首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Trace elements (n = 23) in Irish headwater lakes (n = 126) were investigated to determine their ambient concentrations, fractionation (total, dissolved, and non-labile), and geochemical controls. Lakes were generally located in remote upland, acid-sensitive regions along the coastal margins of the country. Total trace metal concentrations were low, within the range of natural pristine surface waters; however, some lakes (~20 %) had inorganic labile aluminum and manganese at levels potentially harmful to aquatic organisms. Redundancy analysis indicated that geochemical weathering was the dominant controlling factor for total metals, compared with acidity for dissolved metals. In addition, many metals were positively correlated with dissolved organic carbon indicating their affinity (or complexation) with humic substances (e.g., aluminum, iron, mercury, lead). However, a number of trace metals (e.g., aluminum, mercury, zinc) were correlated with anthropogenic acidic deposition (i.e., non-marine sulfate), suggesting atmospheric sources or elevated leaching owing to acidic deposition. As transboundary air pollution continues to decline, significant changes in the cycling of trace metals is anticipated.  相似文献   

2.
The South Pennines, an area of acid-sensitive geology at the centre of a major industrial region, have undergone perhaps the most severe historic exposure to sulphur and nitrogen deposition in the UK. This study addresses a lack of existing research on the region by presenting the findings of a survey of 62 surface waters sampled during a 1-week period in April 1998. Results indicate that acidification in the region is acute; 27 of the sampled surface waters had a negative acid neutralising capacity (ANC) and 28 had a pH below 5.0. Minimum recorded pH values were below 4.0. Non-marine sulphate levels were extremely high (median 222 microeq/1), and widespread high nitrate concentrations (median 41 microeq/1) suggest that soils in the region as a whole may be at an advanced stage of nitrogen saturation. A consistent relationship was identified between site acidity and the balance between the major weathering-derived cations, calcium and magnesium, and sulphate. This could in turn be linked to catchment soil type and land use, with the most acidic conditions occurring in peat-dominated catchments, where weathering is minimal and the influence of atmospheric deposition most pronounced. Percentage of peat in each catchment was the single best predictor of surface water acidity. Nitrate concentrations, although not a dominant control on acidity, varied significantly according to land use. Elevated concentrations were observed in catchments containing forestry, due to enhanced deposition inputs, and in catchments containing improved land, linked to fertiliser use. Ammonium concentrations, although low at most catchments, were a significant component of the inorganic nitrogen total in a number of surface waters draining waterlogged peat catchments.  相似文献   

3.
Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.  相似文献   

4.
Keller W  Heneberry JH  Dixit SS 《Ambio》2003,32(3):183-189
Lakes in Killarney Park near Sudbury, Ontario, Canada, have shown dramatic water quality changes including general increases in pH and alkalinity, and decreases in SO4(2-), base cations and metals. While some lakes have recovered to pH > 6.0, many are still highly acidic despite decades of improvement. Very high historical S deposition related to emissions from the Sudbury metal smelters dominated the acidification process in this region. However, since the implementation of substantial S emission controls (90%) at the smelters, the Sudbury emissions are no longer the major source of S deposition in the Sudbury area. Wet deposition of SO4(2-) and SO4(2-) concentrations in lakewaters at Killarney now approach values in the Dorset, Ontario, area, about 200 km from Sudbury. This suggests that the S deposition to the Killarney area is now primarily from long-range transport, not from local sources. Studies of Killarney lakes are revealing the complex nature of the chemical recovery process. As lake acidity decreases, other changes including decreased Ca2+ concentrations, increased transparency, and altered thermal regimes may potentially affect some of these ecosystems. It is clear that continuing assessments of the recovery of Killarney lakes, within a multiple-stressor framework, are needed.  相似文献   

