首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We determined the water quality effect of a restored forested riparian wetland adjacent to a manure application area and a heavily fertilized pasture in the Georgia Coastal Plain. The buffer system was managed based on USDA recommendations and averaged 38 m in width. Water quality and hydrology data were collected from 1991-1999. A nitrate plume in shallow ground water with concentrations exceeding 10 mg NO3-N L(-1) moved into the restored forested riparian wetland. Along most of the plume front, concentrations were less than 4 mg NO3-N L(-1) within 25 m. Two preferential flow paths associated with past hydrologic modifications to the site allowed the nitrate plume to progress further into the restored forested riparian wetland. Surface runoff total N, dissolved reactive phosphorus (DRP), and total P concentrations averaged 8.63 mg N L(-1), 1.37 mg P L(-1), and 1.48 mg P L(-1), respectively, at the field edge and were reduced to 4.18 mg N L(-1), 0.31 mg P L(-1), and 0.36 mg P L(-1), respectively, at the restored forested riparian wetland outlet. Water and nutrient mass balance showed that retention and removal rates for nitrogen species ranged from a high of 78% for nitrate to a low of 52% for ammonium. Retention rates for both DRP and total P were 66%. Most of the N retention and removal was accounted for by denitrification. Mean annual concentrations of total N and total P leaving the restored forested riparian wetland were 1.98 mg N L(-1) and 0.24 mg P L(-1), respectively.  相似文献   

2.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

3.
The effectiveness of riparian zones in mitigating nutrient in ground and surface water depends on the climate, management, and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well drained, mixed-deciduous riparian forest to buffer a river from N originating from a poorly drained grass seed cropping system. The study site was adjacent to the Calapooia River in the Willamette Valley, Oregon. Water was found to move from the rapid drainage of swale surface water. During winter hydrological events, the riparian forest also received river water. Low nitrate (NO3-) concentrations (0.2-0.4 mg NO3- -NL(-1)) in the shallow groundwater of the cropping system were associated with low rates of mineralization and nitrification (33 kg N ha(-1) yr(-1)) and high grass seed crop uptake of N (155 kg N ha(-1) yr(-1)). The riparian forest soil had higher rates of mineralization (117 kg N ha(-1) yr(-1)) that produced quantities of soil N that were within the range of literature values for plant uptake, leading to relatively low concentrations of shallow groundwater NO3 (0.6-1.8 mg NO3- -NL(-1)). The swale that dissected the cropping system and riparian area was found to have the highest rates of denitrification and to contribute dissolved organic C to the river. Given the dynamic nature of the hydrology of the Calapooia River study site, data suggest that the riparian forest plays a role not only in reducing export of NO3- from the cropping system to the river but also in processing nutrients from river water.  相似文献   

4.
Due to chronic nutrient enrichment of surface water, wetlands adjacent to land managed with fertilizer have been studied to determine their role in nutrient dynamics. We sampled golf course runoff and determined the loads of NO3- and PO4(-3) transported during storms and the attenuation of those loads when runoff passed through a riparian wetland. All sampled storm events contained NO3- (2 to 1470 g NO3-N per event) and PO4(-3) (1 to 4156 g PO4-P per event). Extensive nutrient attenuation occurred when water passed through the riparian wetland. In 11 events, NO3- and PO4(-3) attenuation averaged 80 and 74%, respectively. In subsequent experiments, we created a stream of water flowing into the wetland and amended it with NO3-, PO4(-3) and Br-, creating an artificial runoff event. The experiments were conducted using conditions similar to those of natural runoff events. We observed rapid and complete attenuation of PO4(-3) immediately after runoff water infiltrated into the wetland subsurface. No PO4(-3) was observed in discharge from the wetland. Nitrate attenuation occurred following a lag phase of several hours that was probably due to reactivation of denitrifying enzymes. Nitrate attenuation was initially less than 60% but increased to 100% in all experiments. We observed extensive dilution of runoff water in the wetland subsurface indicating mixing with pre-event ground water in the wetland. The results indicated that intermittent inputs of NO3- and PO4(-3) could be successfully attenuated in the wetland on the time scale of natural storm events.  相似文献   

