首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Internal cycling of nutrients from the sediment and water column can be an important contribution to the total nutrient load of an aquatic ecosystem. Our objective was to estimate the internal nutrient loading of the Lower St. Johns River (LSJR). Dissolved reactive phosphorus (DRP) and ammonium (NH(4)-N) flux from sediments were measured under aerobic and anaerobic water column conditions using intact cores, to estimate the overall contribution of the sediments to P and N loading to the LSJR. The DRP flux under aerobic water column conditions averaged 0.13 mg m(-2) d(-1), approximately 37 times lower than that under anaerobic conditions (4.77 mg m(-2) d(-1)). The average NH(4)-N released from the anaerobic cores (18.03 mg m(-2) d(-1)) was also significantly greater than in the aerobic cores for all sites and seasons, indicating the strong relationship between nutrient fluxes and oxygen availability in the water column. The mean annual internal DRP load was estimated to be 330 metric tons (Mg) yr(-1), 21% of the total P load to the river, while the mean annual internal load of NH(4)-N was determined to be 2066 Mg yr(-1), 28% of the total N load to the LSJR estuary. As water resource managers reduce external loading to the LSJR the frequency of anaerobic events should decline, thereby reducing nutrient fluxes from the sediment to the water column, reducing the internal loading of DRP and NH(4)-N. Results from this study demonstrate that the internal flux of nutrients from sediments may be a significant portion of the total load and should be accounted for in the total nutrient budget of the river for successful restoration.  相似文献   

2.
Summary The water qualities of the River Ganga (The Ganges) over a short stretch from Swarupganj to Barrackpore (in West Bengal) have been determined and are compared with the values reported by the National Environmental Engineering Research Institute of India for the periods 1972–74 and 1979–80. The water quality is generally bad, but not at such alarming levels as previously determined by other agencies. Biochemical and chemical oxygen demand (BOD and COD) levels are high but within tolerable limits. Dissolved oxygen (DO) levels are are fairly high, indicating a reasonable self-purifying capability for the River Ganga. However, nutrient loads containing N and P have increased enormously in recent years.  相似文献   

3.
ABSTRACT: A three-year study has been conducted on a 4.6 mile stretch of the Saddle River near Lodi, New Jersey. The primary objectives of this investigation were (1) to provide baseline information on the concentration and distribution of heavy metals in bottom sediments of the Saddle River; (2) to qualitatively evaluate which parameters affect this distribution; and (3) to determine the effect of urbanization on the concentration and distribution of these materials. Significant enrichments of several heavy metals were observed in bottom sediments of the lower Saddle River near Lodi, New Jersey, as compared to the upper Saddle River. Attempts to correlate metal concentrations in bottom sediments with chemical-oxygen demand were not successful in demonstrating a relationship between these two factors. Metal concentrations were found to be strongly dependent upon particle size. In general, metal concentrations in bottom sediments increased with decreasing partical diameter. However, metals enrichment was observed to be considerably greater in the larger sediment fractions studied (>420μ) than the smaller sediment fractions as one proceeded downstream through the urban area. Since the larger sediment fractions are least effected by scour and transport they may best reflect the effect of urbanization on the distribution of heavy metals over an extended period of time at a given location.  相似文献   

4.
The goal of wetland creation is to produce an artificial wetland that functions as a natural wetland. Studies comparing created wetlands to similarly aged natural wetlands provide important information about creation techniques and their improvement so as to attain that goal. We hypothesized that differences in sediment phosphorus accretion, deposition, and chemistry between created and natural wetlands in the Atchafalaya Delta, Louisiana, USA were a function of creation technique and natural river processes. Sediment deposition was determined with feldspar marker horizons located in created and natural wetlands belonging to three age classes (<3, 5-10, and 15-20 yr old). Phosphorus fractions were measured in these deposited sediments and in suspended and bedload sediment from the Atchafalaya River. Bedload sediment had significantly lower iron- and aluminum-bound, reductant-soluble, and total phosphorus than suspended sediment due to its high sand percentage. This result indicates that wetlands artificially created in the Atchafalaya Delta using bedload sediment will initially differ from natural wetlands of the same age. Even so, similarities between the mudflat stratum of the <1- to 3-yr-old created wetland and the mudflat stratum of the 15- to 20-yr-old natural wetland support the contention that created wetlands in the Atchafalaya Delta can develop natural characteristics through the deposition of river suspended sediment. Differences between three created wetland strata, the 15- to 20-yr-old willow stratum and the <1- to 3-yr-old willow and mixed marsh strata, and their natural counterparts were linked to design elements of the created wetlands that prevented the direct deposition of the river's suspended sediment.  相似文献   

