首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
Fogwater chemistry in Corvallis, Oregon, a wood-burning community (pop. approximately 43,000) was compared with the chemistry of fogwater collected in more remote and in more highly industrialized areas. The fogwater was not acidic (median pH = 5.7) and was usually dominated by SO4=, NO3-, and NH4+ whose concentrations were generally lower than in fogwater in other urban areas but higher than in remote areas. Concentrations of formic and acetic acids (medians = 61 and 52 microN, respectively) were comparable to those in fogwater in Los Angeles, California and were typically much higher than concentrations in fogwater from more remote areas. Formate and acetate concentrations were often comparable to those of SO4= and NO3-. Formaldehyde concentrations (range = 0.4-3.0 mg L-1) were comparable to those in fogwater in some urban areas of southern California, yet lower than concentrations in highly industrialized areas of southern California. Because concentrations of organic compounds in Corvallis fogwater were often comparable to those in larger urban areas, sources in addition to motor vehicles must be important in Corvallis. Additional sources may be natural and anthropogenic, the latter including residential wood burning and wood products industries.  相似文献   

2.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

3.
The chemical composition as well as the water uptake characteristics of aerosols was determined in size-segregated samples collected during November 2002 on the Slovenian coast. Major ions, water-soluble organic compounds (WSOC), short-chain carboxylic acids and trace elements were determined in the water-soluble fraction of the aerosol. Total aerosol black carbon (BC) was measured from filter samples. Our results showed that the origin of air masses is an important factor that controls the variation in the size distribution of the main components. Very high concentrations of WSOC as well as higher concentrations of BC were found under mostly continental influence. Besides the main ionic species (SO4(2-), NH4(+), K+) in the finest size fraction (0.17-0.53 microm), the concentration of NO3(-) was also high. The difference between the two different air mass origins is particularly expressed for Cl-, Na+, Mg2+ and Ca2+ determined in particles larger than 1.6 microm. As expected, a very good correlation was found between Na+ and Cl-. A good correlation was found between sea salt elements and elements of crustal origin (Na+, Cl-, Mg2+, Ca2+, Sr). A good relationship between typical anthropogenic tracers (K, V and Pb) was also observed. The mass growth factors, for all size fractions of aerosols collected under continental influence were very low (maximum 2.23 at 94%, 1.6-5.1 microm), while under marine influence the mass growth factors increased significantly with the particle size. At 97% humidity, the mass growth factors were 6.95 for the size fraction 0.53-1.6 microm and 9.78 for larger particles (1.6-5.1 microm).  相似文献   

4.
Seasonal trend of fog water chemical composition in the Po Valley   总被引:1,自引:0,他引:1  
Fog frequency in the Po Valley, Northern Italy, can be as high as 30% of the time in the fall-winter season. High pollutant concentrations have been measured in fog water samples collected in this area over the past few years. The combined effects of high fog occurrence and high pollutant loading of the fog droplets can determine, in this area, appreciable chemical deposition rates. An automated station for fog water collection was developed, and deployed at the field station of S. Pietro Capofiume, in the eastern part of the Po Valley for an extended period: from the beginning of November 1989 to the end of April 1990. Time-resolved sampling of fog droplets was carried out during all fog events occurring in this period, and chemical analyses were performed on the collected samples. Statistical information on fog occurrence and fog water chemical composition is reported in this paper, and a tentative seasonal deposition budget is calculated for H+, NH4+, NO3- and SO4(2-) ions. The problems connected with fog droplet sampling in sub-freezing conditions are also addressed in the paper.  相似文献   

