首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We characterize the monthly variation in (1 → 3)-β-d-glucan concentration measured over the course of 1 year, and we evaluate the characteristics of size selection using a two-stage cyclone sampler. The (1 → 3)-β-d-glucan concentrations were measured in four bio-related laboratories. A total of 156 samples were collected using a new two-stage cyclone sampler. Analysis of (1 → 3)-β-d-glucan was performed using the kinetic Limulus amebocyte lysate assay. The study showed that airborne (1 → 3)-β-d-glucan concentrations were significantly higher in laboratory D (mean ± SD 1,105?±?1,893 pg/m3) and in the spring (5,458 pg/m3). The highest concentration of (1 → 3)-β-d-glucan occurred in the spring, particularly in May.  相似文献   

2.
Obtaining and analyzing the specific inherent optical properties (SIOPs) of water bodies is necessary for bio-optical model development and remote sensing-based water quality retrievals and, further, for related ecological studies of aquatic ecosystems. This study aimed to measure and analyze the specific absorption and backscattering coefficients of the main water constituents in Poyang Lake, China. The specific absorption and/or backscattering coefficients of the main water constituents at 85 sampling sites (47 in 2010 and 38 in 2011) were measured and analyzed as follows: (1) the concentrations of chlorophyll a (C CHL), suspended particulate matter (C SPM) (including suspended particulate inorganic matter (C SPIM) and suspended particulate organic matter (C SPOM)), and the absorption coefficients of total particulate (a p), phytoplankton (a ph), and non-pigment particulate (a d) were measured in the laboratory; (2) the total backscattering coefficients at six wavelengths of 420, 442, 470, 510, 590, and 700 nm, including the contribution of pure water, were measured in the field with a HydroScat-6 backscattering sensor, and the backscattering coefficients without the contribution of pure water (b b) were then derived by subtracting the backscattering coefficients of pure water from the total backscattering coefficients; (3) the specific absorption coefficients of total particulate ( $ a_{\mathrm{p}}^{ * } $ ), phytoplankton ( $ {a_{{\mathrm{ph}}}}^{ * } $ ), and non-pigment particulate ( $ a_{\mathrm{d}}^{ * } $ ) were calculated by dividing a p, a ph, and a d by C SPM, C CHL, and C SPIM, respectively, while the specific backscattering coefficients of total suspended particulate matter ( $ b_{\mathrm{b}}^{ * } $ ) were calculated by dividing b b by C SPM; and (4) the $ {a_{{\mathrm{ph}}}}^{ * } $ , $ a_{\mathrm{d}}^{ * } $ , $ a_{\mathrm{p}}^{ * } $ and $ b_{\mathrm{b}}^{ * } $ of the remaining samples (46 in 2010 and 36 in 2011) were visualized and analyzed, and their relations to C CHL, C SPIM or C SPM were studied, respectively. The main results are summarized as follows: (1) the $ {a_{{\mathrm{ph}}}}^{ * } $ values at 440 nm were 0.0367–0.7203 m2?mg?1 with a mean of 0.1623?±?0.1426 m2?mg?1 in 2010 and 0.0319–0.7735 m2?mg?1 with a mean of 0.3145?±?0.1961 m2?mg?1 in 2011; there existed significant, negative, and moderate correlations between $ {a_{{\mathrm{ph}}}}^{ * } $ and C CHL at 400–700 nm in 2010 and 2011 (p?<?0.05); (2) The $ a_{\mathrm{d}}^{ * } $ values at 440 nm were 0.0672–0.2043 m2?g?1 with a mean of 0.1022?±?0.0326 m2?g?1 in 2010 and 0.0559–0.1347 m2?g?1 with a mean of 0.0953?±?0.0196 m2?g?1 in 2011; there existed negative correlations between $ a_{\mathrm{d}}^{ * } $ and C SPIM, while the correlations showed overall decreasing and increasing trends before and after around 575 nm with increasing wavelengths, respectively; (3) The $ a_{\mathrm{p}}^{ * } $ values at 440 nm were 0.0690–0.1929 m2?g?1 with a mean of 0.1036?±?0.0298 m2?g?1 in 2010 and 0.0571–0.1321 m2?g?1 with a mean of 0.1014?±?0.0191 m2?g?1 in 2011, and the negative correlations between $ a_{\mathrm{p}}^{ * } $ and C SPM were found in both years; (4) The $ b_{\mathrm{b}}^{ * } $ at the six wavelengths generally decreased with increasing wavelengths, while the $ b_{\mathrm{b}}^{ * } $ values at 420 nm were lower than those at 442 nm for some samples; the correlation between $ b_{\mathrm{b}}^{ * } $ and C SPM increased with increasing wavelength. Such results can only represent the SIOPs during the sampling time periods, and more measurements and analyses considering different seasons need to be carried out in the future to comprehensively understand the SIOPs of Poyang Lake.  相似文献   