5.
The main aim of the international UNECE monitoring program ICP Waters under the Convention of Long-range Transboundary Air Pollution (CLRTAP) is to assess, on a regional basis, the degree and geographical extent of the impact of atmospheric pollution, in particular acidification, on surface waters. Regional trends are calculated for 12 geographical regions in Europe and North America, comprising 189 surface waters sites. From 1990-2001 sulphate concentrations decreased in all but one of the investigated regions. Nitrate increased in only one region, and decreased in three North American regions. Improvements in alkalinity and pH are widely observed. Results from the ICP Waters programme clearly show widespread improvement in surface water acid-base chemistry, in response to emissions controls programs and decreasing acidic deposition. Limited site-specific biological data suggest that continued improvement in the chemical status of acid-sensitive lakes and streams will lead to biological recovery in the future.  相似文献   

6.
Episodic acidification is practically a ubiquitous process in streams and drainage lakes in Canada, Europe and the United States. Depressions of pH are often smaller in systems with low pre-episode pH levels. Studies on European surface waters have reported episodes most frequently with minimum pH levels below 4.5. In Canada and the United States, studies have also reported a number of systems that have had minimum pH levels below 4.5. In all areas, change in water flowpath during hydrological events is a major determinant of episode characteristics. Episodic acidification is also controlled by a combination of other natural and anthropogenic factors. Base cation decreases are an important contributor to episodes in circumneutral streams and lakes. Sulphate pulses are generally important contributors to episodic acidification in Europe and Canada. Nitrate pulses are generally more important to episodic acidification in the Northeast United States. Increases in organic acids contribute to episodes in some streams in all areas. The sea-salt effect is important in near-coastal streams and lakes. In Canada, Europe and the United States, acidic deposition has increased the severity (minimum pH reached) of episodes in some streams and lakes.  相似文献   

7.
Because of the considerable uncertainties associated with modeling complex ecosystem processes, it is essential that every effort be made to test model performance prior to relying on model projections for assessment of future surface water chemical response to environmental perturbation. Unfortunately, long-term chemical data with which to validate model performance are seldom available. The authors present here an evaluation of historical acidification of lake waters in the northeastern United States, and compare historical changes in a set of lakes to hindcasts from the same watershed model (MAGIC) used to estimate future changes in response to acidic deposition. The historical analyses and comparisons with MAGIC model hindcasts and forecasts of acid-base response demonstrate that the acidic and low-ANC lakes in this region are responsive to strong acid inputs. However, the model estimates suggest lakewater chemistry is more responsive to atmospheric inputs of sulfur than do the estimates based on paleolimnological historical analyses. A 'weight-of-evidence approach' that incorporates all available sources of information regarding acid-base response provides a more reasonable estimate of future change than an approach based on model projections alone. The results of these analyses have important implications for predicting future surface water chemical change in response to acidic deposition, establishing critical loads of atmospheric pollutants, and other environmental assessment activities where natural variation often exceeds the trends under investigation (high noise-to-signal ratio). Under these conditions, it is particularly important to evaluate future model projections in light of historical trends data.  相似文献   

8.
We report biological changes at several UK Acid Waters Monitoring Network lakes and streams that are spatially consistent with the recovery of water chemistry induced by reductions in acid deposition. These include trends toward more acid-sensitive epilithic diatom and macroinvertebrate assemblages, an increasing proportional abundance of macroinvertebrate predators, an increasing occurrence of acid-sensitive aquatic macrophyte species, and the recent appearance of juvenile (<1 year old) brown trout in some of the more acidic flowing waters. Changes are often shown to be directly linked to annual variations in acidity. Although indicative of biological improvement in response to improving water chemistry, "recovery" in most cases is modest and very gradual. While specific ecological recovery endpoints are uncertain, it is likely that physical and biotic interactions are influencing the rate of recovery of certain groups of organisms at particular sites.  相似文献   

9.
Long-term (1987–2012) water quality monitoring in 36 acid-sensitive Swedish lakes shows slow recovery from historic acidification. Overall, strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many acid-sensitive lakes. Base cation concentrations have declined less rapidly than strong acid anion concentrations, leading to an increase in charge balance acid neutralizing capacity. In many lakes, modeled organic acidity is now approximately equal to inorganic acidity. The observed trends in water chemistry suggest lakes may not return to reference conditions. Despite declines in acid deposition, many of these lakes are still acidified. Base cation concentrations continue to decline and alkalinity shows only small increases. A changing climate may further delay recovery by increasing dissolved organic carbon concentrations and sea-salt episodes. More intensive forest harvesting may also hamper recovery by reducing the supply of soil base cations.  相似文献   