5.
Herbicides may leach from agricultural fields into ground water feeding adjacent wetlands. However, only little is known of the fate of herbicides in wetland areas. The purpose of the study was to examine the potential of a riparian fen to mineralize herbides that could leach from an adjacent catchment area. Slurries were prepared from sediment and ground water collected from different parts of a wetland representing different redox conditions. The slurries were amended with O2, NO3-, SO4(2-), and CO2, or CO2 alone as electron acceptors to simulate the in situ conditions and their ability to mineralize the herbides mecoprop, metsulfuron-methyl, isoproturon and atrazine. In addition, the abundance of bacteria able to utilize O2, NO3-, SO4(2-) + CO2, and CO2 as electron acceptors was investigated along with the O2-reducing and methanogenic potential of the sediment. The recalcitrance to bacterial degradation depended on both the type of herbicide and the redox conditions pertaining. Mecoprop was the most readily degraded herbicide, with 36% of [ring-U-14C]mecoprop being mineralized to 14CO2 under aerobic conditions after 473 d. In comparison, approximately 29% of [phenyl-U-14C]metsulfuron-methyl and 16% of [ring-U-14C]isoproturon mineralized in aerobic slurries during the same period. Surprisingly, 8 to 13% of mecoprop also mineralized under anaerobic conditions. Neither metsulfuron-methyl nor isoproturon were mineralized under anaerobic conditions and atrazine was not mineralized under any of the redox conditions examined. The present study is the first to report mineralization of meco-prop in ground water in a wetland area, and the first to report mineralization of a phenoxyalcanoic acid herbicide under both aerobic and anaerobic conditions.  相似文献   

6.
Riparian zones within the Appalachian Valley and Ridge physiographic province are often characterized by localized variability in soil moisture and organic carbon content, as well as variability in the distribution of soils formed from alluvial and colluvial processes. These sources of variability may significantly influence denitrification rates. This investigation studied the attenuation of nitrate (NO3- -N) as wastewater effluent flowed through the shallow ground water of a forested headwater riparian zone within the Appalachian Valley and Ridge physiographic province. Ground water flow and NO3- -N measurements indicated that NO3- -N discharged to the riparian zone preferentially flowed through the A and B horizons of depressional wetlands located in relic meander scars, with NO3- -N decreasing from > 12 to < 0.5 mg L(-1). Denitrification enzyme activity (DEA) attributable to riparian zone location, soil horizon, and NO3- -N amendments was also determined. Mean DEA in saturated soils attained values as high as 210 microg N kg(-1) h(-1), and was significantly higher than in unsaturated soils, regardless of horizon (p < 0.001). Denitrification enzyme activity in the shallow A horizon of wetland soils was significantly higher (p < 0.001) than in deeper soils. Significant stimulation of DEA (p = 0.027) by N03- -N amendments occurred only in the meander scar soils receiving low NO3- -N (<3.6 mg L(-1)) concentrations. Significant denitrification of high NO3- -N ground water can occur in riparian wetland soils, but DEA is dependent upon localized differences in the degree of soil saturation and organic carbon content.  相似文献   

7.
Surface runoff water quality in a managed three zone riparian buffer   总被引:2,自引:0,他引:2  
Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.  相似文献   

8.
Denitrification in alluvial wetlands in an urban landscape   总被引:1,自引:0,他引:1  
Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.  相似文献   

9.
Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus].  相似文献   

10.
Concentrations of dissolved methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) were measured in the water columns of non-oxygenated and artificially oxygenated, ice-covered eutrophied lakes in the mid-boreal zone in Finland during late winter 1997 and 1999. Sampling was conducted during winter stratification, the critical period for oxygen (O2) deficiency in seasonally ice-covered, thermally stratified lakes. Oxygen concentrations were maintained at least at a moderate level throughout the oxygenated water columns, whereas the non-oxygenated columns suffered anoxic hypolimnia. The mean concentrations of dissolved CH4 exceeding the atmospheric equilibrium were greater in the non-oxygenated water columns (20.6-154 microM) than in the oxygenated ones (0.01-1.41 microM). In contrast, the mean excess CO2 concentrations varied less between the non-oxygenated and oxygenated sites (0.28-0.47 and 0.25-0.31 mM, respectively). Oxygenated water columns had greater mean excess concentrations of N2O (0.018-0.032 microM) than the non-oxygenated ones (0.005-0.024 microM). If the accumulated greenhouse gas stores in the water columns during winter are assumed to be released to the atmosphere during the spring overturn, the global warming potentials (GWP, time horizon 100 yr) of these potential emissions at the non-oxygenated, eutrophic study sites ranged from 177 to 654 g CO2 equivalent (CO2-e) m-2 compared with 144 to 173 g CO2-e m-2 at the oxygenated sites. The increase in the accumulation of CH4 was the main reason for the higher GWP of the non-oxygenated sites. Anthropogenic eutrophication of lake ecosystems can generate increased CH4 emissions due to associated O2 depletion of their sediment and water column.  相似文献   

