首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   

2.
Riparian zones within the Appalachian Valley and Ridge physiographic province are often characterized by localized variability in soil moisture and organic carbon content, as well as variability in the distribution of soils formed from alluvial and colluvial processes. These sources of variability may significantly influence denitrification rates. This investigation studied the attenuation of nitrate (NO3- -N) as wastewater effluent flowed through the shallow ground water of a forested headwater riparian zone within the Appalachian Valley and Ridge physiographic province. Ground water flow and NO3- -N measurements indicated that NO3- -N discharged to the riparian zone preferentially flowed through the A and B horizons of depressional wetlands located in relic meander scars, with NO3- -N decreasing from > 12 to < 0.5 mg L(-1). Denitrification enzyme activity (DEA) attributable to riparian zone location, soil horizon, and NO3- -N amendments was also determined. Mean DEA in saturated soils attained values as high as 210 microg N kg(-1) h(-1), and was significantly higher than in unsaturated soils, regardless of horizon (p < 0.001). Denitrification enzyme activity in the shallow A horizon of wetland soils was significantly higher (p < 0.001) than in deeper soils. Significant stimulation of DEA (p = 0.027) by N03- -N amendments occurred only in the meander scar soils receiving low NO3- -N (<3.6 mg L(-1)) concentrations. Significant denitrification of high NO3- -N ground water can occur in riparian wetland soils, but DEA is dependent upon localized differences in the degree of soil saturation and organic carbon content.  相似文献   

3.
We investigated the seasonal patterns of denitrification rates and potentials in soil profiles along the topohydrosequence formed at the upland-wetland interface in three riparian wetlands with different vegetation cover (i.e., forest, understory vegetation, and grass). Denitrification was measured using the acetylene inhibition method on soil cores and slurries, which provided a means of comparing the relative activity of this process in different locations. We evaluated, on a seasonal basis, the respective importance of the vegetative cover and the hydromorphic gradient as factors limiting denitrification. Regardless of the season, vegetation type, or lateral position along each topohydrosequence in the riparian wetlands, strong significant gradients of both in situ and potential denitrification rates were measured within a soil profile. Results confirm that the upper organic soil horizon is the most active, when in contact with the ground water. In deeper soil horizons, denitrification activity was low (from 0.004 to 0.5 mg N kg(-1) dry soil d(-1)), but contributed significantly to the reduction of ground water NO3- load along the riparian ground water flowpath (from 9.32 to 0.98 mg NO3-N L(-1)). Along the soil topohydrosequence, the denitrifying community of the upper soil horizons did not vary significantly on a seasonal basis despite the large seasonal ground water fluctuations. Along each topohydrosequence, the denitrification-limiting factor gradually shifted from anaerobiosis to NO3- supply. In situ denitrification rates in the forested, understory vegetation and grass sites were not significantly different. This result emphasizes the importance of the topography of the valley rather than the vegetation cover in controlling denitrification activity in riparian wetlands.  相似文献   

4.
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland   总被引:2,自引:0,他引:2  
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.  相似文献   

5.
We determined the water quality effect of a restored forested riparian wetland adjacent to a manure application area and a heavily fertilized pasture in the Georgia Coastal Plain. The buffer system was managed based on USDA recommendations and averaged 38 m in width. Water quality and hydrology data were collected from 1991-1999. A nitrate plume in shallow ground water with concentrations exceeding 10 mg NO3-N L(-1) moved into the restored forested riparian wetland. Along most of the plume front, concentrations were less than 4 mg NO3-N L(-1) within 25 m. Two preferential flow paths associated with past hydrologic modifications to the site allowed the nitrate plume to progress further into the restored forested riparian wetland. Surface runoff total N, dissolved reactive phosphorus (DRP), and total P concentrations averaged 8.63 mg N L(-1), 1.37 mg P L(-1), and 1.48 mg P L(-1), respectively, at the field edge and were reduced to 4.18 mg N L(-1), 0.31 mg P L(-1), and 0.36 mg P L(-1), respectively, at the restored forested riparian wetland outlet. Water and nutrient mass balance showed that retention and removal rates for nitrogen species ranged from a high of 78% for nitrate to a low of 52% for ammonium. Retention rates for both DRP and total P were 66%. Most of the N retention and removal was accounted for by denitrification. Mean annual concentrations of total N and total P leaving the restored forested riparian wetland were 1.98 mg N L(-1) and 0.24 mg P L(-1), respectively.  相似文献   

