extracts were analysed by LC-MS. Solid-phase microextraction of liquid and sludge samples was used for the analysis of musks, which were detected by GC-MS. The fluxes of the most abundant compounds (13 PhACs and 5 musks) out of 79 compounds studied were used to perform the mass balance on the WWTP.

Results

Results show that incomplete removal of diclofenac, the compound that was found in the highest abundance, was observed via biodegradation and adsorption, and that UV photolysis was the main removal mechanism for this compound. The effect of adsorption to the secondary sludge was often negligible for the PhACs, with the exceptions of diclofenac, etofenamate, hydroxyzine and indapamide. However, the musks showed a high level of adsorption to the sludge. UV radiation had an important role in reducing the concentration of some of the target compounds (e.g. diclofenac, ibuprofen, clorazepate, indapamide, enalapril and atenolol) not removed in the activated sludge tank.

Conclusions

The main removal mechanism of PhACs and musks studied in the WWTP was most often biological (45%), followed by adsorption (33%) and by UV radiation (22%). In the majority of the cases, the WWTP achieved >75% removal of the most detected PhACs and musks, with the exception of diclofenac.  相似文献   

8.
铁炭微电解深度处理焦化废水的研究   总被引:19,自引:11,他引:19  
采用曝气铁炭微电解工艺对焦化废水进行了深度处理.结果表明,在活性炭、铁屑和NaCl投加量分别为10 g/L、30 g/L和200 mg/L的条件下反应240 min,出水COD去除率在30%~40%;酸性条件可以进一步提高COD去除率;微电解可以去除原生化出水中的难降解有机物,出水物质的分子量主要集中于2000 Da以下,以脂类和烃类化合物为主;出水的可生化性有了大幅度提高,BOD5/COD由0.08增加到0.53.实验结果表明,铁炭微电解是深度处理焦化废水的一种有效工艺.  相似文献   

9.
Conkle JL  White JR  Metcalfe CD 《Chemosphere》2008,73(11):1741-1748
A number of pharmaceutically active compounds (PhACs) have been detected in the aquatic environment as a result of discharges of municipal wastewater. In the state of Louisiana, USA, many municipalities treat wastewater using natural systems, such as lagoons and wetlands, rather than conventional wastewater treatment technologies. Nearly all research to date has focused on the fate of PhACs in conventional treatment plants, not constructed and natural wetlands. In the wastewater treatment plant (WWTP) for Mandeville, Louisiana, USA, wastewater flows of 7600 m3 d−1 are treated in a series of aeration lagoons (basins), followed by a constructed wetland and UV disinfection, before being discharged into a natural forested wetland (i.e. Bayou Chinchuba) and eventually, Lake Pontchartrain. Thirteen out of the 15 PhACs investigated were detected in the wastewater inflow to the treatment plant. Only 9 of the 13 compounds were above the detection limits at the treatment plant effluent. The concentrations of most compounds were reduced by greater than 90% within the plant, while carbamazepine and sotalol were only reduced by 51% and 82%, respectively. The percent reductions observed in the Mandeville system were greater than reduction rates reported for conventional WWTPs; perhaps due to the longer treatment time (30 days). Most target PhACs were not completely removed before discharge into Lake Pontchartrain, although their collective annual loading was reduced to less than 1 kg and down to ppb with significant potential for dilution in the large lake.  相似文献   

10.

Ecological wastewater treatment plant (EWWTP), a kind of emerging wastewater treatment plant (WWTP) in recent years, combined microbiology with botany which is efficient for the removal of nitrogen and organic matter, as well as deodorization. The occurrence and removal of micro-organic pollutants in EWWTPs were still not well known. Polycyclic aromatic hydrocarbons (PAHs) and their typical derivatives (SPAHs) including the oxygenated PAHs (OPAHs), chlorinated PAHs (ClPAHs), and methyl PAHs (MPAHs) were investigated in an EWWTP in Guangdong Province, China. The concentrations of the Σ6 OPAHs (114–384 ng/L) were higher than the Σ16 PAHs (92–250 ng/L), and much higher than the Σ4 MPAHs (13–64 ng/L) and Σ9 ClPAHs (2–3 ng/L) in the EWWTP and the effluent receiving river. The total removal efficiencies of the PAHs, OPAHs, MPAHs, and ClPAHs in the EWWTP (43?±?14%, 41?±?7%, 55?±?16%, and 18?±?4%) were lower than the traditional WWTPs, probably due to the lower concentration of the sludge in the ecological treatment. The advanced treatment process (microfiltration and UV disinfection treatment) contributed much less (0–20%) to the whole removal efficiency than the ecological treatment (80–100%). The effluent from the EWWTP slightly reduced the PAHs and SPAHs concentrations in the receiving river. The high concentrations of the PAHs and SPAHs in the receiving river were similar to the influent of the EWWTP, indicating that some untreated wastewater was directly discharged to the river, especially in the upstream.

