首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Kiso Y  Jung YJ  Kuzawa K  Seko Y  Saito Y  Yamada T  Nagai M 《Chemosphere》2006,64(11):1949-1954
A spot test for aqueous nitrate and nitrite for controlling nitrogen removal performance in small-scale wastewater treatment facilities is proposed. In this method, NO(2)(-) ion in water samples was allowed to react with sulfanilic acid and 1-naphthol to form an anionic azo dye. The resulting colored solution was introduced onto a mini column (similar to a gas detecting tube) packed with PVC particles coated with benzyl cetyl dimethyl ammonium chloride (BCDMA) and biphenyl. The NO(2)(-)-N concentration was determined visually by measuring the color band length (CBL) in the column. The CBL correlates linearly with nitrite concentration in the 4-20 mg-N l(-1) range. The concentration of nitrite+nitrate was determined after reduction to nitrite with zinc. The concentration of NO(3)(-)-N species was calculated by difference. This method was used to visually determine the concentrations of NO(2)(-)-N and (NO(2)(-)+NO(3)(-))-N in domestic wastewater samples with maximum suspended solid (SS) and chemical oxygen demand (COD) concentrations of 114 mg l(-1) and 73.9 mg l(-1), respectively.  相似文献   

2.
The rate coefficient for the reaction of nitrite with hypochlorite and hypochlorous acid has been studied using spectrophotometric measurements. The reaction rate has been determined in a wide range of H(+) concentration (5< or =-log[H(+)]< or =11). The kinetics were carried out as a function of NO(2)(-), H(+) and total hypochlorite ([HOCl](total)=[HOCl]+[ClO(-)]+[ClNO(2)]) concentrations. The observed overall rate law is described by: -d[HClO](T)dt=[a[NO(2)(-)](2)+b[NO(2)(-)]][H(+)](2)c+d[H(+)]+e[NO(2)(-)][H(+)](2)[HOCl](total)At T=298 K and in Na(2)SO(4) at an ionic strength (I=1.00 M), we obtained using a nonlinear fitting procedure: a=(1.83+/-0.36)x10(7) s(-1), b=(1.14+/-0.23)x10(5) Ms(-1), c=(1.12+/-0.17)x10(-13) M, d=(1.43+/-0.29)x10(-6) M(2) and e=(1.41+/-0.28)x10(3) M where the errors represent 2sigma. According to the overall rate law, a/b=k(1)/k(3), b/e=k(3), c=K(w), d/c=K(a), d=K(a)K(w) and e=K(1)K(a). In Na(2)SO(4) at an ionic strength (I=1.00 M), the values of K(1) and K(a) are (1.1+/-0.1)x10(-4) and 1.28x10(7) M(-1), respectively. A mechanism is proposed for the NO(2)(-) oxidation which involves the reversible initial step: NO(2)(-)+HOCl left harpoon over right harpoon ClNO(2)+OH(-) (K(1)), while ClNO(2) undergoes the two parallel reactions: attack by NO(2)(-) (k(1)) and hydrolysis (k(3)). ClNO(2) and N(2)O(4) are proposed as important intermediates as they control the mechanism. The rate coefficients k(1) and k(3) have been determined at different ionic strengths in NaCl and Na(2)SO(4). The influence of the ionic strength and ionic environment has been studied in this work.  相似文献   

3.
Nitrite (NO(2)(-)), a highly reactive chemical species, accumulates in coastal waters as a result of pollution with nitrogenous waste and/or an imbalance in the bacterial processes of nitrification and denitrification. The present study probed the impact of nitrite (NO(2)(-)) on the metabolism of polycyclic aromatic hydrocarbons (PAHs) in fish. In a laboratory experiment, exposure of euryhaline fish, Oreochromis mossambicus to industrial effluents containing PAHs in the presence of NO(2)(-) enhanced the cytochrome P450-dependent biotransformation activity determined as 7-ethoxyresorufin-O-deethylase (EROD), by nearly 36% compared to the value observed in the absence of NO(2)(-) (50.2 +/- 6.74 pmol resorufin min(-1) g(-1) liver). Fixed wavelength fluorescence measurements in bile revealed maximum enhancement to have occurred in the metabolites of benzo[a]pyrene, a carcinogenic PAH. Lasting, sublethal physiological deterioration was apparent in fish exposed simultaneously to an oil refinery effluent and NO(2)(-), from the unremittingly decreasing liver somatic index, even after the withdrawal of the contaminants.  相似文献   