11.
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.  相似文献   

12.
Wetlands can improve water quality through natural processes including sedimentation, nutrient transformations, and microbial and plant uptake. Tailwater from irrigated pastures may contribute to nonpoint source water pollution in the form of sediments, nutrients, and pathogens that degrade downstream water quality. We examined benefits to water quality provided by a natural, flow-through wetland and a degraded, channelized wetland situated within the flood-irrigation agricultural landscape of the Sierra Nevada foothills of Northern California. The non-degraded, reference wetland significantly improved water quality by reducing loads of total suspended sediments, nitrate, and Escherichia coli on average by 77, 60, and 68%, respectively. Retention of total N, total P, and soluble reactive P (SRP) was between 35 and 42% of loads entering the reference wetland. Retention of pollutant loads by the channelized wetland was significantly lower than by the reference wetland for all pollutants except SRP. A net export of sediment and nitrate was observed from the channelized wetland. Decreased irrigation inflow rates significantly improved retention efficiencies for nitrate, E. coli, and sediments in the reference wetland. We suggest that maintenance of these natural wetlands and regulation of inflow rates can be important aspects of a best management plan to improve water quality as water runs off of irrigated pastures.  相似文献   

13.
Abstract: Dissolved inorganic nitrogen (DIN) retention‐transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ~3 mg‐N/l to <0.1 mg‐N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification‐denitrification. Numerical simulations of seasonal hyporheic sediment nitrification‐denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989‐93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water‐ground water connectivity, will be required to develop effective nitrate management strategies.  相似文献   

14.
The release of P from lake sediments, which occurs as a part of internal loading, may contribute a significant portion of the total P load to a lake. Phosphorus release rates from sediments in Spring Lake, Michigan, and the degree to which alum reduces P release from these sediments, were investigated during the summer of 2003. Triplicate sediment cores were sampled from four sites in the lake, and exposed to one of four treatments in the laboratory: (i) aerobic water column/alum, (ii) aerobic water column/no alum, (iii) anaerobic water column/alum, or (iv) anaerobic water column/no alum. Total P (TP) release rates were virtually undetectable in the alum treatments (both aerobic and anaerobic). Low, but detectable, release rates were measured in the aerobic/no alum treatment. The highest release rates were measured in the anaerobic/no alum treatments, and ranged from 1.6 to 29.5 mg P m(-2) d(-1) depending on how the calculations were derived. These fluxes translated to mean internal loads that ranged between 2.7 (low range) and 6.4 (high range) Mg yr(-1) when extrapolated to a whole-lake basis. Internal P loads accounted for between 55 and 65% of the total P load to Spring Lake. Although alum is a potentially effective means of reducing the sediment source of P, there is considerable uncertainty in how long an alum treatment would remain effective in this system given the current rates of external loading and the lack of information on wind-wave action and bioturbation in Spring Lake.  相似文献   