6.
Watson, Tara K., Dorothy Q. Kellogg, Kelly Addy, Arthur J. Gold, Mark H. Stolt, Sean W. Donohue, and Peter M. Groffman, 2010. Groundwater Denitrification Capacity of Riparian Zones in Suburban and Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 46(2):237-245. DOI: 10.1111/j.1752-1688.2010.00418.x Abstract: We evaluated the relationship of dominant watershed land use to the structure and nitrogen (N) sink function of riparian zones. We focused on groundwater denitrification capacity, water table dynamics, and the presence and pattern of organically enriched deposits. We used the push-pull method (measurement of 15N-enriched denitrification gases derived from an introduced groundwater plume of 15N-enriched nitrate) to evaluate groundwater denitrification capacity on nine forested wetland riparian sites developed in alluvial or outwash parent materials in southern New England. Three replicate sites were located in each of the three watershed types, those with substantial (1) irrigated agriculture, (2) suburban development, and (3) forest. Soil morphology and water table dynamics were assessed at each site. We found significantly lower mean annual water tables at sites within watersheds with substantial irrigated agriculture or suburban development than forested watersheds. Water table dynamics were more variable at sites within suburban watersheds, especially during the summer. Groundwater denitrification capacity was significantly greater at sites within forested watersheds than in watersheds with substantial irrigated agriculture. Because of the high degree of variability observed in riparian sites within suburban watersheds, groundwater denitrification capacity was not significantly different from either forested or agricultural watersheds. The highly variable patterns of organically enriched deposits and water tables at sites within suburban watersheds suggests that depositional events are irregular, limiting the predictability of groundwater N dynamics in these riparian zones. The variability of riparian N removal in watersheds with extensive suburbia or irrigated agriculture argues for N management strategies emphasizing effective N source controls in these settings.  相似文献   

7.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   

8.
Spray irrigation of forested land can provide an effective system for nutrient removal and treatment of municipal wastewater. Evolution of N2 + N2O from denitrifying activity is an important renovation pathway for N applied to forested land treatment systems. Federal and state guidance documents for design of forested land treatment systems indicate the expected range for denitrification to be up to 25% of applied N, and most forest land treatment systems are designed using values from 15 to 20% of applied N. However, few measurements of denitrification following long-term wastewater applications at forested land treatment sites exist. In this study, soil N2 + N2O-N evolution was directly measured at four different landscape positions (hilltop, midslope, toe-slope, and riparian zone) in a forested land treatment facility in the Georgia Piedmont that has been operating for more than 13 yr. Denitrification rates within effluent-irrigated areas were significantly greater than rates in adjacent nonirrigated buffer zones. Rates of N2 + N2O-N evolved from soil in irrigated forests ranged from 5 to 10 kg ha(-1) yr(-1) N on the three upland landscape positions and averaged 38 kg ha(-1) yr(-1) N within the riparian zone. The relationship between measured riparian zone denitrification rates and soil physical and chemical properties was poor. The best relationship was with soil temperature, with an r2 of 0.18. Overall, on a landscape position weighted basis, only 2.4% of the wastewater-applied N was lost through denitrification.  相似文献   