4.
Light-induced disappearance of nitrite in the presence of iron (III)   总被引:1,自引:0,他引:1  
Zhang H  Bartlett RJ 《Chemosphere》2000,40(4):411-418
Understanding of rapid disappearance of nitrite in natural waters and its impact on nitrogen natural cycling has remained limited. We found that NO2- disappeared rapidly in pH 3.2 aqueous Fe(III) solutions both in sunlight and in 356 nm light. Quantum yields of the NO2- loss at 356 nm were 0.049-0.14 for initial levels of 10-80 microns NO2- and 200 microns Fe(III). The NO2- loss (at 356 nm) followed apparent first-order kinetics. The rate constants were 1.3 x 10(-3) (40 microns NO2-) and 4.1 x 10(-4) s-1 (80 microns NO2-) for 100 microns Fe(III), and 2.3 x 10(-3) (40 microns NO2-) and 7.5 x 10(-4) s-1 (80 microns NO2(-1)) for 200 microns Fe(III) (t1/2 = 8.7, 27.9, 5.1, and 15.3 min, respectively). The rate constants were directly proportional to [Fe(III)]0 and inversely proportional to [NO2-]0. Agreement between the rate constants obtained experimentally and those calculated mechanistically supports the hypothesis that NO2- was oxidized to NO2 by .OH radicals from photolysis of FeOH2+ complexes, and at high [NO2-]0 (e.g., 80 microns) relative to [Fe(III)]0, hydrolysis of NO2 or N2O4 to form NO3- and NO2- could be significant. This study showed that light and Fe(III)-induced oxidation of NO2- (rate = approximately 10(-1)-10(-2) microns s-1) was more rapid than its direct photolysis (rate = approximately 10(-4) microns s-1), and the photolysis could be a significant source of .OH radicals only in cases where the Fe(III) level is much lower than the NO2- level ([Fe(III)]/[NO2-] < 1/80). This study suggests that the light and Fe(III)-induced oxidation of NO2- would be one potential important pathway responsible for the rapid transformation of NO2- in acidic surface waters, especially those affected by acid-mine drainage or volcanic activities. This study also may be of interest for modeling certain acidic atmospheric water environments.  相似文献   

5.
Different responses of spinach and kidney bean plants to various concentrations of NO(2) in the light and in the dark were shown. Spinach is more resistant than NO(2) than kidney bean. It is not only due to its greater tolerance to NO(2)(-) accumulated in leaves, but also to its stronger ability to metabolize NO(2)(-). The injury of spinach induced by the exposure to high concentration NO(2) in the light was not caused by the accumulation of NO(2)(-), but concerned the large amount of accumulated NH(3). The primary causes of NH(3) accumulation were that the activity of nitrite reductase was not affected by the fumigation on the one hand, and the activities of glutamine synthetase and glutamate synthase were inhibited on the other.  相似文献   

6.
The electrochemical oxidation is a promising process for organic pollutants which are recalcitrant to biological degradation. The anodic oxidation of 1,5-naphthalenedisulfonic acid, hereafter NDS, was evaluated at a Pt anode using in situ generated Ag(II) cation or peroxydisulfate [S2O(8)(2-)] anion as mediators. Kinetics of the direct chemical oxidation of NDS in the presence of Na2S2O8, and the identification of some oxidation intermediates are also reported. An analysis of the results shows that Ag(II) is characterized by a high-reaction rates, while [S2O(8)(2-)] performs the oxidation of NDS in a complete way.  相似文献   