5.
ABSTRACT: Geochemistry of fine-fraction streambed sediments collected from the upper illinois River basin was surveyed in the fall of 1987 as part of the U.S. Geological Survey National Water-Quality Assessment pilot projects. The survey included 567 samples analyzed for 46 elements. Three distinctive distribution patterns were found for seven U.S. Environmental Protection Agency priority pollutants surveyed, as well as for boron and phosphorus: (1) enrichment of elements in the Chicago urban area and in streams draining the urban area relative to rural areas, (2) enrichment in main stems relative to tributaries, and (3) enrichment in low-order streams at high-population-density sites relative to low-population-density sites. Significant differences in background concentrations, as measured by samples from low-order streams, were observed among five subbasins in the study area. Uncertain geochemical correspondence between low-order, background sites and high-order, generally metal enriched sites prevented determination of background levels that would be appropriate for high-order sites. The within-sample ratio of enriched elements was variable within the Chicago area but was constant in the Illinois River downstream from Chicago. Element ratios imply a composite fine-fraction sediment in the Illinois River of 35–40 percent Des Plaines River origin and 60–65 percent Kankakee River origin.  相似文献   

6.
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.  相似文献   

7.
Stream sediments play a large role in the transport and fate of soluble reactive phosphorus (SRP) in stream ecosystems, and equilibrium P concentrations (EPC 0) of benthic sediments at which P is neither adsorbed nor desorbed are often related to stream water SRP concentrations. This study evaluated (i) the variation among water chemistry and sediment-P interactions among streams draining catchments that varied in the land use; (ii) the relations between SRP concentration, sediment EPC 0, and other measured abiotic factors (e.g., particle size distribution, slope of linear sorption isotherms, etc.) in the stream sediments; and (iii) the use of the traditional Mehlich-3 (M3) soil extraction on stream sediments to elucidate other abiotic factors (e.g, M3P, P saturation ratio, etc.) related to SRP concentration in stream sediments. Stream water and sediments were sampled at 22 selected Ozark streams in northwest Arkansas during fall 2003 and spring 2004. Nitrate-N concentrations in the water column (r = 0.69) and modified P saturation ratios (PSR mod) ) of the benthic sediments (r = 0.79) at the selected streams increased with an increase in percent pasture in the catchments, whereas SRP concentration (r = -0.56) and Mehlich-3-extractable P (M3P) content (r = -0.47) decreased with an increase in the percent forested area. Soluble reactive P concentrations in the stream water were positively correlated to sediment EPC 0 (r = 0.51), although sediment EPC(0) was generally greater than SRP. The M3 soil extraction was useful in identifying abiotic factors related to SRP concentrations in the selected streams, in particular SRP concentrations were positively correlated to M3P contents (r = 0.50) and PSR mod (r = 0.71) of the benthic sediments. Thus, M3P and EPC 0 estimates from stream sediments may be valuable yet simple indicators of whether benthic sediments act as sinks or sources of P in fluvial systems, as well as estimating changes in stream SRP concentrations.  相似文献   