3.
Nitrogen (N) leaching has become a matter of worldwide concern. The objectives of this study were: (1) to use soil columns to investigate the leaching of nitrate ( $ {\text{NO}}_3^{ - } $ ), ammonium ( $ {\text{NH}}_4^{ + } $ ), and nitrite ( $ {\text{NO}}_2^{ - } $ ) from calcareous soils that had received an average of 200?kg?1 N?ha?1?year?1 for the previous 30?years and (2) to determine the relationship between soil properties and $ {\text{NO}}_3^{ - } $ , $ {\text{NH}}_4^{ + } $ , and $ {\text{NO}}_2^{ - } $ leaching. The soils used in this study ranged in texture from clay to sandy loam. Leaching experiments were conducted under saturation conditions and consisted of the collection of 1,047–2,524?mL of leachate (12 pore volumes (PVs)), which was equivalent to 534–1,286?mm from rainfall or irrigation. Losses of $ {\text{NO}}_3^{ - } $ ranged from 62 to 437?kg?ha?1, while losses of $ {\text{NH}}_4^{ + } $ and $ {\text{NO}}_2^{ - } $ ranged from 2.5 to 19.3?kg?ha?1 and 0.1 to 10.6?kg?ha?1, respectively. Leaching rates differed between soil samples. The initial and secondary rate of $ {\text{NO}}_3^{ - } $ leaching was determined using an exponential model, and it ranged from 2.8 to 14.7?mg?kg?1 PV?1 and 0.11 to 0.32?mg?kg?1 PV?1. Greater leaching rates in the initial period could be due to leaching of $ {\text{NO}}_3^{ - } $ in solution, while the secondary leaching might be attributable to the diffusion-controlled transfer of $ {\text{NO}}_3^{ - } $ between mobile and immobile liquid phases. Analysis of variance indicated that the effects of soil type on total $ {\text{NO}}_3^{ - } $ leaching were highly significant (p?<?0.001). The results showed that soil $ {\text{NO}}_3^{ - } $ concentration was positively correlated with the peak concentration of $ {\text{NO}}_3^{ - } $ (r?=?0.86; p?<?0.01) and the total $ {\text{NO}}_3^{ - } $ leached (r?=?0.93; p?<?0.01). In addition, the total $ {\text{NH}}_4^{ + } $ leached was positively correlated with silt (r?=?0.67; p?<?0.05), clay (r?=?0.61; p?<?0.05), and pH (r?=?0.77; p?<?0.01), which suggests that soil parameters might be useful indicators of $ {\text{NO}}_3^{ - } $ and $ {\text{NH}}_4^{ + } $ leaching from calcareous soils. Nitrate leaching from soils could threaten groundwater supplies, so possible strategies for minimizing $ {\text{NO}}_3^{ - } $ leaching losses may need to be considered.  相似文献   

4.
Measuring and modeling ammonium adsorption by calcareous soils   总被引:1,自引:0,他引:1  
The aim of this study was assessment of ammonium (NH 4 + ) adsorption isotherms in some agricultural calcareous soils and modeling of that by using the mechanistic exchange model. Ten surface soils (0–30 cm) were collected from areas covered with different land uses in Hamedan, western Iran. Isotherm experiments were carried out by concentrations of NH 4 + prepared from NH4Cl salt (0, 10, 20, 30, 40, 50, 100, and 150 mg NH 4 + ?l?1) in presence of 0.01 M CaCl2 solution. The empirical models including simple adsorption isotherm and Freundlich equations were fitted well to the experimental data. The average amounts of adsorbed NH 4 + in studied soils varied from 8.95 to 35.23 %. Adsorption percentage indicated positive correlation with pH, cation-exchange capacity (CEC), equivalent calcium carbonate, and clay content and had negative correlation with sand content. In order to predict and model NH 4 + adsorption, cation-exchange model in PHREEQC program was used. The model could simulate the NH 4 + adsorption very well in all studied soils. The values of CEC played the major role in modeling of NH 4 + adsorption in this study indicating that cation-exchange process was the major mechanism controlling NH 4 + adsorption in studied soils.  相似文献   