5.
Acid neutralization of precipitation in Northern China   总被引:4,自引:0,他引:4  
There is an increasing concern over the impact of human-related emissions on the acid precipitation in China. However, few measurements have been conducted so far to clarify the acid-neutralization of precipitation on a regional scale. Under a network of 10 sites across Northern China operated during a 3-year period from December 2007 to November 2010, a total of 1118 rain and snow samples were collected. Of this total, 28% was acid precipitation with pH < 5.6. Out of these acid samples, 53% were found heavily acidic with pH value below 5.0, indicating significantly high levels of acidification of precipitation. Most of the acidity of precipitation was caused by H2SO4 and HNO3, their relative contribution being 72% and 28%, respectively. However; the contribution of HNO3 to precipitation acidity will be enhanced due to the increasing NO(x) and stable SO2 emissions in future. Neutralization factors for K+, NH4+, Ca2+, Na+, and Mg2+ were estimated as 0.06, 0.71, 0.72, 0.15, and 0.13, respectively. The application of multiple regression analysis further quantified higher NH4+ and Ca2+ contribution to the neutralization process, but the dominant neutralizing agent varied from site to site. The neutralization was less pronounced in the rural than urban areas, probably due to different levels of alkaline species, which strongly buffered the acidity. Presence of high concentrations of basic ions was mainly responsible for high pH of precipitation with annual volume-weighted mean (VWM) values larger than 5.6 at several sites. It was estimated that in the absence of buffering ions, for the given concentration of SO4(2-) and NO3-, the annual VWM pH of precipitation would have been recorded around 3.5 across Northern China. This feature suggested that emissions of particles and gaseous NH3 played very important role in controlling the spatial variations of pH of precipitation in the target areas.  相似文献   

6.
Major ions (Cl-, NO3(-), SO4(2-), Ca2+, Mg2+, Na+, K+ and NH4(+)) were analysed in wet and dry deposition samples collected for 2 years using a polyethylene bottle and funnel collector at Agra in India. The deposition of ionic components (Ca2+ and Mg2+) derived from natural sources i.e. soil were higher than those of anthropogenic origin. In rainwater samples, non-sea-salt fraction was found to be 60-90%. In both wet and dry deposition Ca2+ was found to be the dominant ion which may be due to its large particle diameter. Results suggest that most of the acidity, which occurs due to NO3(-), SO4(2-) and Cl- is neutralized by alkaline constituents, which originate from airborne local soil and dust transported from the Thar desert. Acid neutralizing capacity of soil has also been quantified and found to be 33 x 10(3) neqg(-1). Using deposition data, the critical load for acidity of soil with respect to Ashoka and Eucalyptus was evaluated. The present level of deposition of S and N was found to be much lower than critical loads calculated for S and N. Critical load of exceedance in terms of deposition acidity was also calculated and found to be negative. This indicates that with respect to these species, the ecosystem is protected at the current level of deposition.  相似文献   

7.
A thermodynamic equilibrium model, Simulating Composition of Atmospheric Particles at Equilibrium (SCAPE2), was used to investigate the response of fine particulate NO3(-) to changes in concentrations of HNO3, NH3, and SO4(2-) in the southeastern United States. The data consisted of daily, 24-hr time resolution measurements from the Aerosol Research Inhalation Epidemiology Study (ARIES) Jefferson Street (Atlanta) site and five other sites of the Southeastern Aerosol Research and Characterization Project (SEARCH). Reductions of total NH3 (gas-phase NH3 plus particulate NH4(+)), total NO3(-) (HNO3 plus particulate NO3(-)), SO4(2-), or combined total NO3(-) (HNO3 plus particulate NO3(-)) with SO4(2-) were used to estimate the effects of changing emission levels. The conversion of SO2 to SO4(2-) and NO2 to HNO3 involves additional nonlinear reactions not incorporated into the model. For all sites, fine particulate NO3(-) concentrations decreased in response to reductions of either NH3 or total NO3(-), but the particulate NO3(-) decreases were greater for the NH3 reductions than for the total NO3(-) reductions. Particulate NO3(-) concentrations increased in response to reductions of SO4(2-). For the combined reduction (total NO3(-) plus SO4(2-)), the resulting particulate NO3(-) concentrations were on average no different than the base-case NO3(-) levels. Measurements of fine particulate NO3(-) and HNO3 support the modeling conclusions and indicate that particulate NO3(-) formation is limited by the availability of NH3 at most times at all SEARCH sites.  相似文献   