10.
Field studies of chemical changes in surface waters associated with rainfall and snowmelt events have provided evidence of episodic acidification of lakes and streams in Europe and North America. Modelling these chemical changes is particularly challenging because of the variability associated with hydrological transport and chemical transformation processes in catchments. This paper provides a review of mathematical models that have been applied to the problem of episodic acidification. Several empirical approaches, including regression models, mixing models and time series models, support a strong hydrological interpretation of episodic acidification. Regional application of several models has suggested that acidic episodes (in which the acid neutralizing capacity becomes negative) are relatively common in surface waters in several regions of the US that receive acid deposition. Results from physically based models have suggested a lack of understanding of hydrological flowpaths, hydraulic residence times and biogeochemical reactions, particularly those involving aluminum. The ability to better predict episodic chemical responses of surface waters is thus dependent upon elucidation of these and other physical and chemical processes.  相似文献   

11.
Analysis of water chemistry data from 15 years of monitoring at 22 acid-sensitive lakes and streams in the UK reveals coherent national chemical trends indicative of recovery from acidification. Excess sulphate and base cations exhibit significant decline, often accompanied by an increase in an alkalinity-based determination of acid neutralising capacity (AB-ANC) and, at fewer sites, a decline in hydrogen and labile aluminium. Acid neutralising capacity determined by "charge-balance" (CB-ANC) exhibits few trends, possibly due to compound errors associated with its determination. Trend slopes in excess sulphate correlate with those for base cations, hydrogen ion and AB-ANC, with between-site variability linked to catchment hydrology, sea-salt inputs and forestry. Nitrate concentrations have not changed significantly but show high sensitivity to varying climate. Trends in AB-ANC are influenced by significant increases in dissolved organic carbon, the cause of which it is vital to establish before trends in the former can definitively be attributed to decreasing acidic deposition.  相似文献   

12.
Mortality and physiological responses in brown trout (Salmo trutta) were studied during spring snow melt in six streams in northern Sweden that differed in concentrations of dissolved organic carbon (DOC) and pH declines. Data from these streams were used to create an empirical model for predicting fish responses (mortality and physiological disturbances) in DOC-rich streams using readily accessible water chemistry parameters. The results suggest that fish in these systems can tolerate higher acidity and inorganic aluminium levels than fish in low DOC streams. But even with the relatively low contemporary deposition load, anthropogenic deposition can cause fish mortality in the most acid-sensitive surface waters in northern Sweden during spring flood. However, the results suggests that it is only in streams with high levels of organically complexed aluminium in combination with a natural pH decline to below 5.0 during the spring where current sulphur deposition can cause irreversible damage to brown trout in the region. This study support earlier studies suggesting that DOC has an ameliorating effect on physiological disturbances in humic waters but the study also shows that surviving fish recover physiologically when the water quality returns to less toxic conditions following a toxic high flow period. The physiological response under natural, pre-industrial conditions was also estimated.  相似文献   

13.
Using a recognized and widely used hydrochemical model, MAGIC, long-term changes in acidity were simulated at 104 sites in the acid sensitive region of upland Wales. Conditions were modelled in the future (2010) under different reductions in sulphate deposition from 0 to 90% of 1984 values. Chemical output from the model was used to simulate change in the chemical suitability of streams for a species of river bird, the Dipper Cinclus cinclus, known to be affected by acidification According to simulations, only reductions in sulphate deposition by over 50% of 1984 levels prevented decline in the number of streams chemically suitable for Dippers. Greater reductions in deposition in the model permitted some recovery except where conifer forestry occupied acid sensitive catchments. There are several uncertainties with the models in their present form.  相似文献   