5.
Atmospheric condensate (AC) and rainwater samples were collected during 2010–2011 winter season from Delhi and characterized for major cations and anions. The observed order of abundance of cations and anions in AC samples was NH 4 + ?>?Ca2+?>?Na+?>?K+?>?Mg2+ and HCO 3 ? ?>?SO 4 2? ?>?Cl??>?NO 2 ? ?>?NO 3 ? ?>?F?, respectively. All samples were alkaline in nature and Σ cation/Σ anion ratio was found to be close to one. NH 4 + emissions followed by Ca2+ and Mg2+ were largely responsible for neutralization of acidity caused by high NO x and SO2 emissions from vehicles and thermal power plants in the region. Interestingly, AC samples show low nitrate content compared with its precursor nitrite, which is commonly reversed in case of rainwater. It could be due to (1) slow light-mediated oxidation of HONO; (2) larger emission of NO2 and temperature inversion conditions entrapping them; and (3) formation and dissociation of ammonium nitrite, which seems to be possible as both carry close correlation in our data set. Principal component analysis indicated three factors (marine mixed with biomass burning, anthropogenic and terrestrial, and carbonates) for all ionic species. Significantly higher sulfate/nitrate ratio indicates greater anthropogenic contributions in AC samples compared with rainwater. Compared with rainwater, AC samples show higher abundance of all ionic species except SO4, NO3, and Ca suggesting inclusion of these ions by wash out process during rain events. Ionic composition and related variations in AC and rainwater samples indicate that two represent different processes in time and space coordinates. AC represents the near-surface interaction whereas rainwater chemistry is indicative of regional patterns. AC could be a suitable way to understand atmospheric water interactions with gas and solid particle species in the lower atmosphere.  相似文献   

6.
Urban wastewater in Turkey is primarily discharged without treatment to marine environments, streams and rivers, and natural and artificial lakes. Since it has been well established that untreated effluent in multi-use waters can have acute and chronic impacts to both the environment and human health, it is important to evaluate the consequences of organic enrichment relative to the structure and function of aquatic environment. We investigated the impacts of untreated municipal wastewater discharge from the city of Gumushane in the Eastern Black Sea Region of Turkey on the surface water quality of the stream Harsit. Several key water-quality indicators were measured: chemical oxygen demand (COD), ammonium nitrogen (NH 4 + –N), nitrite nitrogen (NO 2 ? –N), nitrate nitrogen (NO 3 ? –N), total Kjeldahl nitrogen (TKN), total nitrogen (TN), orthophosphate phosphorus (PO 4 3? –P), methylene blue active substances (MBAS), water temperature (t), pH, dissolved oxygen (DO), and electrical conductivity (EC). The monitoring and sampling studies were conducted every 15 days from March 2009 to February 2010 at three longitudinally distributed stations. While t, pH, DO, and EC demonstrated relatively little variability over the course of the study, other parameters showed substantial temporal and spatial variations. The most dramatic differences were noted in COD, NH 4 + –N, NO 2 ? –N, TKN, TN, PO 4 3— P, and MBAS immediately downstream of the wastewater discharge. Concentration increases of 309 and 418 % for COD, 5,635 and 2,162 % for NH 4 + –N, 2,225 and 674 % for NO 2 ? –N, 283 and 478 % for TKN, 208 and 213 % for PO 4 3? –P, and 535 and 1,260 % for MBAS were observed in the summer and autumn, respectively. These changes were associated with greatly diminished seasonal stream flows. Based on NO 2 ? –N, TKN, PO 4 3— P, and MBAS concentrations, it was concluded that Harsit stream water was correctly classified as polluted. The most telling parameter, however, was NH 4 + –N, which indicated highly polluted waters in both the summer and autumn. The elevated concentrations of both P and N in the downstream segment of the stream triggered aggressive growth of submerged algae. This eutrophication of river systems is highly representative of many urban corridors and is symptomatic of ongoing organic enrichment that must be addressed through improved water treatment facilities.  相似文献   