7.
The effect of a soil amendment on ammonium nitrogen transformation and nitrogen retention in broiler manure was evaluated. Prior to incubation, broiler manure was mixed with autoclaved soil or non-autoclaved soil in different ratios to make 1 kg mixtures; broiler manure:non-autoclaved soil=9:1, 5:5, and 1:9 or broiler manure:autoclaved soil=9:1, 5:5, and 1:9. The non-autoclaved soil treatment reduced either numerically or significantly NH(4)(+)-N concentration compared to the autoclaved soil treatment during the 8-wk incubation. Total-N concentration of the non-autoclaved soil treatments was lower than the autoclaved soil treatments from 4 to 8 wk. The lowest manure to non-autoclaved soil treatment (M:S=1:9) had considerably more nitrite and nitrate; however, the higher ratio manure to non-autoclaved soil treatments (M:S=9:1 and 5:5) had slightly higher total nitrite and nitrate levels compared to the same ratio of autoclaved soil treatments. The moisture level of the 9:1, 5:5, and 1:9 M:S treatments were approximately 70, 45, and 30%, respectively. The results indicated that nitrifying bacteria in the non-autoclaved soil reduced the ammonium nitrogen concentrations of poultry manure by converting NH(3) or NH(4)(+) to NO(2)(-) or NO(3)(-). However, the higher moisture levels in treatments with greater manure to soil ratios (M:S=9:1 and 5:5) created anaerobic conditions that allowed for denitrification and greater N losses.  相似文献   

8.
The purpose of this analysis is threefold. We first examine the extent to which a longer series of data improves our understanding of air pollution on human mortality in the Atlanta, GA, area by updating the findings presented in Klemm and Mason (J. Air Waste Manage. Assoc. 2000, 50, 1433-1439) and Klemm et al. (Inhal. Toxicol. 2004, 16 (Suppl 1), 131-141) with 7.5 additional years of data. We explore estimated effects on two age groups (<65 and 65+) and four categories of cause of death. Second, we investigate how enlarging the geographic area of inquiry influences the estimated effects. Third, because some air quality (AQ) measures are monitored less frequently than daily, we investigate the extent to which AQ measurement frequency can influence estimates of relationships with human mortality. Our analytical approach employs a Poisson regression model using generalized linear modeling in S-Plus to estimate the relationship between daily AQ measures and daily mortality counts. We show that the estimated effects and their associated t values vary by year for nine AQ measures (particulate matter with aerodynamic diameter < or =2.5 microm [PM2.5], elemental carbon [EC], organic carbon [OC], NO3, SO4, O3, NO2, CO, and SO2). Several of the estimated AQ effects show downward trends during the 9-year period of study. The estimated effects tend to be strongest for the AQ measurement during the day of death and tend to decrease with additional lags. Enlarging the geographic area from two to four counties in the metropolitan area decreased the estimated effects, perhaps partly due to the fact that the measurement site is located in one of the two original counties. Estimated effects utilizing data as if the AQ were only measured every 3rd or every 6th day each week or twice per week vary from lower to higher than that estimated with daily measurements, although the t values are lower, as expected.  相似文献   

9.
The production of triplet states (T(*)) of chromophoric dissolved organic matter (CDOM), reacting with the probe molecule 2,4,6-trimethylphenol (TMP) was measured upon irradiation of water samples, taken from lakes located in a mountain area (NW Italy) between 1450 and 2750 m above sea level. The lakes are located below or above the tree line and surrounded by different vegetation types (trees, alpine meadows or exposed rocks). The most photoactive samples belonged to lakes below the tree line and their fluorescence spectra and CDOM optical features suggested the presence of a relatively elevated amount of humic (allochthonous) material. The lowest (negligible) photoactivity was found for a lake surrounded by exposed rocks. Its CDOM showed an important autochthonous contribution (due to in-lake productivity) and considerably higher spectral slope compared to the other samples, suggesting low CDOM molecular weight and/or aromaticity. Among the samples, CDOM photoactivity (measured as the rate of TMP-reactive T(*) photoproduction) decreased with changing vegetation type in the order: trees, meadows, rocks. It could be connected with decreasing contribution from catchment runoff and increasing contribution from autochthonous processes and possibly precipitation.  相似文献   

10.
A chemical analysis of suspended particulate matter (SPM) collected near the world famous Taj Mahal monument at Agra has been carried out. SPM samples collected on glass fibre filters were analysed for water-soluble sulphate, nitrate, chloride and ammonium ions. The data were derived from over 200 samples (each of 24 h), collected continuously during the winter periods (October through to March) of 1984-1985 and 1985-1986. The SO(4)(2-) and NO(3)(-) components are acidic in nature causing corrosion and effects on visibility, and so were studied in more detail. Mean values for SO(4)(2-) and NO(3)(-) derived from two-year data are 7.2 microg m(-3) and 8.2 microg m(-3), respectively. The SO(4)(2-)/SO(2) and NO(3)(-)/NO(2) ratiosobserved indicate faster conversion of SO(2) to SO(4)(2-) than NO(2) to NO(3)(-), the maximum levels being in January. Thus, both SO(4)(2-) and NO(3)(-) results appear to offer more promising indices of air quality than do SPM data alone.  相似文献   