8.
Fang GC  Wu YS  Chang SY  Rau JY  Huang SH 《Chemosphere》2006,64(8):1253-1263
The characterization for water-soluble species of total suspended particulate (TSP), dry deposition flux, and dry deposition velocity (V(d)) were studied at Taichung Harbor (TH) and Wuchi traffic sampling sites at offshore sampling site near Taiwan Strait of central Taiwan during March 2004-January 2005. The average concentrations of TSP and dry deposition flux at the TH sampling site were higher than at the WT sampling site during the sampling period. The samples collected were analyzed by a ion chromatography (DIONEX-100) for the ionic species (Cl(-), SO(4)(2-), NO(3)(-), NH(4)(+), Na(+), Ca(2+), and Mg(2+)) analysis. The dominant ionic species for TSP are SO(4)(2-), NO(3)(-), and NH(4)(+) of the total mass of the inorganic ions at both sampling sites. In addition, the results indicated that the NH(4)(+), NO(3)(-) and SO(4)(2-) showed higher concentrations in winter and lower in summer for both TH and Wuchi sampling sites. Statistical methods such as correlation coefficient and principal component analysis were also used to identify the possible pollutant source.  相似文献   

9.
2010年10月至2011年9月采集百色市右江区大气PM10样品,分析PM10及其水溶性无机离子的化学特征与来源。结果表明:(1)百色市右江区大气PM10为13.89~319.44μg/m3,年均117.48μg/m3,年均值超过《环境空气质量标准》(GB 3095-2012)二级标准(100μg/m3)。百色市右江区大气可吸入颗粒物的污染主要出现在春冬季节。(2)水溶性无机离子浓度年均值依次为SO24->NO3->Cl->NH4+>K+>Na+>Mg2+>F-,SO24-、NO3-和Cl-浓度最高,分别占水溶性无机离子的57.7%、14.9%和14.5%。(3)百色市右江区大气PM10呈较强的酸性,高浓度的SO42-可能是导致百色市右江区大气PM10呈较强酸性的主要原因。(4)PM10的季节变化受气温和风速的影响极显著;气象因素对SO42-、NO3-、F-的影响不显著。(5)主因子分析表明,PM10中水溶性无机离子可能来自3个方面,Cl-和NO3-主要来自于当地低烟卤煤燃烧排放的烟气;Mg2+、K+和Na+主要来自于自然源;F-、SO24-和NH4+主要来自于混合源。  相似文献   

10.
Source identification of atlanta aerosol by positive matrix factorization   总被引:3,自引:0,他引:3  
Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles < or = 2.5 microm in aerodynamic diameter) samples (PM2.5), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 microm in aerodynamic diameter) samples (PM10-2.5). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4(2-) -rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO(3-) -rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4(2-) -rich and NO(3-) -rich secondary aerosols were associated with NH(4+). The SO4(2-) -rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO(3-)-rich secondary aerosol (16%), SO4(2-) -rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.  相似文献   

11.
Size fractionated chemical speciation of acidic aerosols were performed for ammonium sulfate, other sulfates, ammonium nitrate and other nitrates in a sub-tropical industrial area, Bina, India during December 2003 to November 2004. Analysis of variance (ANOVA) revealed highly significant temporal variations (p > .001) in the concentrations of nitrate and sulfate aerosols in all the three size fractions (fine, mid-size and coarse). Winter demonstrated utmost concentrations of ammonium sulfate, which ranged from 3.2 to 26.4 microg m(-3) in fine particles and 0.20-0.34 microg m(-3) in coarse particles. Ammonium sulfate was chiefly in fine mode (43.77% of total particulate sulfate) as compared to coarse particles (28.60% of total particulate sulfate). The major fraction Ammonium sulfate existed in different forms in atmospheric aerosols, for example NH4Fe(SO4)2, (NH4)2SO4, (NH4)3H(SO4)2 in fine particles, and (NH4)4(NO3)SO4+ in coarse particles. Other sulfate concentrations were also higher during winter ranging from 1.89 to 14.3 microg m(-3) in fine particles and 0.12-0.65microg m(-3) in coarse particles. Ammonium nitrate constituted the major fraction of total particulate nitrate all through the year and was principally in fine particles (the highest concentration in January i.e. 14.2 microg m(-3)). Other nitrates were mainly distributed in the fine particles (highest concentration in January i.e. 11.2 microg m(-3)) All the sulfate and nitrate species were mainly distributed in fine mode and have significant impact on human health.  相似文献   