7.
We presented measurements of wet deposition of NH 4 + –N and NO 3 ? –N from 1986 to 2006 in Shenzhen City, China. Over the past 20 years, NO 3 ? –N concentration had significantly increased, but a reverse trend was found for NH 4 + –N. The main form of total inorganic nitrogen (TIN) was NH 4 + –N and the average NH 4 + –N/NO 3 ? –N ratio was 1.57 in this area. The contribution of NO 3 ? –N to TIN increased from 28–42% in the period of 1986–2000 to 50–63% during 2001–2006. The increased deposition flux of NO 3 ? –N resulted in the increasing trend of TIN, although NH 4 + –N showed a decreasing trend over time. Average deposition flux of TIN during 1986–2006 was 13.24 kg/ha/year, with a minimum value of 6.03kg/ha/year in 1988 and a maximum value of 20.52 kg/ha/year in 1997. Wet deposition fluxes of N appeared to vary with season, 81% occurred in the warm season (from April to September). The wet deposition of TIN to the Shenzhen Reservoir reached 8,902 kg in 2006, which contributed 9.95% of the total nonpoint pollution to the reservoir and will be increased in the future.  相似文献   

8.
To investigate seasonal variations of nutrient distribution in the mudflat–shallow water system, we conducted field surveys once a month from August 2007 to July 2008 in the inner area of Ariake Bay (IAB), Japan. The NH4 +–N concentration of the water column increased in autumn because of the high NH4 + release from the sediments, ranging from 850 to 3,001 μmol?m?2?day?1. The NO3 ?–N concentration was maximal in January, which was thought to be caused by NO3 ? release from the oxic sediments and by NO3 ? regeneration due to water column nitrification. The PO4 3?–P concentration of the water column was high in summer–autumn due to the high PO4 3? release from the reduced sediments, ranging from 22 to 164 μmol?m?2?day?1. We estimated the total amounts of DIN and PO4 3?–P release (R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ , respectively) from the muddy sediment area of the IAB. In summer–autumn, R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ corresponded to about 47.7 % of DIN input and about 116.6 % of PO4 3?–P input from the river, respectively. Thus, we concluded that the muddy sediments were an important source of nutrients for the water column of the IAB during summer–autumn. In addition, we found that phosphorus necessary for the growth of Porphyra (Porphyra yezoensis, Rhodophyceae) would be insufficient in the water column when phosphorus during the Porphyra aquaculture period is supplied only from the river. Therefore, the phosphorus release from the muddy sediments was thought to play an important role in the sustainable production of Porphyra in Ariake Bay.  相似文献   

9.
Effects of cement flue dust from Ewekoro cement Kilns were monitored at some aquatic receptor locations. High levels of total suspended particulates (TSPs) and atmospheric deposition rates (ADRs) were recorded within the factory compared to ancillary locations outside the factory. The TSP and ADR levels which were location dependent were significantly higher (P?<?0.05) during the dry periods than in the wet season. Irrespective of seasonal variations, the key elements in the emissions were Ca2?+? and Fe2?+?. The concentrations of Zn2?+?, Mn2?+? and Pb?+? which were trace elements were significantly higher (P?<?0.05) in the deposited than in the airborne particulates. The planktonic flora and fauna of the river systems draining the area were poor with 16 phytoplanktonic and nine zooplanktonic species. Numerically, the phytoplanktons were dominated by diatoms (Bacillariophyta) with Synedra sp. being the most abundant species. The zooplanktonic fauna dominated by rotifers had Lecane curvicornis as a regular occurrence in all the three catchment rivers. The physicochemical parameters assayed were significantly higher (P?<?0.05) in the factory effluent discharges than in water samples from each of the catchment rivers. Seasonal variations inclusive, HCO $_{3}^{-}$ , CO $_{3}^{2-}$ , Ca2?+? and Mg2?+? constituted the major ionic component of water samples analysed irrespective of location. Alaguntan River which receives effluents directly from the factory had significantly higher levels (P?<?0.05) of the assayed ions than the other two rivers draining the cement factory catchment areas.  相似文献   

10.
The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain—the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca2?+?, Mg2?+?, Na?+?, K?+?, CO $_{3}^{-}$ , HCO $_{3}^{-}$ , Cl???, SO $_{4}^{-2}$ , NO $_{3}^{-}$ , and F???. The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na?+? > Ca2?+??> Mg2?+??> K??? among cations and HCO $_{3}^{-}\:\,>$ Cl????> SO $_{4}^{-2} >$ NO $_{3}^{-} >$ F??? among anions in pre-monsoon. In post-monsoon, Mg replaces Ca2?+? and NO $_{3}^{-}$ takes the place of SO $_{4}^{-2}$ . The Modified Piper diagram reflect that the water belong to Ca?+?2–Mg?+?2–HCO $_{3}^{-}$ to Na?+?–HCO $_{3}^{-}$ facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na?+? and K?+? in aquatic solution took place with Ca?+?2 and Mg?+?2 of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water–rock interaction during the process of percolation with fluorite-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.  相似文献   