11.
Salmonella and Escherichia coli are two bacteria that are important causes of human and animal disease worldwide. Chlorate is converted in the cell to chlorite, which is lethal to these bacteria. An HPLC procedure was developed for the rapid analysis of chlorate (ClO(3)(-)), nitrate (NO(3)(-)), and nitrite (NO(2)(-)) ions in bovine ruminal fluid samples. Standard curves for chlorite, nitrite, nitrate, and chlorate were well defined linear curves with R(2) values of 0.99846, 0.99106, 0.99854, and 0.99138, respectively. Concentrations of chlorite could not be accurately determined in bovine ruminal fluid because chlorite reacts with or binds a component(s) or is reduced to chloride in bovine ruminal fluid resulting in low chlorite measurements. A standard curve ranging from 25 to 150 ppm ClO(3)(-) ion was used to measure chlorate fortified into ruminal fluid. The concentration of chlorate was more rapidly lowered (P < 0.01) under anaerobic compared to aerobic incubation conditions. Chlorate alone or chlorate supplemented with the reductants sodium lactate or glycerol were bactericidal in anaerobic incubations. In anaerobic culture, the addition of sodium formate to chlorate-fortified ruminal fluid appeared to decrease chlorate concentrations; however, formate also appeared to moderate the bactericidal effect of chlorate against E. coli. Addition of the reductants, glycerol or lactate, to chlorate-fortified ruminal fluid did not increase the killing of E. coli at 24 h, but may be useful when the reducing equivalents are limiting as in waste holding reservoirs or composting systems required for intense animal production.  相似文献   

12.
This study aims to design a dry deposition chamber and to measure ozone depletion over the Taichung field soil. This study seeks to verify the phenomena by an experimental and mathematical model. It is demonstrated that interfacial mass transfer resistances of ozone dry deposition involve reactive resistance (R(sr)) and kinetic resistance (R(sk)). It reveals the chemical reaction (O3 + NO --> NO2) to produce the reactive resistance, and verifies that the interfacial mass transfer resistances depend on nitrogen oxide emission and soil temperature. It shows that the interfacial mass transfer resistances are reduced with increasing soil temperature (T(S)). The model profiles are smaller than the observed data within a relative error of 15%. The reactive resistance decreases exponentially with increasing soil temperature; R(sr)(-1) (cm x sec(-1)) = 0.0001 exp (0.1455T(S)). The kinetic resistance decreases linearly with increasing soil temperature; R(sk)(-1)(cm x sec(-1)) = 0.0108T(S) + 1.4012. This model is more accurate with higher soil temperature and larger ozone concentration. Results are consistent with thermodynamics and reaction kinetics. Ozone dry deposition over agricultural soil causes conversion of nitrogen oxide (NO) to nitrogen dioxide (NO2).  相似文献   

13.
Cheng XF  Leng WH  Liu DP  Zhang JQ  Cao CN 《Chemosphere》2007,68(10):1976-1984
WO(3) and Zn-doped WO(3) thin films were prepared on indium-tin oxide glass by a dip-coating. The composite films were characterized by UV-Vis absorption spectra, X-ray diffraction and scanning electron microscope. The effect of preparation conditions (concentration of Zn, annealing temperature, number of layers) on the photocurrent was studied. It was found that the photocurrent under visible light displayed the highest value for 2% Zn-WO(3) films annealed at 400 degrees C. The photocatalytic activity of the Zn-doped WO(3) was evaluated in terms of decay rate of nitrite ions under visible light. The influence of applied potential, initial pH and nitrite concentration on the reaction rate was studied. The experiments demonstrated that NO(2)(-) could be efficiently degraded on the doped photoanode that showed a higher activity than the undoped WO(3) especially under high anodic potential (>0.7 V). The rate of degradation was enhanced in aqueous NaCl solutions. Furthermore, it was demonstrated that the photodegradation mechanism of NO(2)(-) proceeded mainly indirectly via OH radicals. The possible reason of enhancement of reaction rate was also discussed.  相似文献   