8.
ABSTRACT: We examined the effect of a point source (PS) input on water chemistry and nutrient retention in Spavinaw Creek, Arkansas, during summer baseflows in 1998 and 1999. The nutrient uptake length (Sw) concept was used to quantify the impact of nutrient inputs in the receiving stream. We used an artificial injection upstream of the PS inputs to estimate background S and used the natural decline in nutrient concentrations below the PS to estimate the net nutrient uptake length (Snet). Sw for soluble reactive phosphorus (SRP) in the upstream reference section was O.75 km, but Snet ranged from 9.0 to 31 km for SRP and 3.1 to 12 km for NO3‐N in the reach below the PS. Snet‐SRP was significantly correlated with discharge whereas Snet‐NO3‐N was correlated with the amount of NO3‐N enrichment from the PS. In order to examine specific mechanisms of P retention, loosely exchangeable P and P Sorption Index (PSI) of stream sediments were measured. Sediments exhibited little natural P buffering capacity (low PSI) above the PS, but P loading from the PS further reduced PSI. Loosely exchangeable P in the sediments also increased three fold below the PS, indicating sediments removed some water column P. The physical process of flow and sediment sorption apparently regulated P retention in Spavinaw Creek, whereas the level of N enrichment and possibly biotic uptake and denitrification influenced N retention. Regardless of the mechanism, Spavinaw Creek demonstrated little ability to retain PS‐added nutrients because net nutrient uptake lengths were in the km range.  相似文献   

9.
Biological Effects of Fine Sediment in the Lotic Environment   总被引:27,自引:0,他引:27  
/ Although sedimentation is a naturally occurring phenomenon inrivers, land-use changes have resulted in an increase in anthropogenicallyinduced fine sediment deposition. Poorly managed agricultural practices,mineral extraction, and construction can result in an increase in suspendedsolids and sedimentation in rivers and streams, leading to a decline inhabitat quality. The nature and origins of fine sediments in the loticenvironment are reviewed in relation to channel and nonchannel sources andthe impact of human activity. Fine sediment transport and deposition areoutlined in relation to variations in streamflow and particle sizecharacteristics. A holistic approach to the problems associated with finesediment is outlined to aid in the identification of sediment sources,transport, and deposition processes in the river catchment. The multiplecauses and deleterious impacts associated with fine sediments on riverinehabitats, primary producers, macroinvertebrates, and fisheries are identifiedand reviewed to provide river managers with a guide to source material. Therestoration of rivers with fine sediment problems are discussed in relationto a holistic management framework to aid in the planning and undertaking ofmitigation measures within both the river channel and surrounding catchmentarea.KEY WORDS: Sedimentation; Fine sediment; Holistic approach; Ecologicalimpact; River restoration  相似文献   

10.
Fate and toxicity of endosulfan in Namoi River water and bottom sediment   总被引:1,自引:0,他引:1  
Endosulfan (6,7,8,9,10,10,-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) sorption (standardized to 1% total organic carbon and dry weight) was significantly (P < 0.05) more concentrated on the large (>63 microm) particle fraction compared with smaller size fractions (<5 microm and 5-24 microm) of bottom sediments from the Namoi River, Australia. Following completion of the particle size fractionation (6 to 12 wk) and a sediment toxicity assessment (2 wk), the sediments showed large decreases in concentrations of alpha-endosulfan that coincided with an increase in endosulfan sulfate concentrations and minimal changes in beta-endosulfan concentrations. In the Namoi River, similar patterns were observed in the composition of total endosulfan in monthly measurements of bottom sediments and in passive samplers placed in the water column following runoff from cotton (Gossypium hirsutum L.) fields. The toxicity of endosulfan sulfate in river water indicated by the nymphs of the epibenthic mayfly Jappa kutera, was more persistent than the alpha- and beta-endosulfan parent isomers due to its longer half-life. This suggests that endosulfan sulfate would contribute most to previously observed changes in population densities of aquatic biota. Measured concentrations of total endosulfan in river water of up to 4 microg L(-1) following storm runoff, exceed the range of the 96-h median lethal concentration (LC50) values in river water for both alpha-endosulfan (LC50 = 0.7 microg L(-1); 95% confidence interval [CI] = 0.5 to 1.1) and endosulfan sulfate (LC50 = 1.2 microg L(-1); 95% CI = 0.4 to 3.3). In contrast, the 10-d LC50 value for total endosulfan in the sediment toxicity test (LC50 = 162 microg kg(-1); 95% CI = 120 to 218 microg kg(-1)) was more than threefold higher than the highest measured concentration of total endosulfan in field samples of bottom sediment (48 microg kg(-1)). This suggests that pulse exposures of endosulfan in the water column following storm runoff may be more acutely toxic to riverine biota than in contaminated bottom sediment.  相似文献   