14.
Across most of the World's coastal zone there has been a geographic transition from naturally vegetated to human-altered land covers, both agricultural and urban. This transition has increased the nitrogen loads to coastal watersheds, and from watersheds to receiving estuaries. We modeled the nitrogen entering the watershed of Waquoit Bay, Massachusetts, and found that as the transition took place, nitrogen loads to watersheds increased from 1938 to 1990. The relative magnitude of the contribution by wastewater, fertilizers, and atmospheric deposition depends on the land cover mosaics of a watershed. Atmospheric deposition was the major input to the watershed surface during this period, but because of different rates of loss within the watershed. wastewater became the major source of nitrogen flowing from the watershed to the receiving estuaries. Atmospheric deposition prevails in watersheds dominated by natural vegetation such as forests, but wastewater may become a dominant source in watersheds where urbanization increases. Increased nitrogen loads resulting from conversion of natural to human-altered watershed surfaces create eutrophication of receiving waters, with attendant changes in water quality, and marked shifts in the flora and food webs of the affected estuaries. Management efforts for restoration of eutrophied estuaries require maintenance of forested land, and control of wastewater and fertilizer inputs, the major terms in most affected places subject to local management. Wastewater and fertilizer nitrogen derive from within the watershed, which means local measures may effectively be used to control eutrophication of receiving waters.  相似文献   

15.
Acidic rain has been identified as potentially harmful to the aquatic and terrestrial components of the ecosystem. Sulphate measured in rain and snow has been used as a surrogate indicator of acidic deposition. If sulphur dioxide controls are the means to limit acidic deposition, then the association between sulphate and hydrogen ion concentrations in precipitation is an important factor in establishing such limits. Selected data on rain and snowfall chemistry from the National Atmospheric Deposition Program (NADP), the Electric Power Research Institute's SURE, the utility industries' UAPSP, and the Department of Energy's MAP3S were reviewed. Numerical analyses were performed to assess the relationship between hydrogen and sulphate ion concentrations. The strength of the association between hydrogen and sulphate ions varied from site to site. In the Midwestern and Eastern regions, the Pearson correlation coefficient was over 0.50 while in the Central and Upper Midwestern parts of the United States, the correlation coefficients were less than 0.25. Regardless of the strength of the association between hydrogen and sulphate ions, all but one of the NADP/NTN sites used in our analysis exhibited at least 30% of the anions (sulphate, nitrate, and chloride) associated with cations other than hydrogen. For sites where the strength of the association was weak, between 65% and 98% of the anions appeared to be associated with cations other than hydrogen. Because a large percentage of the anions (i.e. sulphate, nitrate, and chloride) appear to be associated with cations other than hydrogen even at those sites where the association between hydrogen and sulphate ions was strong, the complex chemistry controlling the acidity in precipitation may make it difficult to predict the impact of a reduction in sulphate concentration.  相似文献   

16.
Increasing emphasis is being placed on the restoration of surface waters which have been affected by acidification. Amongst the possible strategies are management of the causes, by reducing acidic deposition, and management of the symptoms, by treating affected areas with basic material such as limestone. In few cases have there been comparisons of the likely effect of these two strategies on surface water chemistry and ecology, although there is widespread belief that the two are similar in outcome. At present, only a modelling approach permits such a comparison. This paper describes chemical and biological responses of three Welsh streams whose catchments were limed experimentally in 1987-1988 as part of the Llyn Brianne project. Actual changes are compared with simulated changes which occur following reduced acid deposition according to the hydrochemical model, MAGIC (Model of Acidification of Groundwaters in Catchments). The results indicate that liming and 90% reduction in sulphate deposition reduce concentrations of toxic aluminium to similar levels. However, calcium concentrations and pH were increased by liming to values which were high by comparison with conditions simulated at low acid deposition, either in the past or future. Trout density increased in two of the streams following liming to levels similar to those simulated under low acid deposition. By contrast, the aquatic invertebrate fauna changed after liming so that streams acquired species typical of higher calcium concentrations than those simulated under low acid deposition. Species characteristic of 'soft water' communities were apparently lost, although more data are required to separate treatment effects from random change in the longer term. The 'soft water' community also declined in the model as a result of acidification, indicating that both liming and acid deposition resulted in a different faunal community from that prior to acidification. The results support those who conclude that liming is suitable for the restoration or protection of a fishery, but indicate that there may be other ramifications, for example to conservation, which must be considered when liming is implemented. However, the simulation of biological conditions under low acid deposition involves extrapolation from the initial data base. Further data are now required to assess empirically the likely biological character of British streams which have low base cation concentrations unaffected by acid deposition.  相似文献   