  相似文献   

11.
We investigated the adsorption and decomposition of sulfamethazine (SMT), which is used as a synthetic antibacterial agent and discharged into environmental water, using high-silica Y-type zeolite (HSZ-385), titanium dioxide (TiO2), and TiO2–zeolite composites. By using ultrapure water and secondary effluent as solvents, we prepared SMT solutions (10 μg/L and 10 mg/L) and used them for adsorption and photocatalytic decomposition experiments. When HSZ-385 was used as an adsorbent, rapid adsorption of SMT in the secondary effluent was confirmed, and the adsorption reached equilibrium within 10 min. The photocatalytic decomposition rate using TiO2 in the secondary effluent was lower than that in ultrapure water, and we clarified the inhibitory effect of ions and organic matter contained in the secondary effluent on the reaction. We synthesized TiO2–zeolite composites and applied them to the removal of SMT. During the treatment of 10 μg/L SMT in the secondary effluent using the composites, 76 % and more than 99 % of the SMT were decomposed within 2 and 4 h by photocatalysis. The SMT was selectively adsorbed onto high-silica Y-type zeolite in the composites. Resultantly, the inhibitory effect of the coexisting materials was reduced, and the composites could remove SMT more effectively compared with TiO2 alone in the secondary effluent.  相似文献   

12.
Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography–mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5?±?8.9 to 216?±?20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8?±?2.7 to 31.9?±?6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.  相似文献   

13.
In this study, surface water samples from the Wenyu River and the North Canal, effluent from major wastewater treatment plants (WWTPs) in Beijing, and wastewater from open sewers that discharge directly into the river system were collected and analyzed for 16 priority USEPA polycyclic aromatic hydrocarbons (PAHs). Concentrations of these 16 PAHs ranged from 193 to 1790 ng/L in river surface waters, 245 to 404 ng/L in WWTP effluents, and 431 to 2860 ng/L in the wastewater from the small sewers. The WWTP effluent was the main contributor of dissolved PAHs to the river, while wastewater from the small sewers contributed both dissolved and suspended particulate matter-associated PAH to the river as indicated by the high dissolved organic carbon and suspended particulate matter contents in the wastewater. Although the flow from each open sewer was small, a PAH discharge as high as 44 kg/year could occur into the river from these types of sewers. This amount was equivalent to about 22 % of the PAH loads discharged into the North Canal downstream from Beijing, whereas the remainder was mainly released by the major WWTPs in Beijing.  相似文献   

14.
《Chemosphere》2009,74(11):1741-1748
A number of pharmaceutically active compounds (PhACs) have been detected in the aquatic environment as a result of discharges of municipal wastewater. In the state of Louisiana, USA, many municipalities treat wastewater using natural systems, such as lagoons and wetlands, rather than conventional wastewater treatment technologies. Nearly all research to date has focused on the fate of PhACs in conventional treatment plants, not constructed and natural wetlands. In the wastewater treatment plant (WWTP) for Mandeville, Louisiana, USA, wastewater flows of 7600 m3 d−1 are treated in a series of aeration lagoons (basins), followed by a constructed wetland and UV disinfection, before being discharged into a natural forested wetland (i.e. Bayou Chinchuba) and eventually, Lake Pontchartrain. Thirteen out of the 15 PhACs investigated were detected in the wastewater inflow to the treatment plant. Only 9 of the 13 compounds were above the detection limits at the treatment plant effluent. The concentrations of most compounds were reduced by greater than 90% within the plant, while carbamazepine and sotalol were only reduced by 51% and 82%, respectively. The percent reductions observed in the Mandeville system were greater than reduction rates reported for conventional WWTPs; perhaps due to the longer treatment time (∼30 days). Most target PhACs were not completely removed before discharge into Lake Pontchartrain, although their collective annual loading was reduced to less than 1 kg and down to ppb with significant potential for dilution in the large lake.  相似文献   

