首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.  相似文献   

2.
Used household batteries are considered as hazardous wastes in many countries due to the potential environmental and human health risks associated with the heavy metals present in batteries. This article presents the current situation of waste household batteries and policies in Iran. Iran with more than 70 million people is a developing country where latest technologies like cell phones and laptops are in widespread use and battery consumption increases accordingly. The household battery demand in Iran has rapidly grown since 2001 and it is expected to increase more quickly in next years, due to increasing technological development. Based on the available data, more than 9800 metric tons of household batteries were imported into Iran in recent decade, with the market value of about US$ 42.6 million. At present, there is no program available in Iran regarding to collection, separation, recycling or safe disposal of used batteries. Therefore, almost all of the spent household are discarded into municipal solid waste (MSW) and sent to sanitary landfills. Appropriate policies to meet safe disposal of household batteries in Iran is also discussed in this investigation.  相似文献   

3.
Batch leaching tests and simulated landfill lysimeter tests were performed to evaluate the contents of heavy metals leached from spent batteries in the municipal solid waste. The toxicity characteristic leaching procedure was utilized to perform the batch leaching tests of 36 spent batteries. Four lysimeters were prepared with battery contents ranging from 0% to 100% by weight for column tests, and the experiments were performed at ambient temperature. The age of all the batteries used in the study ranged from freshly disposed up to approximately 3 years old. The results from the batch tests showed that the type of battery influenced the heavy metal concentrations in the leached solutions. The lysimeter experiment results illustrated that at lower pH levels more metals are leached than at higher pH levels. The increasing amount of batteries disposed in landfills can contribute to the leaching of more metals, especially Mn and Zn, into the environment. These results indicate that the direct disposal of spent household batteries into a MSW landfill can increase the heavy metal contents in the landfill leachate.  相似文献   

4.
Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.  相似文献   

5.
The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.  相似文献   

6.
7.
Four different leaching tests were carried out with spent alkaline batteries as an attempt to quantify the environmental potential burdens associated with landfilling. The tests were performed in columns filled up with batteries either entire or cross-cut, using either deionized water or nitric acid solution as leachant. In a first set of tests, the NEN 7343 standard procedure was followed, with leachant circulating in open circuit from bottom to top through columns. These tests were extended to another leaching step where leachant percolated the columns in a closed loop process.Leachate solutions were periodically sampled and pH, conductivity, density, redox potential, sulphates, chlorides and heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were determined in the samples.The results showed that the total amount of substances leached in tests with cross-cut batteries was higher than with entire ones; zinc and sulphates were the substances found the most in the leachate solutions. In general, the amount of substances dissolved in open circuit is higher than in closed loop due to the effect of solution saturation and the absence of fresh solution addition.Results were compared with metal contents in the batteries and with legal limits for acceptance in landfill (Decision 2003/33/CE and Decree-Law 152/2002). None of the metals were meaningfully dissolved comparatively to its content in the batteries, except Hg. Despite the differences in the experiment procedure used and the one stated in the legislation (mixing, contact time and granulometry), the comparison of results obtained with cross-cut batteries using deionized water with legal limits showed that batteries studied could be considered hazardous waste.  相似文献   

8.
Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.  相似文献   

9.
Thermal treatment of municipal solid waste (MSW) has become a common practice in waste volume reduction and resource recovery. For the utilization of molten slag for construction materials and metal recovery, it is important to understand the behavior of heavy metals in the melting process. In this study, the correlation between the contents of elements in feed materials and MSW molten slag and their distributions in the ash melting process, including metal residues, are investigated. The hazardous metal contents in the molten slag were significantly related to the contents of metals in the feed materials. Therefore, the separation of products containing these metals in waste materials could be an effective means of producing environmentally safe molten slag with a low hazardous metals content. The distribution ratios of elements in the ash melting process were also determined. The elements Zn and Pb were found to have a distribution ratio of over 60% in fly ash from the melting furnace and the contents of these metals were also high; therefore, Zn and Pb could be potential target metals for recycling from fly ash from the melting furnace. Meanwhile, Cu, Ni, Mo, Sn, and Sb were found to have distribution ratios of over 60% in the metal residue. Therefore, metal residue could be a good resource for these metals, as the contents of Cu, Ni, Mo, Sn, and Sb in metal residue are higher than those in other output materials.  相似文献   