9.
We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments.  相似文献   

10.
Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus].  相似文献   

11.
The effectiveness of riparian zones in mitigating nutrient in ground and surface water depends on the climate, management, and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well drained, mixed-deciduous riparian forest to buffer a river from N originating from a poorly drained grass seed cropping system. The study site was adjacent to the Calapooia River in the Willamette Valley, Oregon. Water was found to move from the rapid drainage of swale surface water. During winter hydrological events, the riparian forest also received river water. Low nitrate (NO3-) concentrations (0.2-0.4 mg NO3- -NL(-1)) in the shallow groundwater of the cropping system were associated with low rates of mineralization and nitrification (33 kg N ha(-1) yr(-1)) and high grass seed crop uptake of N (155 kg N ha(-1) yr(-1)). The riparian forest soil had higher rates of mineralization (117 kg N ha(-1) yr(-1)) that produced quantities of soil N that were within the range of literature values for plant uptake, leading to relatively low concentrations of shallow groundwater NO3 (0.6-1.8 mg NO3- -NL(-1)). The swale that dissected the cropping system and riparian area was found to have the highest rates of denitrification and to contribute dissolved organic C to the river. Given the dynamic nature of the hydrology of the Calapooia River study site, data suggest that the riparian forest plays a role not only in reducing export of NO3- from the cropping system to the river but also in processing nutrients from river water.  相似文献   

12.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

13.
Riparian zones are recognized as landscape features that buffer streams from pollutants, particularly nitrogen. The objectives of this experiment were to (i) assess denitrification activity within a riparian zone and (ii) determine the influence of physical, chemical, and landscape features on denitrification. This experiment was conducted from 1994 to 1997 in North Carolina on a riparian zone contiguous to a spray field that was heavily loaded with swine lagoon wastewater. Denitrification enzyme activity (DEA) was measured on soils collected from (i) the soil surface, (ii) midway between the soil surface and water table, and (iii) above the water table. The DEA ranged from 3 to 1660 microg N(2)O-N kg(-1) soil h(-1). The DEA was highest next to the stream and lowest next to the spray field. Nitrate was found to be the limiting factor for denitrification. The DEA generally decreased with soil depth; means for the surface, middle, and bottom depths were 147, 83, and 67 microg N(2)O-N kg(-1) soil h(-1), respectively. These DEA values are higher than those reported for riparian zones adjoining cropland of the southeastern United States, but are lower than those reported for a constructed wetland used for treatment of swine wastewater. Regression analysis indicated that soil total nitrogen was the highest single factor correlated to DEA (r(2) = 0.65). The inclusion of water table depth, soil depth, and distance from the spray field improved the R(2) to 0.86. This riparian zone possessed sufficient soil area with high denitrifying conditions to be a significant factor in the removal of excess nitrogen in the ground water.  相似文献   

14.
Nitrate N fluxes from tile-drained watersheds have been implicated in water quality studies of the Mississippi River basin, but actual NO3-N loads from small watersheds during long periods are poorly documented. We evaluated discharge and NO3-N fluxes passing the outlet of an Iowa watershed (5134 ha) and two of its tile-drained subbasins (493 and 863 ha) from mid-1992 through 2000. The cumulative NO3-N load from the catchment was 168 kg ha(-1), and 176 and 229 kg ha(-1) from the subbasins. The outlet had greater total discharge (1831 mm) and smaller flow-weighted mean NO3-N concentration (9.2 mg L(-1)) than the subbasins, while the larger subbasin had greater discharge (1712 vs. 1559 mm) and mean NO3-N concentration (13.4 vs. 11.3 mg L(-1)) than the smaller subbasin. Concentrations exceeding 10 mg L(-1) were common, but least frequent at the outlet. Nitrate N was generally not diluted by large flows, except during 1993 flooding. The outlet showed smaller NO3-N concentrations at low flows. Relationships between discharge and NO3-N flux showed log-log slopes near 1.0 for the subbasins, and 1.2 for the outlet, considering autocorrelation and measurement-error effects. We estimated denitrification of subbasin NO3-N fluxes in a hypothetical wetland using published data. Assuming that temperature and NO3-N supply could limit denitrification, then about 20% of the NO3-N would have been denitrified by a wetland constructed to meet USDA-approved criteria. The low efficiency results from the seasonal timing and NO3-N content of large flows. Therefore, agricultural and wetland best management practices (BMPs) are needed to achieve water quality goals in tile-drained watersheds.  相似文献   