11.
Loss of Louisiana's coastal wetlands has reached catastrophic proportions. The loss rate is approximately 150 km2/yr (100 acres/day) and is increasing exponentially. Total wetland loss since the turn of the century has been almost 0.5 million ha (1.1 million acres) and represents an area larger than Rhode Island. The physical cause of the problem lies in man's attempts to control the Mississippi River's flooding, while enhancing navigation and extracting minerals. Levee systems and control structures confine sediments that once nourished the wetlands to the river channel. As a consequence, the ultimate sediment deposition is in deep Gulf waters off the Louisiana coast. The lack of sediment input to the interdistributary wetlands results in an accretion deficit. Natural and human-induced subsidence exceeds accretion so that the wetlands sink below sea level and convert to water. The solution is to provide a thin veneer of sediment (approximately 0.6 cm/yr; an average of 1450 g m?2 yr?1) over the coastal marshes and swamps and thus prevent the submergence of vegetation. The sediment source is the Mississippi River system. Calculations show that 9.2% of the river's annual suspended sediment load would be required to sustain the deltaic plain wetlands. It should be distributed during the six high-water months (December–June) through as disaggregated a network as possible. The problem is one of distribution: how can the maximum acres of marsh be nourished with the least cost? At present, the river is managed through federal policy for the benefit of navigation and flood control. A new policy structure, recognizing the new role for the river-sediment distribution, is recommended.  相似文献   

12.
Sediments may act as both a carrier for and a potential source of contaminants such as toxic organics in aquatic environments. This study investigated the spatial distribution of the pesticide DDT [1,1, 1-trichloro-2,2-bis(p-chlorophenyl)ethane] in sediments from the Cedar and Ortega Rivers located in the lower St. Johns River basin, Florida, USA, using field measurements and three-dimensional kriging analysis. High DDT concentrations were found near the junction of the Cedar and Ortega Rivers and at the north end of the Ortega River in the upper 0.5 m of the sediments, indicating that the sediment was enriched with DDT in the top layer although use of this chlorinated compound was banned in 1972. Further study revealed that the influence of sediment grain size or texture on DDT contamination was negligible in this river system and no linear correlations existed among DDT and its metabolites such as DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)ethane] and DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene]. Comparison of three-dimensional distribution of DDT content to the Florida sediment quality assessment guideline or probable effect level (PEL) showed several "hot spots" in the Ortega River sediments, where DDT contents exceeded the PEL value of 4.78 microg kg(-1). Such contamination may pose a significant hazard to aquatic life.  相似文献   

13.
In this study we have worked on the evaluation of heavy metal contamination in the sediments taken from the Tisza River and its tributaries, and thereby used the sequential extraction method, geochemical normalization, the calculation of the enrichment factor (EF), and the methods of statistical analysis. The chemical fractionation of Ni, Cu, Zn, Cr, Pb, Fe, and Mn, carried out by using the modified Tessier method, points to different substrates and binding mechanisms of Cu, Zn and Pb in sediments of the tributaries and sediments of the Tisza River. The similarities in the distributions of Fe and Ni in all types of sediments are the result of geochemical similarity as well as of the fact that natural sources mainly affect the concentration levels of these elements. The calculated enrichment factors (EF, measured metal vs. background concentrations) indicated that metal contamination (Cu, Pb, Zn and Cr) was recorded in the sediments of the Tisza River, while no indications of pollution were detected in the tributaries of the Tisza River and the surrounding pools. The maximum values of the EF were close to 6 for Cu and Pb (moderately severe enrichment) and close to 4.5 for Zn (indicating moderate enrichment). It can be said that the Tisza River is slightly to moderately severely polluted with Cu, Zn, and Pb, and minorly polluted with Cr. It is concluded that sediments of the Tisza serve as a repository for heavy metal accumulation from adjacent urban and industrial areas.  相似文献   