10.
Alkaline digestion of animal carcasses is gaining popularity as a method of disposing of animals because of its very effective pathogen control and general ease of operation. Once completed, the resulting high-strength effluent can be released into the municipal sewer systems. In some cases where the municipal system is unable to handle this high-strength wastewater, alternate methods of treatment are required. Co-composting with a low-moisture substrate such as yard trimmings can be an effective option. This paper reports the results of absorption tests to determine the amount of digester effluent (from the Tissue Digestortrade mark process) that can be added to yard waste before leachate production begins. In addition, a low dosage of liquid effluent was added to yard trimmings and composted in laboratory bioreactors. Results show that leachate production begins when 0.6L-effluent is added per kg-unamended yard waste at an original moisture content of 55.6%. The amount of leachate produced increases exponentially following the empirical equation: leachate in mL/kg=0.145 e(6.007Effluent dosage in L/kg) (valid in the effluent addition range of 0-1.2L/kg). Composting of yard waste with effluent showed that the initial pH did not inhibit microbial activity up to 9.39 pH. Variability was high and there was no statistically significant difference in dry matter degradation between treatments (measured range was 1.3-6.0% of initial dry matter). Final compost had nitrogen and phosphorus concentrations of approximately 1% and 0.1%, respectively. The potassium concentration increased with increasing effluent addition and was 1.84% in the 0.2-L/kg treatment. All regulated heavy metals were several-fold below US EPA limits.  相似文献   

11.
The objective of this work was to test the compliance of commercially available batteries with the German Battery Ordinance, a project of the German government that was initiated by the Federal Environment Agency. Different types of commercially available dry cells were analysed for their cadmium, lead and mercury contents. The dry cells underwent mechanical pre-treatment, separation of the different components and microwave-assisted digestion before determination of the heavy metals. Mercury is sometimes added to prevent the generation of gaseous hydrogen from the electrochemical process. Lead could be present since it is sometimes used as an alloying element of zinc. Cadmium has no technical importance and is an undesirable impurity. None of the batteries contained higher heavy metal mass fractions than the permissible limits.  相似文献   

12.
Zirconium was loaded onto orange waste, a cheap and available agricultural waste in Japan, to investigate the feasibility of its utilization for phosphorus recovery from secondary effluent and side-stream liquid, which contain 5.9 and 68.2 mg/dm3 phosphorus, respectively. The phosphorus removal from side-stream liquid by using zirconium-loaded saponified orange waste (Zr-SOW) gel increased with an increasing solid/liquid ratio, and it was found that Zr-SOW gel showed better performance than zirconium ferrite. The prepared adsorbent was effective for phosphorus removal and exhibited a reasonably high adsorption capacity, twice than that of zirconium ferrite. The secondary effluent was treated in a column packed with Zr-SOW gel, and an dynamic adsorption capacity of 1.3 mol-P/kg was attained. The adsorbed phosphorus from the column was successfully eluted as a concentrated form by using a small amount of 0.2 M NaOH. Throughout the elution process, zirconium was not leaked from the adsorption gel.  相似文献   

13.
Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.  相似文献   

14.
The identification of significant pollutants emitted from the contamination source is the first step in evaluating the impact associated with anthropic activity. Municipal solid waste (MSW) incinerators are still generally perceived as great pollutant sources, in particular due to their gaseous emissions from the stack, which constitute the major effluent from the plant. In this work a life cycle assessment and an integrated environmental monitoring system were applied together, in order to obtain complete information about the incineration process and its environmental impact. The former is a proven methodology, but its application to waste management systems constitutes a relatively new field of application with a great developmental potential. The contribution of the incineration process to the different environmental impact categories was investigated, finding many avoided impacts due to energy recovery. The latter is an innovative approach that allows a remarkable understanding of impact due to a contamination source; interesting correlations were found between heavy metals both in gas emissions and in natural matrices in the surroundings.  相似文献   

15.
Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C3S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H+ attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C3S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique.  相似文献   