11.
Considering of the basic properties and also the two nitrogen atoms in the structure, hydrazine hydrate was employed to be an amine additive candidate, to build a Ru(bpy) 3 2+ /hydrazine electrochemiluminescence (ECL) system, and ECL of Ru(bpy) 3 2+ has been employed for the determination of hydrazine hydrate in the paper. The result demonstrated that the logarithmic ECL increasing (ΔECL?=?ECLafter addition of hydrazine???ECLbefore addition of hydrazine) versus the logarithmic concentration of hydrazine hydrate is linear over a concentration range of 1.0?×?10?9 to 1.0?×?10?5?mol/L, on both glassy carbon and Pt electrodes in a pH 9 phosphate buffer. The hydrazine hydrate detection limit was down to 1.0?×?10?9?mol/L, comparatively lower than other detection methods. To check its applicability, the proposed method was applied to the determination of hydrazine hydrate added into a tap water sample with good reproducibility and stability. All these provide a possibility to develop a novel ECL detection method for hydrazine in water.  相似文献   

12.
Japanese stingfish (Sebastiscus marmoratus) and Bambooleaf wrasse (Pseudolabrus japonicas) are monitored annually for mercury pollution in Minamata Bay, Japan. The average total mercury concentration in the muscle of these two species in Minamata Bay was 0.36 mg?kg?1 wet weight and 0.20 kg?1 wet weigh, respectively, between 2008 and 2010. This is higher than levels elsewhere in Japan (0.125 mg?kg?1 wet weight and 0.038 mg?kg?1 wet weight, respectively). The FDA (2001) and EPA (2004) suggested that a proportion of mercury accumulated in fish is derived from seawater. We reared young red sea bream (Pagrus major) over a 2-year period in Minamata Bay and Nagashima (control) to evaluate the uptake of mercury from seawater and dietary sources. Fish were fed a synthesized diet that did not contain mercury. There was no difference in mercury accumulation in the muscle of red sea bream between Minamata Bay and Nagashima. Thus, our results suggest that the majority of mercury accumulated in fish muscle is not from seawater.  相似文献   

13.
The hydrochemistry of groundwater in the Densu River Basin, Ghana   总被引:1,自引:0,他引:1  
Hydrochemical analyses of groundwater samples were used to establish the hydrochemistry of groundwater in the Densu River Basin. The groundwater was weakly acidic, moderately mineralized, fresh to brackish with conductivity ranging from of 96.6 μS cm???1 in the North to 10,070 μS cm???1 in the South. Densu River basin have special economic significance, representing the countries greatest hydrostructure with freshwater. Chemical constituents are generally low in the North and high in the South. The order of relative abundance of major cations in the groundwater is Na?+??> Ca2?+??> Mg2?+??> K?+? while that of anions is Cl????> HCO $_{3}^{-} >$ SO $_{4}^{2-} >$ NO $_{3}^{-}$ . Four main chemical water types were delineated in the Basin. These include Ca–Mg–HCO3, Mg–Ca–Cl, Na–Cl, and mixed waters in which neither a particular cation nor anion dominates. Silicate weathering and ion exchange are probably the main processes through which major ions enter the groundwater system. Anthropogenic activities were found to have greatly impacted negatively on the quality of the groundwater.  相似文献   