14.
Total phosphorus (TP) loads in many rivers in the north-central United States have increased, including the Illinois River at Valley City, Illinois, USA, which increased 39% from the periods 1989–1996 to 2015–2019 despite efforts to reduce loads from point and nonpoint sources. Here, we quantify long-term variations in phosphorus (P) loads in the Illinois River and its tributaries and identify factors that may be causing the variations. We calculated river loads of dissolved (DP) and particulate P (PP), total and volatile suspended solids (TSS and VSS), and other potentially related constituents at 41 locations. DP loads generally increased and PP and TSS loads generally decreased from 1989–1996 to 2015–2019. During 1989–1996, P accumulated in the lower basin between Marseilles and Valley City (excluding monitored tributaries). This portion of the basin is very flat and accumulates sediment. During 2015–2019, this section shifted from being a net sink to being a net source of P, accounting for 78% of the increased TP load at Valley City. We present evidence supporting several mechanisms that could have caused this shift: increased DP and chloride loads, reduced sulfate and nitrate concentrations influencing ionic strength and redox potential in the sediments, and increased VSS loads at Valley City possibly indicating greater algal production and contributing to hypoxia in lower river sediments. Additional research is needed to quantify the relative importance of these mechanisms.  相似文献   

15.
Sediments can be both a source and a sink of dissolved phosphorus (P) in surface water and shallow groundwater. Using laboratory mesocosms, we studied the influence of flooding with deionized water and simulated river water on P release to solution using sediment columns taken from a riparian wetland. The mesocosm incubation results showed that rather than retaining nutrients, sediments in the riparian zone may be a significant source of P. Concentrations of dissolved P in porewater reached more than 3 mg L(-1) and in surface water over 0.8 mg L(-1) within a month of sediment inundation. The reductive dissolution of P-bearing iron (Fe) oxides was the likely mechanism responsible for P release. Dissolved P to Fe molar ratios in anaerobic samples were approximately 0.45 when columns were flooded with water that simulated the chemistry of the adjacent river. This suggests there was insufficient Fe in the anaerobic samples to precipitate all P if the solutions were oxygenated or transported to an aerobic environment. If the anaerobic wetland solutions were delivered to oxygenated rivers and streams adjacent to the riparian zone, the equilibrium concentration of P in these systems could rise. The timing of P release was inversely related to the nitrate (NO3-) concentration in floodwater. This indicates that in riparian zones receiving low nitrate loads, or where NO3- loads are being progressively reduced, the risk of dissolved P release may increase. These findings present particular challenges for restoration and management in riparian areas.  相似文献   

16.
Managed drainage ditches are common in the midwestern United States. These ditches are designed to remove water from fields as quickly as possible, and sediment buildup necessitates dredging, to ensure adequate water removal. This laboratory study was conducted to determine the impact of ditch dredging on soluble phosphorus (P) transport. Ditch sediments were collected from a drainage ditch in northeastern Indiana immediately before and after dredging. The sediments were placed in a stream simulator, and stream water was loaded with 0.55 mM P for 5 d (adsorption experiment). Water was then removed, and "clean" water (no P added) was used for a desorption experiment, lasting 1 d. During the adsorption experiment, pre-dredged sediments were able to remove P from the water column quicker, and P concentrations 120 h after introduction of high P water were lower for the pre-dredged sediments (0.075 mM P) than the dredged sediments (0.111 mM P). During the desorption experiment, P was released to the water column slower in the pre-dredged treatment than the dredged treatment (instantaneous flux at t = 0 was 0.205 microM P h(-1) for pre-dredged and 0.488 microM P h(-1) for dredged). This occurred despite higher Mehlich 3-extractable P in the pre-dredged sediments than the dredged sediments. Equilibrium phosphorus concentrations (EPCo) were lower in the pre-dredged sediments during both adsorption and desorption experiments. Transport of soluble P immediately after dredging will likely increase in drainage ditches; however, dredging is a necessary management tool to ensure adequate discharge of water from surrounding fields.  相似文献   