15.
组合人工湿地处理工业园区污水厂尾水的中试研究   总被引:3,自引:0,他引:3  
杨林  李咏梅 《环境工程学报》2012,6(6):1846-1850
在巢湖流域水环境治理中,依托工业园区污水厂,进行了组合人工湿地处理工业园区污水厂尾水的中试研究。介绍了工艺流程和设计参数,运行结果表明,整个处理系统运行稳定,对COD、NH4+-N和TP的平均去除率分别为65.5%、75.5%和49.2%,其中一级潜流湿地对各污染物的去除贡献率最高。系统出水COD、氨氮、总磷基本达到了《地表水环境质量标准》(GB3838-2002)中的Ⅴ类水标准。此外还利用GC/MS初步对系统进出水进行了有机物组分分析,结果表明尾水中含有除草剂及农药中间体等难降解有机物,组合人工湿地对这些物质有一定去除效果。  相似文献   

16.
The occurrence and removal of six pharmaceuticals and personal care products (PPCPs) including caffeine (CF), N, N-diethyl-meta-toluamide (DEET), carbamazepine, metoprolol, trimethoprim (TMP), and sulpiride in a municipal wastewater treatment plant (WWTP) in Shanghai, China were studied in January 2013; besides, grab samples of the influent were also taken every 6 h, to investigate the daily fluctuation of the wastewater influent. The results showed the concentrations of the investigated PPCPs ranged from 17 to 11,400 ng/L in the WWTP. A low variability of the PPCP concentrations in the wastewater influent throughout the day was observed, with the relative standard deviations less than 25 % for most samples. However, for TMP and CF, the slight daily fluctuation still reflected their consumption patterns. All the target compounds except CF and DEET, exhibited poor removal efficiencies (<40 %) by biological treatment process, probably due to the low temperature in the bioreactor, which was unfavorable for activated sludge. While for the two biodegradable PPCPs, CF, and DEET, the anaerobic and oxic tank made contributions to their removal while the anoxic tank had a negative effect to their elimination. The tertiary UV treatment removed the investigated PPCPs by 5–38 %, representing a crucial polishing step to compensate for the poor removal by the biologic treatment process in winter.  相似文献   

17.

Background, aim, and scope

Pharmaceutically active substances are a class of emerging contaminants, which has led to increasing concern about potential environmental risks. After excretion, substantial amounts of unchanged pharmaceuticals and their metabolites are discharged into domestic wastewaters. The absence of data on the environmental exposure in Eastern Europe is significant, since use patterns and volumes differ from country to country. In Romania, the majority of wastewater, from highly populated cities and industrial complex zones, is still discharged into surface waters without proper treatment or after inefficient treatment. In respect to this, it is important to determine the environmental occurrence and behavior of pharmaceuticals and personal care products (PPCPs) in wastewaters and surface waters. The objective of the present study was to investigate the occurrence of selected PPCPs during the transport in the Somes River by mass flow analysis before and after upgrading a municipal wastewater treatment plant (WWTP) in Cluj-Napoca, which serves 350,000 inhabitants and is the largest plant discharging into the Somes River. The concentrations of PPCPs at Cluj-Napoca can be correlated with the high population and a high number of hospitals located in the catchment area leading to higher mass flows. The results of this study are expected to provide information, with respect to the Romanian conditions, for environmental scientists, WWTP operators, and legal authorities. The data should support the improvement of existing WWTPs and implementation of new ones where necessary and, therefore, minimize the input of contaminants into ambient waters.

Materials and methods

The PPCPs were selected on the basis of consumption at the regional scale, reported aquatic toxicity, and the suitability of the gas chromatography/mass spectrometry (GC/MS) method for the determination of the compounds at trace levels. The studied PPCPs, caffeine (stimulant), carbamazepine (antiepileptic), pentoxifylline (anticoagulant), cyclophosphamide (cytostatic), ibuprofen (analgesic), and galaxolide (musk fragrance), were determined in samples of the Somes River. The analytes were enriched by solid-phase extraction and subsequently determined by GC/MS. Caffeine, pentoxifylline, and galaxolide were determined underivatized, whereas the acidic pharmaceuticals carbamazepine, cyclophosphamide, and ibuprofen were determined after derivatization with N-methyl-N-(trimethylsilyl)-trifluoroacetamide.

Results and discussion

The concentrations in the Somes River varied from below 10 ng/L up to 10 μg/L. A substantial decrease of the exposure in the Somes River could be observed due to the upgrade of the municipal WWTP in Cluj-Napoca. The loads in the river stretch between Cluj-Napoca and Dej (Somes Mic) varied strongly: caffeine (400–2,000 g/day), carbamazepine (78–213 g/day), galaxolide (140–684 g/day), ibuprofen (84–108 g/day). After the upgrade of the WWTP Cluj-Napoca, the concentrations in the Somes of caffeine, pentoxifylline, cyclophosphamide, galaxolide, and tonalide were significantly reduced (over 75%). One might be cautious comparing both studies because the relative efficiency of the WWTP’s removal of PPCP was not evaluated. However, the significantly lower concentrations of most compounds after the upgrade of the WWTP Cluj-Napoca allow one to infer that the technical measures at the source substantially reduced inputs of contaminants to the receiving river. Dej loads of the poorly biodegradable substance carbamazepine increased by a factor of 2–3 as a result of wastewater discharges into the river. The disproportionate increase in caffeine loads by a factor of 4 below Cluj-Napoca indicates inputs of untreated wastewater from the Somes Mare due to the discharge of untreated wastewater derived from Bistrita, Nasaud, and Beclean (115,000 inhabitants).