17.
Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r2 > or = 0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) < 1 mg l(-1). were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l(-1)) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples. microg l(-1)): Al 36-530. Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of Zn, Cd and Pb. These enrichments, together with high metal deposition in the past, make it likely that concentrations of the metals in the surface waters are governed by release from catchment pools of atmospherically-deposited metal. The catchments appear to be responding on a time scale of decades, possibly centuries, to changes in metal deposition. For the more acid waters at UDV, the calculated free-ion concentrations of Al are similar to published LC50 values for acute toxicity towards fish. The free-ion concentrations of Ni, Cu, Zn and Cd in all the surface waters are one-to-four orders of magnitude lower than reported LC50 values for fish.  相似文献   

18.
The United Kingdom Acid Waters Monitoring Network (AWMN) was established in 1988 to determine the ecological impact of acidic emissions control policy on acid-sensitive lakes and streams. AWMN data have been used to explore a range of causal linkages necessary to connect changes in emissions to chemical and, ultimately, biological recovery. Regional scale reductions in sulphur (S) deposition have been found to have had an immediate influence on surface water chemistry, including increases in acid neutralising capacity, pH and alkalinity and declines in aluminium toxicity. These in turn can be linked to changes in the aquatic biota which are consistent with "recovery" responses. A continuation of the current programme is essential in order to better understand apparent non-linearity between nitrogen (N) in deposition and runoff, the substantial rise in organic acid concentrations, and the likely impacts of forecast climate change and other potential constraints on further biological improvement.  相似文献   

19.
Acidification of soils and surface waters caused by acid deposition is still a major problem in southern Scandinavia, despite clear signs of recovery. Besides emission control, liming of lakes, streams, and wetlands is currently used to ameliorate acidification in Sweden. An alternative strategy is forest soil liming to restore the acidified upland soils from which much acidified runoff originates. This cost–benefit analysis compared these liming strategies with a special emphasis on the time perspective for expected benefits. Benefits transfer was used to estimate use values for sport ffishing and nonuse values in terms of existence values. The results show that large-scale forest soil liming is not socioeconomically profitable, while lake liming is, if it is done efficiently—in other words, if only acidified surface waters are treated. The beguiling logic of “solving” an environmental problem at its source (soils), rather than continuing to treat the symptoms (surface waters), is thus misleading.  相似文献   

20.
Holt C  Yan ND 《Ambio》2003,32(3):203-207
Despite reductions in atmospheric SO4(2-) deposition and resultant decreases in surface water acidity, widespread biological recovery from acidification has not yet been documented. Temporal trends in crustacean zooplankton species richness (number of species) and composition were examined between 1971-2000 in 46 Killarney Park lakes, Ontario, Canada, to assess the degree of biological recovery in lakes with significant water quality improvements, i.e. pH now > 6, compared to 2 other groups: i) lakes which never acidified; and ii) lakes which are still acidified (pH < 6). Time trends in species richness could not be distinguished among the 3 groups of lakes, nor did changes in species richness indicate recovery. In contrast, the zooplankton community composition of lakes in which the pH increased to above 6, as measured by a multivariate index of species abundances, changed from a "damaged" state to one typical of neutral lakes. Some recovery in composition was also documented for the acidic lakes. While still acidic, the pH levels of these lakes have risen. The extent and pace of recovery in Killarney Provincial Park bodes well for the future of other acidified regions in North America and Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号