14.
Radon and thoron, and their progeny concentrations along with equilibrium factors for gas progeny and radiological risks to the residents have been measured in dwellings of Digboi and Mashimpur areas located on anticlines during the winter season. In this present investigation, twin-cup dosemeters fitted with LR-115 (II) nuclear detectors have been employed. The present work has shown that there exist considerable house-to-house variations in values with maximum values in mud houses and minimum values in assam type (AT) houses. It has been found that mean (and geometric standard deviations (GSD)) radon concentrations are 83.8 (1.3), 113.5 (1.1) and 157.2 (1.2) Bq m?3 in AT, reinforced cement concrete (RCC) and mud houses in Digboi area and 63.0 (1.1), 87.1 (1.4) and 182.1 (1.2) Bq m?3 in AT, RCC and mud houses in Mashimpur area, respectively. The overall mean radon concentrations in Digboi and Mashimpur are estimated to be 114.4 (1.4) and 100.0 (1.7) Bq m?3. The mean radon concentrations are found to be less than the lower reference level of 200 Bq m?3 of the International Commission on Radiological Protection (ICRP 2007). The thoron concentrations in Digboi area are estimated to be 31.1 (1.3), 50.8 (1.4) and 67.0 (1.6) Bq m?3 in AT, RCC and mud houses, respectively, whereas in Mashimpur area, the thoron concentrations are estimated to be 26.4 (1.3), 44.4 (1.3) and 77.7 (1.3) Bq m?3 in AT, RCC and mud houses, respectively. The mean annual effective doses in Digboi area are found to be 1.9 (1.3), 2.7 (1.2) and 4.1 (1.4) mSv y?1 in AT, RCC and mud houses, respectively, while in the case of Mashimpur area, the mean annual effective doses are found to be 1.5 (1.4), 2.2 (1.2) and 4.9 (1.3) mSv y?1 in AT, RCC and mud houses, respectively. Nevertheless, the obtained results are much lower than the upper reference level of 10 mSv (ICRP 2007).  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) are a major concern in environmental studies as many of them have been labeled as probable carcinogens by the International Agency for Research on Cancer (IARC 1983). Due to their lipophilic properties and resistance to degradation, PAHs can accumulate in organic tissue. As a consequence, alarming concentrations of these compounds have been found in many aquatic species. The European catfish (Silurus glanis) is a top food chain predator that is considered to be a reliable bio-indicator of environmental pollution. From 2009 to 2011, 54 specimens of S. glanis were captured from four different sites covering the area of the Po River basin (Northern Italy). Fish muscles were analyzed in the laboratory to determine the levels of nine PAHs, namely naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, pyrene, benz[a]anthracene, chrysene, and benz[a]pyrene (BaP), which were detected by high-performance liquid chromatography (HPLC). The total average concentration of PAHs was 26.90?±?49.50 ng g?1 (min 0.60, max 275.75 ng g?1). Analysis showed that 9.20 % of the fish muscles exceeded the maximum levels of 2 ng g?1 set for BaP by European regulations (Commission Regulation (EC), 2006). Values measured for benz[a]pyrene ranged from 0.05 to 8.20 ng g?1 (mean 1.07?±?1.58 ng g?1). Chrysene and benz[a]anthracene, both considered potential human carcinogens (PAH2), were found at levels of 4.40 and 0.05 ng g?1 (mean values), respectively. The highest mean concentration was recorded for anthracene (12.92 ng g?1), which has been recently included in the list of substances of very high concern (SVHC) as reported by the European Chemicals Agency (ECHA 1–9, 2009).  相似文献   

16.
Groundwater hydrogeochemistry of Trikala municipality, central Greece   总被引:1,自引:0,他引:1  
Sixty-four samples from the groundwater resources of Trikala municipality, central Greece, were collected during two periods (2006 and 2007) and analyzed for physico-chemical parameters (temperature, pH, specific electrical conductivity, and total dissolved solids), major ions (Ca2+, Cl?, HCO 3 ? , K+, Mg2+, Na+, NO 3 ? , SO 4 2? ), and several potentially toxic elements (Al, B, Ba, Br, Ca, Ce, Cl, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Rb, S, Sc, Si, Sn, Sr, U, V, Y, Zn). European Council directives and USEPA guidelines were used to assess the water quality. The results indicate that all samples are fresh water, suitable for human consumption. All basic ions and physico-chemical parameters have average concentrations below their recommended optimum limits with the exception of electrical conductivity, for January 2007, and nitrate for October 2006 and January 2007 sampling periods. This exceedance is the result of dissolution of minerals such as calcite and dolomite that are present in the surrounding rocks and the application of fertilizers, respectively. Lead is the only element with an average value that exceeds the recommended EC guideline, while special attention should be paid to one borehole (T9) which has elevated NO 3 ? values which may pose a risk to human health.  相似文献   

17.
Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO 3 ? -N, and NH 4 + -N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009–2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO 3 ? -N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.  相似文献   