15.
Riparian buffers are used throughout the world for the protection of water bodies from nonpoint-source nitrogen pollution. Few studies of riparian or treatment wetland denitrification consider the production of nitrous oxide (N2O). The objectives of this research were to ascertain the level of potential N2O production in riparian buffers and identify controlling factors for N2O accumulations within riparian soils of an agricultural watershed in the southeastern Coastal Plain of the USA. Soil samples were obtained from ten sites (site types) with different agronomic management and landscape position. Denitrification enzyme activity (DEA) was measured by the acetylene inhibition method. Nitrous oxide accumulations were measured after incubation with and without acetylene (baseline N2O production). The mean DEA (with acetylene) was 59 microg N2O-N kg(-1) soil h(-1) for all soil samples from the watershed. If no acetylene was added to block conversion of N2O to N2, only 15 microg N2O-N kg(-1) soil h(-1) were accumulated. Half of the samples accumulated no N2O. The highest level of denitrification was found in the soil surface layers and in buffers impacted by either livestock waste or nitrogen from legume production. Nitrous oxide accumulations (with acetylene inhibition) were correlated to soil nitrogen (r2=0.59). Without acetylene inhibition, correlations with soil and site characteristics were lower. Nitrous oxide accumulations were found to be essentially zero, if the soil C/N ratios>25. Soil C/N ratios may be an easily measured and widely applicable parameter for identification of potential hot spots of N2O productions from riparian buffers.  相似文献   

16.
Constructed wetland treatment of swine wastewater probably involves substantial denitrification. Our objective was to assess denitrification and denitrification enzyme activity (DEA) in such wetlands in relation to plant communities, N loading, carbon or nitrogen limitations, and water depth. Two wetland cells each 3.6 m wide and 33.5 m long were connected in series. One set of cells was planted with rushes and bulrushes, including soft rush (Juncus effusus L.), softstem bulrush [Schoenoplectus tabernaemontani (K.C. Gmel.) Pallal, American bulrush [Schoenoplectus americanus (Pers.) Volkart ex Schinz & R. Keller], and woolgrass bulrush [Scirpus cyperinus (L.) Kunth]. Another set was planted with bur-reeds and cattails, including American bur-reed (Sparganium americanum Nutt.), broadleaf cattail (Typha latifolia L.), and narrowleaf cattail (Typha angustifolia L.). The sets will be referred to herein as bulrush and cattail wetlands, respectively. Denitrification and DEA were measured via the acetylene inhibition method in intact soil cores and disturbed soil samples that were taken during four years (1994-1997). Although DEA in the disturbed samples was greater than denitrification in the core samples, the measurements were highly correlated (r2 > or = 0.82). The DEA was greater in the bulrush wetlands than the cattail wetlands, 0.516 and 0.210 mg N kg(-1) soil h(-1), respectively; and it increased with the cumulative applied N. The DEA mean was equivalent to 9.55 kg N ha(-1) d(-1) in the bulrush wetlands. We hypothesized and confirmed that DEA was generally limited by nitrate rather than carbon. Moreover, we determined that one of the most influential factors in DEA was wetland water depth. In bulrush wetlands, the slope and r2 values of the control treatment were -0.013 mg N kg(-1) soil h(-1) mm(-1) depth and r2 = 0.89, respectively. Results of this investigation indicate that DEA can be very significant in constructed wetlands used to treat swine wastewater.  相似文献   