12.
Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.  相似文献   

13.
Since 1994 the nickel-processing plant at the Cu-Ni smelter at Harjavalta, south-west Finland, has emitted considerable amounts of NH(3) into the atmosphere. The effects of NH(3) emissions on nitrogen and sulphur deposition in throughfall and the foliar nutrient status were investigated in a Scots pine stand at 0.5 km distance. Bulk deposition, stand throughfall and percolation water (20 cm depth) samples were collected at 4-week intervals during 1992-1998. pH and the Ca, Mg, K, NH(4) and SO(4) concentrations were determined on the samples. NH(3) emissions have strongly increased the scavenging of SO(2) from the air in the pine stand, and the increased levels of N and S deposition were clearly evident as increased foliar N and S concentrations and larger needle size. The increased input of SO(4) into the forest floor was not associated with an increase in the leaching of Ca and Mg from the surface soil layers.  相似文献   

14.
Annual applications of (NH4)2SO4, NH4NO3 and urea on a Solonetzic soil at 112 kg N/ha for 10 consecutive years reduced pH levels from 5.6 for the check to 4.4, 4.9 and 5.3, respectively for (NH4)2SO4, NH4NO3 and urea. (NH4)2SO4 generated twice as much exchange acidity as NH4NO3 and four times as much as urea. Net extractable cations leached from the Ap horizon closely approximated the amount of exchange acidity generated by (NH4)2SO4 and NH4NO3 fertilizers. The levels of soil extractable Al and Mn were greatly enhanced by (NH4)2SO4 as were plant contents. Similar acidifying effects to that produced by the (NH4)2SO4 occurred when NH4NO3 was applied at 300 kg N/ha annually for 12 consecutive years in another field experiment on the same soil. Liming samples of the field (NH4)2SO4 acidified soils in the greenhouse, significantly increased yields and lowered the Al and Mn contents of the plants to normal levels.  相似文献   

15.
The effects of chronically enhanced (NH(4))(2)SO(4) deposition on ion concentrations in soil solution and ionic fluxes were investigated in a Picea abies plot at Grizedale forest, NW England. Soil cores closed at the base and containing a ceramic suction cup sampler were 'roofed' and watered every 2 weeks with bulk throughfall collected in the field. Treatments consisted of the inclusion of living roots from mature trees in the lysimeters and increasing (NH(4))(2)SO(4) deposition (NS treatment) to ambient + 75 kg N ha(-1) a(-1). Rainfall, throughfall and soil solutions were collected every 2 weeks during 18 months, and analysed for major cations and anions. NO(3)(-) fluxes significantly increased following NS treatment, and were balanced by increased Al(3+) losses. Increased SO(4)(2-) concentrations played a minor role in controlling soil solution cation concentrations. The soil exchange complex was dominated by Al and, during the experimental period, cores of all treatments 'switched' from Ca(2+) to Al(3+) leaching, leading to mean [Formula: see text] molar ratios in soil solution of NS treated cores of 0.24. The experiment confirmed that the most sensitive soils to acidification (through deposition or changing environmental conditions) are those with low base saturation, and with a pH in the lower Ca, or Al buffer ranges.  相似文献   

16.
Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight (C1C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3–0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.  相似文献   

17.
This study investigates changes in tree condition and environmental factors in Lithuania during the active growing season in 1991-2001. The average crown defoliation and the proportion of healthy trees of Pinus sylvestris, Picea abies, Betula sp., Fraxinus excelsior, Alnus incana, Alnus glutinosa, Populus tremula, and Quercus robur, meteorological (average temperature, amount of precipitation, hydrothermal coefficient) and air pollution data (acidity of precipitation, concentrations of SO2, NO2 and exposure of O3) were analysed. During the period 1991-2001 the condition of Pinus sylvestris, Populus tremula showed a tendency of improvement, while defoliation of Fraxinus excelsior significantly increased. The proportion of healthy trees correlated well with the average temperature and O3 (AOT40), while defoliation correlated well with the acidity of precipitation and the concentrations of SO2 and NO2. Deciduous species appeared to be more sensitive to O3 exposure and conifers to the concentrations of SO2 and NO2.  相似文献   