17.
Sediment and phosphorus (P) transport from the Minnesota River Basin to Lake Pepin on the upper Mississippi River has garnered much attention in recent years. However, there is lack of data on the extent of sediment and P contributions from riverbanks vis-à-vis uplands and ravines. Using two light detection and ranging (lidar) data sets taken in 2005 and 2009, a study was undertaken to quantify sediment and associated P losses from riverbanks in Blue Earth County, Minnesota. Volume change in river valleys as a result of bank erosion amounted to 1.71 million m over 4 yr. Volume change closely followed the trend: the Blue Earth River > the Minnesota River at the county's northern edge > the Le Sueur River > the Maple River > the Watonwan River > the Big Cobb River > Perch Creek > Little Cobb River. Using fine sediment content (silt + clay) and bulk density of 37 bank samples representing three parent materials, we estimate bank erosion contributions of 48 to 79% of the measured total suspended solids at the mouth of the Blue Earth and the Le Sueur rivers. Corresponding soluble P and total P contributions ranged from 0.13 to 0.20% and 40 to 49%, respectively. Although tall banks (>3 m high) accounted for 33% of the total length and 63% of the total area, they accounted for 75% of the volume change in river valleys. We conclude that multitemporal lidar data sets are useful in estimating bank erosion and associated P contributions over large scales, and for riverbanks that are not readily accessible for conventional surveying equipment.  相似文献   

18.
Uptake and release of phosphorus from overland flow in a stream environment   总被引:1,自引:0,他引:1  
Phosphorus runoff from agricultural fields has been linked to fresh-water eutrophication. However, edge-of-field P losses can be modified by benthic sediments during stream flow by physiochemical processes associated with Al, Fe, and Ca, and by biological assimilation. We investigated fluvial P when exposed to stream-bed sediments (top 3 cm) collected from seven sites representing forested and agricultural areas (pasture and cultivated), in a mixed-land-use watershed. Sediment was placed in a 10-m-long, 0.2-m-wide fluvarium to a 3-cm depth and water was recirculated over the sediment at 2 L s(-1) and 5% slope. When overland flow (4 mg dissolved reactive phosphorus [DRP] and 9 mg total phosphorus [TP] L(-1)) from manured soils was first recirculated, P uptake was associated with Al and Fe hydrous oxides for sediments from forested areas (pH 5.2-5.4) and by Ca for sediments from agricultural areas (pH 6.5-7.2). A large increase (up to 200%) in readily available P NH4Cl fraction was noted. After 24 h, DRP concentration in channel flow was related to sediment solution P concentration at which no net sorption or desorption of P occurs (EPC0) (r2 = 0.77), indicating quasi-equilibrium. When fresh water (approximately 0.005 mg P L(-1) mean base flow DRP at seven sites) was recirculated over the sediments for 24 h, P release kinetics followed an exponential function. Microbial biomass P accounted for 34 to 43% of sediment P uptake from manure-rich overland flow. Although abiotic sediment processes played a dominant role in determining P uptake, biotic process are clearly important and both should be considered along with the location and management of landscape inputs for remedial strategies to be effective.  相似文献   

19.
Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.  相似文献   

20.
Cochin estuary is one of the highly polluted aquatic systems of the southwest coast of India. The present study focuses on the assessment of heavy metals (Zn, Cd, Pb, and Cu) present in the sediments of Cochin estuary and the adjoining Periyar River. The sediments were analyzed for total metal content and various chemically bound fractions such as exchangeable, carbonate bound, easily reducible, organic, and residual. Total metal content of sediment was found higher than the average values reported from other Indian rivers. The mean concentration of Zn, Cd, Pb, and Cu in the sediments was 1,249.44, 9.5, 221.37, and 166.14???g/g, respectively. The results of sequential extraction showed that the concentration of Cd was high in the first two weakly bound fractions (exchangeable and carbonate bound) than the other metals, which are high in residual and organic bound fractions. Risk-assessment code analysis and environmental indices (enrichment factor and pollution load index) suggest that the sediments are highly polluted with metals, especially Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号