14.
鼓泡反应器中液相络合催化同时脱硫脱硝的研究   总被引:1,自引:0,他引:1  
在鼓泡反应器中考察了[Co(en)3]2+同时吸收去除SO2和NO的影响因素,实验结果表明,pH值和脱硫剂种类是影响乙二胺合钴同时脱除NO和SO2的最重要影响因素,烟气中的氧促进乙二胺合钴吸收NO和SO2,烟气中的SO2,CO2和NO2对乙二胺合钴吸收NO具有抑制作用。在实验条件温度为20℃,pH为13.0,[Co(en)3]2+浓度为0.025 mol/L,加入1 g NH3.H2O的脱硝率更好,连续吸收60 min,脱硝率均保持在93.5%,加入NaOH和NH3.H2O的脱硫效果最好。乙二胺合钴络合同时脱除NO和SO2完全可以在一个装置中完成。  相似文献   

15.
Huang JS  Tsai CC  Chou HH  Ting WH 《Chemosphere》2006,62(1):61-70
Nitrification-denitrification in a single-sludge nitrogen removal system (SSNRS; with a sufficient carbon source for denitrification) was performed. With an increase in the mixed liquor recycle ratio (R(m)) from 1 to 2, the total nitrogen (TN) removal efficiency at a lower volumetric loading rate (VLR=0.21 NH(4)(+)-N m(-3) d(-1)) increased, but the TN removal efficiency at a higher VLR (0.35 kg NH(4)(+)-N m(-3) d(-1)) decreased. A kinetic model that accounts for the mass fractions of Nitrosomonas, Nitrobacter, nitrate reducer and nitrite reducer (f(n1), f(n2), f(dn1), and f(dn2)) in the SSNRS and an experimental approach for the estimation of the mass fractions of nitrogen-related microbial groups are also proposed. The estimated f(dn1) plus f(dn2) (0.65-0.83) was significantly larger than the f(n1) plus f(n2) (0.28-0.32); the f(n1) (0.21-0.26) was larger than the f(n2) (0.05-0.07); and the f(dn1) (0.32-0.45) varied slightly with the f(dn2) (0.33-0.38). At the lower VLR, the f(dn1) plus f(dn2) increased with increasing R(m); however at the higher VLR, the f(dn1) plus f(dn2) did not increase with increasing R(m). By using the kinetic model, the calculated residual NH(4)(+)-N and NO(2)(-)-N in the anoxic reactor and NO(2)(-)-N and NO(3)(-)-N in the aerobic reactor were in fairly good agreement with the experimental data; the calculated NO(3)(-)-N in the anoxic reactor was over-estimated and the calculated NH(4)(+)-N in the aerobic reactor was under-estimated.  相似文献   

16.
Lee DK  Cho JS  Yoon WL 《Chemosphere》2005,61(4):573-578
The role of catalyst and the reason for the preferential formation of N(2) in the catalytic oxidation reaction of ammonia in water over a Ru (3wt.%)/TiO(2) catalyst were elucidated. It was verified that the catalyst in the reaction had no direct relevance to the selective formation of N(2), but was responsible only for the oxidation of aqueous ammonia, NH(3)(aq), finally giving a molecule of nitrous acid. The preferential production of N(2) was experimentally demonstrated due to the homogeneous aqueous phase reaction of the nitrous acid-dissociated NO(2)(-) with NH(4)(+) ions. Even under the highly oxidizing condition, NO(2)(-) was much more likely to react with NH(4)(+) to form N(2) than being oxidized over the catalyst to NO(3)(-) as long as NH(4)(+) was available in solution.  相似文献   