15.
ABSTRACT: Dissolved gas analysis permits direct detection of ground water denitrification, a technique we used in this study to assess the fate of nitrate in a riparian wetland. Dissolved argon (Ar) and dinitrogen (N2) were measured in transects of nested piezometers installed at different depths within upwelling regions of a riparian wetland. The method uses the Ar content in the water as a natural inert tracer for assessing background content of N2 from the previous air/water equilibrium. Within the wetland under study, anoxic to suboxic ground water became more oxic in piezometers close to the aquifer layer, indicating upwelling of oxic ground water. Assessment of loss of nitrate and Ar in ground water within an upwelling zone indicated that shallow piezometers had significant N2 loss through degassing. Most of the measured nitrate‐nitrogen (NO3?‐N) loss of 205 μM in a piezometer nest could be accounted for by total N2‐N produced (169 μM N), calculated from changes in dissolved N2 and estimated N2 degassed. Degassing due to methane (CH4) production was also detected in some shallow piezometers within nests. This technique for analysis of dissolved gases in ground water can be applied to detect small changes in N gas concentration and aids in assessing the fate of nitrate along a ground water flow path.  相似文献   

16.
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland   总被引:2,自引:0,他引:2  
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.  相似文献   

17.
The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream, two distinct ground water environments were observed: an alluvial environment upstream of a relict beaver dam influenced by stream water and a hillslope environment downstream of the relict beaver dam. Nitrate was elevated to levels representative of agricultural runoff in a third well transect located approximately 5 m from the stream to assess the effectiveness of the riparian zone as a NO(3)(-) sink. Subsurface NO(3)(-) injections revealed transport of up to 15 mg N L(-1) was nearly conservative in the alluvial riparian environment. Addition of glucose stimulated dissolved oxygen uptake and promoted NO(3)(-) retention under both background and elevated NO(3)(-) levels in summer and winter. Disappearance of added NO(3)(-) was followed by transient NO(2)(-) formation and, in the presence of C(2)H(2), by N(2)O formation, demonstrating potential denitrification. Under current land use, most NO(3)(-) associated with local ground water is biotically retained or diluted before reaching the channel. However, elevating NO(3)(-) levels through agricultural cultivation would likely result in increased NO(3)(-) transport to the channel.  相似文献   

18.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   

19.
ABSTRACT: This study evaluates a conceptual model developed for riparian zones in Ontario, Canada, that links landscape hydrogeological characteristics to riparian ground water hydrology and nitrate removal efficiency. Data from a range of riparian sites in the United States and Europe suggest that the riparian zone types identified in the model are consistent with patterns of riparian hydrology and nitrate flux and removal in many humid temperate landscapes. These data also support the view that a riparian width of less than 20 m is often sufficient for effective nitrate removal unless riparian sediments are coarse grained or nitrate transport occurs mainly in surface‐fed ground water seeps. This study assesses the possibility of using topographic, soil, surficial geology, and vegetation maps to determine landscape attributes linked by the model to riparian zone hydrological functioning and nitrate removal efficiency. Although mappable data can help in determining broad classes of riparian zones, field visits are necessary to determine non‐mappable riparian attributes such as seeps, organic horizons, and permeable sediment depth in the riparian zone. This research suggests that the conceptual model could be used for landscape management purposes in most temperate landscapes with minor modifications and that the hydrological component of the model could be adapted for contaminants other than nitrate.  相似文献   

20.
Riparian ecosystems, through their unique position in the agricultural landscape and ability to influence nutrient cycles, can potentially reduce NO3 loading to surface and ground waters. The purpose of this study was to determine the fate of NO3 in shallow groundwater moving along a lateral flowpath from a grass seed cropping system through an undisturbed mixed-species herbaceous riparian area. Soil A (30-45 cm) and C horizon (135-150 cm) NO3, dissolved oxygen, and nitrous oxide concentrations were significantly higher in the cropping system than the adjacent riparian area. Nitrate concentrations in both horizons of the riparian soil were consistently at or below 0.05 mg N L(-1) while cropping system concentrations ranged from 1 to 12 mg N L(-1). Chloride data suggested that NO3 dilution occurred from recharge by precipitation. However, a sharp decrease in NO3/Cl ratios as water moved into the riparian area indicated that additional dilution of NO3 concentrations was unlikely. Riparian area A horizon soil water had higher dissolved organic carbon than the cropping system and when the riparian soil became saturated, available electron acceptors (O2, NO3) were rapidly reduced. Dissolved inorganic carbon was significantly higher in the riparian area than the cropping system for both horizons indicating high biological activity. Carbon limitation in the cropping system may have led to microbial respiration using primarily O2 and to a lesser degree NO3. Within 6 m of the riparian/cropping system transition, NO3 was virtually undetectable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号