16.
Biosorption of heavy metals is an innovative and alternative technology to remove these pollutants from aqueous solutions using inactive and dead biomasses such as agricultural and industrial wastes, algae and bacteria. In this study olive mill solid residue was used as heavy metal adsorbent material for its wide availability as agricultural waste and also for its cellulosic matrix, rich of potential metal binding active sites. Preliminary studies concerned with the removal of different heavy metals (Hg, Pb, Cu, Zn and Cd), the effect of pre-treatments by water and n-hexane and the regeneration possibility. Olive mill solid residue resulted able to remove heavy metals from aqueous solutions with an affinity series reflecting the hydrolytic properties of the metallic ions, but also a particular affinity for copper. It can be supposed that biosorption phenomenon occur by a general ion exchange mechanism combined with a specific complexation reaction for copper ions. Water pre-treatment is sufficient to reduce COD release in the effluent according to the law limit, while n-hexane pre-treatment strongly reduces also the adsorption properties of this material. Experimental isotherms obtained under different operating conditions were fitted using a non linear regression method for the estimation of the Langmuir parameters. Moreover a simple Scatchard plot analysis was performed for a preliminary investigation of the active sites, showing the presence of two different site affinities depending on the metal concentration, according to the previous hypothesis of two kinds of uptake mechanisms for copper biosorption. Regeneration tests gave good results in terms of yield of regeneration and also concentration ratios.  相似文献   

17.
Removal of batteries from solid waste using trommel separation   总被引:4,自引:0,他引:4  
This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.  相似文献   

18.
This research investigated the feasibility of reducing volatilization of heavy metals (lead, zinc and cadmium) in municipal solid waste incineration (MSWI) fly ash by forming pyromorphite-like minerals via phosphate pre-treatment. To evaluate the evaporation characteristics of three heavy metals from phosphate-pretreated MSWI fly ash, volatilization tests have been performed by means of a dedicated apparatus in the 100-1000 °C range. The toxicity characteristic leaching procedure (TCLP) test and BCR sequential extraction procedure were applied to assess phosphate stabilization process. The results showed that the volatilization behavior in phosphate-pretreated MSWI fly ash could be reduced effectively. Pyromorphite-like minerals formed in phosphate-pretreated MSWI fly ash were mainly responsible for the volatilization reduction of heavy metals in MSWI fly ash at higher temperature, due to their chemical fixation and thermal stabilization for heavy metals. The stabilization effects were encouraging for the potential reuse of MSWI fly ash.  相似文献   

19.
In this paper, utilizing the existing primary copper smelter process for the recovery of metals from waste printed circuit boards (PCBs) is proposed as an alternative to the current backyard operations in developing countries. The Model for Evaluating Metal Recycling Efficiency from Complex Scraps (MEMRECS) concept is introduced as a tool for the evaluation of the eco-efficiency of metals recovery from waste PCBs. Based on the MEMRECS approach, the relative contribution of every metal fraction to the recyclability of the whole product is estimated. Thereby, gold content is identified as a key factor strongly influencing the efficiency of metals recovery from waste PCBs. Furthermore, it could be used as an indicator for the categorization of waste PCBs before feeding them into the recycling process. Finally, an integrated process is proposed to optimize the eco-efficiency of metals recovery from waste PCBs in developing countries.  相似文献   

20.
About 70% of all of the liquid and solid hazardous wastes commercially incinerated in the United States is being burned in cement kilns. The process inevitably results in residues, primarily heavy metals, entering the clinker and waste dusts (cement kiln dust, CKD) produced by these kilns. The effects of this trend on the nature and chemical composition of cement, actual and future, are discussed. The wastes burned by cement kilns are expected to increasingly have higher levels of heavy metals per Btu. In general, the effects are very simple to describe but have as yet unknown consequences. The present American Society for Testing and Materials (ASTM) standard does not effectively control hazardous waste burning residues in Portland Cement.The regulatory and economic pressures on CKD disposal suggest that much of it, and its heavy metal residues, will, in time, end up in the clinker and the resultant cement. The end point to the trend is the ability to make cement that passes the performance specifications while containing high levels of heavy metals. The only other alternative is to maximize the levels of heavy metals in the CKD, minimize the amount of CKD, and dispose of its as a hazardous waste.It is recommended that an effort to correlate heavy metal levels in clinker with adverse effects be undertaken, a new standard for cement containing hazardous and other waste residuals be developed, and labeling be required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号