17.
During four intensive observation periods in 1992 and 1993, dry deposition of nitrogen dioxide (NO(2)) and ammonia (NH(3)), and wet deposition of nitrogen (N) were determined. The measurements were carried out in a small, extensively managed litter meadow surrounded by intensively managed agricultural land. Dry deposition of NH(3) was estimated by the gradient method, whereas eddy correlation was used for NO(2). Rates of dry deposition of total nitrate (= nitric acid (HNO(3)) + nitrate (NO(3)(-))), total nitrite (= nitrous acid (HONO) + nitrite (NO(2)(-))) and aerosol-bound ammonium (NH(4)(+)) were estimated using deposition velocities from the literature and measured concentrations. Both wet N deposition and the vertical NH(3) gradient were measured on a weekly basis during one year. Dry deposition was between 15 and 25 kg N ha(-1) y(-1), and net wet deposition was about 9.0 kg N ha(-1) y(-1). Daily average NO(2) deposition velocity varied from 0.11 to 0.24 cm s(-1). Deposition velocity of NH(3), was between 0.13 and 1.4 cm s(-1), and a compensation point between 3 and 6 ppbV NH(3) (ppb = 10(-9)) was found. Between 60 and 70% of dry deposition originated from NH(3) emitted by farms in the neighbourhood. It is concluded that total N deposition is exceeding the critical load for litter meadows, is highly correlated to local NH(3) emissions, and that NH(3) is of utmost importance with respect to possible strategies to reduce N deposition in rural regions.  相似文献   

18.
In urban area, the accumulation of polluted stormwater sediments (SWS) in retention ponds may be a source of dissolved pollutants and nutrients for the aquatic ecosystems. Our objective was to quantify the influence of the thickness of SWS layer and the occurrence of tubificid worms on organic matter processing (O(2) uptake and fluxes of NH(4)(+), NO(3)(-), PO(4)(3-), and dissolved organic carbon between sediment and water), releases of 17 PAHs and 4 heavy metals, and microbial characteristics. Results showed that oxidation of SWS organic matter (O(2) and NO(3)(-) uptakes) and releases of nutrients were significantly increased by the quantity of accumulated SWS and the worm bioturbation. Releases of acenaphtene and naphthalene from sediments were significantly increased by the thickness of the SWS layer. In contrast, tubificid worms did not promote the mobilization of pollutants. In conclusion, biological activities and stormwater sediment characteristics need to be assessed to quantify the fate of pollutants and nutrients in stormwater retention ponds.  相似文献   

19.
The results of two field studies and an open-top chamber fumigation experiment showed that the response of mature Scots pine to SO(2) and NO(2) differed from that of mature Norway spruce. Moreover, the response of pine seedlings to SO(2) and NO(2) differed from that of mature trees. The greater increase in the needle total S concentrations of pine suggested more abundant stomatal uptake of SO(2) compared to spruce. Both pine seedlings and mature trees also seemed to absorb more N from atmospheric deposition. Mature pine was able to assimilate SO(4)(2-) derived from SO(2) into organic S more effectively than mature spruce at the high S and N deposition sites, whereas both pine and spruce seedlings accumulated SO(4)-S under NO(2)+SO(2) exposure. Spruce, in turn, accumulated SO(4)-S even when well supplied with N. Net assimilation of SO(4)(2-) in conifer seedlings was enhanced markedly by elevated temperature. To protect the northern coniferous forests against the harmful effects of S and N deposition, it is recommended that the critical level for SO(2) as a growing season mean be set at 5-10 microg m(-3) and NO(2) at 10-15 microg m(-3), depending on the 'effective temperature sum' and/or whether SO(2) and NO(2) occur alone or in combination.  相似文献   

20.
Zhang Y  Sun R  Ma M  Wang D 《Chemosphere》2012,87(2):171-176
Photoreduction is of immense importance to mercury transfer from water to atmosphere. In this investigation, the reduction of HgCl(2) and Hg(NO(3))(2) under dark, natural light and ultraviolet radiation (UV) was estimated using series of laboratory experiments. The result showed that the role of light irradiation in HgCl(2) reduction was entirely different from that in Hg(NO(3))(2). The rate of HgCl(2) reduction was in the order of UV>natural light>dark, compared with dark>natural light>UV of Hg(NO(3))(2). The experiments of mercury reduction treated by KNO(3) and CH(3)OH, which was used as a NO(3)(-) provider and a ?OH scavenger respectively, indicated that ?OH which was produced via direct photolysis of NO(3)(-) in water should be responsible for the unexpected inhibition of UV to Hg(NO(3))(2) reduction. The reduction of Hg(NO(3))(2) under different radiation intensity each of UVA, UVB and UVC was investigated. The result showed that UVB induced the highest mercury reduction while mercury reduction increased with light intensity. In addition, the kinetic study of mercury reduction under natural light was conducted through both concentration gradient method and trial method. The pseudo first rate constant was estimated to be 7×10(-4) min(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号