18.
Fogwater and air samples were collected in Baton Rouge between November 2004–February 2005 and during February 2006 at Houston. Organic compounds present in the fog samples were detected, quantified and then grouped into different compound classes based on molecular size, solubility and polarity using gas chromatography/mass spectrometry, high performance liquid chromatography with diode array detection and ion chromatography. Organic compounds were grouped as n-alkanes, aromatics and polycyclic aromatics, carbonyls, alcohols, amides and esters. Organic compounds in fog and air samples in Houston indicated clear urban/industrial anthropogenic origin, while compounds detected in Baton Rouge fog and air samples showed a mix of both agricultural and urban/industrial anthropogenic inputs. Among the various polycyclic aromatic compounds detected, the total concentration of naphthalene and its derivatives was 2.8 μg m?3 in Houston and 0.08 μg m?3 in Baton Rouge air. Analysis of concentrations of organic compounds pre- and post- fog revealed that compounds with low vapor pressure had higher scavenging efficiency in fog sampled at the two locations. Concentrations of organic compounds in fog samples were higher than those predicted by conventional air-water Henry's law equilibrium. Observed higher concentrations in the aqueous phase were modeled accounting for surface adsorption and accumulation of gas phase species and the presence of humic-like substances in fogwater.  相似文献   

19.
K F Chang  G C Fang  C S Lu  H L Bai 《Chemosphere》2001,45(6-7):791-799
Ambient air particle concentrations were sampled by two total suspended particle (TSP) samplers, PM10/PM2.5 specific sampler and micro-orifice uniform deposit impactor (MOUDI) during July-October 2000 at a traffic sampling site in central Taiwan. The average TSP concentration (194 microg/m3) was about a factor of two higher than that of the fraction <2.5 microm (93.2 microg/m3). The mean level of the fraction <10 microm collected by MOUDI (93.2 microg/m3) was about 1 1/2 times higher than that of the size class <2.5 microm (43.8 microg/m3). Furthermore, this fraction showed a certain correlation with the TSP concentration. The particle size distribution was bimodal in the ambient air at the traffic site. The major peaks appear at particle diameters between 0.56-1.0 and 3.2-5.6 microm. The percentages of anions contained in TSP were 0.24% F-, 13.7% Cl, 0.52% Br, 12.0% NO-, 18.9% NO2-, and 54.6% SO2-. The Cl-, NO2-, and NO3- size distributions were all unimodal and the major peaks appeared at 3.2-5.6 microm. The SO2 size distribution was bimodal, with major peaks at 0.32-0.56 and 3.2-5.6.  相似文献   

20.
In this study, we present approximately two years (January 1999-December 2000) of atmospheric NH3, NH4+, HCl, Cl-, HNO3, NO3-, SO2, and SO4= concentrations measured by the annular denuder/filter pack method at an agricultural site in eastern North Carolina. This site is influenced by high NH3 emissions from animal production and fertilizer use in the surrounding area and neighboring counties. The two-year mean NH3 concentration is 5.6 (+/-5.13) microg m(-3). The mean concentration of total inorganic PM2.5, which includes SO4=, NO3-, NH4+, and Cl-, is 8.0 (+/-5.84) microg m(-3). SO4=, NO3-, NH4+, and Cl- represent, respectively, 53, 24, 22, and 1% of measured inorganic PM2.5. NH3 contributes 72% of total NH3 + NH4+, on an average. Equilibrium modeling of the gas+aerosol NH3/H2SO4/HNO3 system shows that inorganic PM2.5 is more sensitive to reductions in gas + aerosol concentrations of sulfate and nitrate relative to NH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号