18.
The physicochemical qualities of the final effluents of an urban wastewater treatment plant in South Africa were assessed between August 2007 and July 2008 as well as their impact on the receiving watershed. The pH values across all sampling points ranged between 6.8 and 8.3, while the temperature varied from 18°C to 25°C. Electrical conductivity (EC) of the samples was in the range of 29–1,015 μS/cm, and turbidity varied between 2.7 and 35 NTU. Salinity and total dissolved solids (TDS) varied from 0.36 to 35 psu and 16 to 470 mg/L, respectively. The concentrations of the other physicochemical parameters are as follows: chemical oxygen demand (COD, 48–1,180 mg/L); dissolved oxygen (DO, 3.9–6.6 mg/L); nitrate (0.32–6.5 mg NO $_{3}^{-}$ as N/L); nitrite (0.06–2.4 mg NO $_{2}^{-}$ as N/L); and phosphate (0.29–0.54 mg PO $_{4}^{3-}$ as P/L). pH, temperature, EC, turbidity, TDS, DO, and nitrate varied significantly with season and sampling point (P?<?0.05 and P?<?0.01, respectively), while salinity varied significantly with sampling point (P?<?0.01) and COD and nitrite varied significantly with season (P?<?0.05). Although the treated effluent fell within the recommended water quality standard for pH temperature, TDS, nitrate and nitrite, it fell short of stipulated standards for other parameters. The result generally showed a negative impact of the discharged effluent on the receiving watershed and calls for a regular and consistent monitoring program by the relevant authorities to ensure best practices with regard to treatment and discharge of wastewater into the receiving aquatic milieu in South Africa.  相似文献   

19.
Groundwater is connected to the landscape above and is thus affected by the overlaying land uses. This study evaluated the impacts of land uses upon groundwater quality using trilinear analysis. Trilinear analysis is a display of experimental data in a triangular graph. Groundwater quality data collected from agricultural, septic tank, forest, and wastewater land uses for a 6-year period were used for the analysis. Results showed that among the three nitrogen species (i.e., nitrate and nitrite (NOx), dissolved organic nitrogen (DON), and total organic nitrogen (TON)), NOx had a high percentage and was a dominant species in the groundwater beneath the septic tank lands, whereas TON was a major species in groundwater beneath the forest lands. Among the three phosphorus species, namely the particulate phosphorus (PP), dissolved ortho phosphorus (PO 4 3?? ) and dissolved organic phosphorus (DOP), there was a high percentage of PP in the groundwater beneath the septic tank, forest, and agricultural lands. In general, Ca was a dominant cation in the groundwater beneath the septic tank lands, whereas Na was a dominant cation in the groundwater beneath the forest lands. For the three major anions (i.e., F?, Cl?, and SO 4 2?? ), F? accounted for <1 % of the total anions in the groundwater beneath the forest, wastewater, and agricultural lands. Impacts of land uses on groundwater Cd and Cr distributions were not profound. This study suggests that trilinear analysis is a useful technique to characterize the relationship between land use and groundwater quality.  相似文献   

20.
The relationships among land use patterns, geology, soil, and major solute concentrations in stream water for eight tributaries of the Kayaderosseras Creek watershed in Saratoga County, NY, were investigated using Pearson correlation coefficients and multivariate regression analysis. Sub-watersheds corresponding to each sampling site were delineated, and land use patterns were determined for each of the eight sub-watersheds using GIS. Four land use categories (urban development, agriculture, forests, and wetlands) constituted more than 99 % of the land in the sub-watersheds. Eleven water chemistry parameters were highly and positively correlated with each other and urban development. Multivariate regression models indicated urban development was the most powerful predictor for the same eleven parameters (conductivity, TN, TP, NO $_{3}^-$ , Cl?, HCO $_{3}^-$ , SO $_{4}^{2-}$ , Na+, K+, Ca2+, and Mg2+). Adjusted R 2 values, ranging from 19 to 91 %, indicated that these models explained an average of 64 % of the variance in these 11 parameters across the samples and 70 % when Mg2+ was omitted. The more common R 2, ranging from 29 to 92 %, averaged 68 % for these 11 parameters and 72 % when Mg2+ was omitted. Water quality improved most with forest coverage in stream watersheds. The strong associations between water quality variables and urban development indicated an urban source for these 11 water quality parameters at all eight sampling sites was likely, suggesting that urban stream syndrome can be detected even on a relatively small scale in a lightly developed area. Possible urban sources of Ca2+ and HCO $_{3}^-$ are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号