17.
This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates.  相似文献   

18.
Riparian wetlands containing springs are thought to be ineffective at removing nitrate because contact times between the upwelled ground water and the underlying microbially active soils are short. Tracer experiments using lithium bromide (LiBr) and nitrate (NO3-N) injected at the surface were used to quantify residence times and NO3-N removal in a riparian swale characteristic of New Zealand hill-country pasture. An experimental enclosure was used with collecting trays at the downstream end to measure flow and concentration, shallow wells to measure subsurface concentrations, and an array of logging conductivity probes to monitor tracer continuously. The majority of added tracer reached the outlet more slowly than could be explained by surface flow, but more quickly than could be explained by Darcy seepage flow. There was evidence from the wells of tracer diffusing vertically to a depth of at least 5 cm into the surface soil layer, which was permanently saturated and highly porous. During dry weather 24 +/- 9% of added NO3-N was removed over a distance of 1.5 m largely by denitrification. The net uptake length coefficient for this wetland (K = 0.08 +/- 0.03 m(-1)) is slightly higher than the range (K = 0.01-0.07 m(-1)) measured in a small stream channel infested with macrophytes. Nitrate removal is expected to decrease with increasing flow. Seepage flow is estimated to have removed only 7 +/- 4% of the added NO3-N and we hypothesize that vertical diffusion substantially increases NO3-N removal in this type of wetland. Riparian wetlands with springs and surface flows should not be dismissed as having low NO3-N removal potential without checking whether there is significant vertical mixing.  相似文献   

19.
Organic debris dams (accumulations of organic material) can function as "hotspots" of nitrogen (N) processing in streams. Suburban streams are often characterized by high flows that prevent the accumulation of organic debris and by elevated concentrations of solutes, especially nitrate (NO(3)(-)) and chloride (Cl(-)). In this study we (1) studied the effects of urbanization on the extent and characteristics of debris dams in large and small streams and (2) evaluated the effects of NO(3)(-) and Cl(-) on rates of N cycle processes in these debris dams. In some suburban streams debris dams were small and rare, but in others factors that reduce the effects of high stream flows fostered the maintenance of debris dams. Ambient denitrification enzyme activity (DEA) in these suburban and forested streams was positively correlated with stream NO(3)(-) concentrations. In laboratory microcosms, DEA in debris dam material from a forested reference stream was increased by NO(3)(-) additions. Chloride additions constrained the response of DEA to NO(3)(-) additions in material from the forested stream, but had no effect on DEA in material from streams with a history of high Cl(-) levels. Chloride additions changed the sign of net N mineralization from negative (consumption of inorganic N) to positive in debris dam material from the forested reference stream, but had no effect on net mineralization in material from streams with a history of exposure to Cl(-). Understanding the factors regulating the maintenance and N cycling activity of organic debris, and incorporating them into urban stream management plans could have important effects on N dynamics in suburban watersheds.  相似文献   

20.
Although wetlands are known to be sinks for nitrogen (N) and phosphorus (P), their function in urban watersheds remains unclear. We analyzed water and nitrate (NO3?) and phosphate (PO43?) dynamics during precipitation events in two oxbow wetlands that were created during geomorphic stream restoration in Baltimore County, Maryland that varied in the nature and extent of connectivity to the adjacent stream. Oxbow 1 (Ox1) received 1.6‐4.2% and Oxbow 2 (Ox2) received 4.2‐7.4% of cumulative streamflow during storm events from subsurface seepage (Ox1) and surface flow (Ox2). The retention time of incoming stormwater ranged from 0.2 to 6.7 days in Ox1 and 1.8 to 4.3 days in Ox2. Retention rates in the wetlands ranged from 0.25 to 2.74 g N/m2/day in Ox1 and 0.29 to 1.94 g N/m2/day in Ox2. Percent retention of the NO3?‐N load that entered the wetlands during the storm events ranged from 64 to 87% and 23 to 26%, in Ox1 and Ox2, respectively. During all four storm events, Ox1 and Ox2 were a small net source of dissolved PO43? to the adjacent stream (i.e., more P exited than entered the wetland), releasing P at a rate of 0.23‐20.83 mg P/m2/day and 3.43‐24.84 mg P/m2/day, respectively. N and P removal efficiency of the oxbows were regulated by hydrologic connectivity, hydraulic loading, and retention time. Incidental oxbow wetlands have potential to receive urban stream and storm flow and to be significant N sinks, but they may be sources of P in urban watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号