Conclusions

The relative contribution of treated and untreated wastewater in surface water might be assessed by measuring chemical markers. Recalcitrant pharmaceuticals like carbamazepine are suitable as chemical markers for estimating the relative contribution of wastewater in surface water. The easily degradable caffeine might be a good indicator for raw sewage and hardly treated wastewaters.

Recommendations and perspectives

Municipal WWTPs have the potential of a significant contribution in reducing the load of contaminants to ambient waters. The efficiency of the wastewater treatment in Cluj-Napoca improved considerably after the upgrade of the WWTP. Therefore, it is crucial that several WWTPs must be implemented or improved in the Somes Valley Watershed in order to reduce the discharge of contaminants in the Somes River from these point sources.
  相似文献   

18.
建立了一种基于超高效液相色谱/串联质谱的方法,实现了对北京3个污水处理厂污水中12种全氟化合物(PFCs)的快速、灵敏地定量分析.结果表明,城市污水处理厂进水和出水中短链的全氟丁酸(PFBA)、全氟戊酸(PFPA)和全氟丁磺酸(PFBS)是主要污染物,其中出水中PFBs的质量浓度高达253 ng/L.污水生物处理后,出...  相似文献   

19.
Zeng X  Sheng G  Gui H  Chen D  Shao W  Fu J 《Chemosphere》2007,69(8):1305-1311
The occurrence and distributions of six polycyclic musks were studied in influent, primary and effluent waters from a municipal wastewater treatment plant (WWTP) in Guangdong. Five polycyclic musk compounds, 1,2,3,5,6,7-hexahydro-1,1,2,3,3-pentamethyl-4H-inden-4-one (DPMI), 4-acetyl-1,1-dimethyl-6-tert-butylindan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) were found in wastewater in the WWTP. DPMI, HHCB and AHTN were measured at 0.38-0.69, 11.5-146, 0.89-3.47 microg/l, respectively, in influents. Meanwhile 0.06-0.10 microg/l DPMI, 0.95-2.05 microg/l HHCB, 0.10-0.14 microg/l AHTN were detected in effluents, ADBI and AHMI were also detected in some primary waters and effluents. The results suggested that wastewater from cosmetic plants cause high loadings of polycyclic musks to this WWTP. Under the currently applied treatment technology, the removal efficiencies achieved were 61-75% for DPMI, 86-97% for HHCB and 87-96% for AHTN by transfer to sludge as the main removal route.  相似文献   

20.
Three municipal wastewater treatment plants (WWTPs) in southeastern Pennsylvania were sampled to determine the presence and concentrations of 12 natural and synthetic estrogen hormones in the wastewater influent and effluent. The target estrogens were 17alpha-estradiol, estrone, estriol, equilin, 17alpha-dihydroequilin, 17beta-estradiol, 17alpha-ethinyl estradiol, gestodene, norgestrel, levonorgestrel, medrogestone, and trimegestone. One WWTP uses a biofilm reactor (packed-bed trickling filter),and the other two use suspended-growth media (continuously stirred activated sludge reactor and sequential batch reactor). Estrone was detected in all the three plants; estriol and estradiol were detected at two WWTPs; and 17 alpha-dihydroequilin and 17 alpha-ethinyl estradiol were detected at one WWTP. The concentration of estrogens in the influent and effluent of the three treatment plants ranged from 1.2 to 259 ng/L and 0.5 to 49 ng/L, respectively. The percentage removal of estrogens from the aqueous phase ranged from 41 to 99%, except in the case of 17alpha-dihydroequilin; the removal of 17alpha-dihydroequilin was negligible. The suspended-growth media systems showed higher removal efficiencies for estrogens than the biofilm system. The analytical method uses a Varian C-18 solid-phase extraction (Varian Inc., Palo Alto, California), followed by a derivatization with bis(trimethylsilyl)trifluoroacetamide. The detection limits for the estrogen compounds ranged from 0.1 to 10 ng/L using a sample size of 1 L. The method recoveries ranged from 71 to 120%, and the relative standard deviation ranged from 6 to 14% for all the hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号