首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The scaling problem associated with the modeling of turbidity currents has been recognized but is yet to be explored systematically. This paper presents an analysis of the dimensionless governing equations of turbidity currents to investigate the scale effect. Three types of flow conditions are considered: (i) conservative density current; (ii) purely depositional turbidity current; and (iii) mixed erosional/depositional turbidity current. Two controlling dimensionless numbers, the Froude number and the Reynolds number, appear in the non-dimensional governing equations. When densimetric Froude similarity is satisfied, the analysis shows that the results would be scale-invariant for conservative density current under the rough turbulent condition. In the case of purely depositional flows, truly scale-invariant results cannot be obtained, as the Reynolds-mediated scale effects appear in the bottom boundary conditions of the flow velocity and sediment fall velocity. However, the scale effect would be relatively modest. The Reynolds effect becomes more significant for erosional or mixed erosional/depositional turbidity currents as Reynolds-mediated scale effects also appear in the sediment entrainment relation. Numerical simulations have been conducted at three different scales by considering densimetric Froude scaling alone as well as combined densimetric Froude and Reynolds similarity. Simulation results confirm that although the scaling of densimetric Froude number alone can produce scale-invariable results for conservative density currents, variations occur in the case of turbidity currents. The results become scale invariant when densimetric Froude and Reynolds similarities are satisfied simultaneously.  相似文献   

2.
A hydraulic jump is characterized by strong energy dissipation and mixing, large-scale turbulence, air entrainment, waves, and spray. Despite recent pertinent studies, the interaction between air bubbles diffusion and momentum transfer is not completely understood. The objective of this paper is to present experimental results from new measurements performed in a rectangular horizontal flume with partially developed inflow conditions. The vertical distributions of the void fraction and the air bubbles count rate were recorded for inflow Froude number Fr 1 in the range from 5.2 to 14.3. Rapid detrainment process was observed near the jump toe, whereas the structure of the air diffusion layer was clearly observed over longer distances. These new data were compared with previous data generally collected at lower Froude numbers. The comparison demonstrated that, at a fixed distance from the jump toe, the maximum void fraction C max increases with the increasing Fr 1. The vertical locations of the maximum void fraction and bubble count rate were consistent with previous studies. Finally, an empirical correlation between the upper boundary of the air diffusion layer and the distance from the impingement point was derived.  相似文献   

3.
In this work the authors describe the main characteristics of the velocity field of hydraulic jumps in a very large channel where lateral shockwaves occur. Experiments were carried out at the Coastal Engineering Laboratory of the Water Engineering and Chemistry Department of the Technical University of Bari (Italy). Extensive flow velocity measurements were investigated in order to have a clearer understanding of both hydraulic jump development and lateral shockwave formation in a very large channel. Eight experiments were performed in a 4m wide rectangular channel; the experiments differed in the inlet Froude number F 0 and the jump type. Seven tests were carried out with undular jumps and one with a roller jump. The flow velocity and the flow free surface measurements were taken using a two-dimensional Acoustic Doppler Velocimeter (ADV) and an ultrasonic profiler, respectively. The experimental results can be summarized as follow: (i) the formation of well developed lateral shockwaves similar to those of oblique jumps were observed; (ii) the comparison of the experimental and theoretical data shows that the classic shockwave theory is sufficiently confirmed in the analyzed range of Reynolds number, taking into account the experimental errors and the difference between the theoretical and experimental assumptions; (iii) the transversal flow velocity profiles in the recirculating zone show a good agreement with the numerical simulations presented in literature in the case of a separated turbulent boundary layer over a flat plate. This conclusion enables us to confirm the hypothesis that the lateral shockwaves in the channel are the result of a boundary layer which, as observed, forms on the channel sidewalls.  相似文献   

4.
Numerical simulations for the wave radiation effect on the linear and nonlinear instabilities of rotating and non-rotating shallow flows are conducted using shallow-water equations. At a low convective Froude number, the results of the instabilities is a string of eddies. The coalescence between the neighbouring eddies decides the transverse mixing of the shallow shear flow. At a higher convective Froude number, the development of the shear flow is characterized by wave radiation and the production of shocklets. The radiation of waves in the non-rotating shallow flow is a phenomenon analogous to the radiation of sound in gas dynamics. In the rotating flow on the other hand, the shallow-flow instabilities are intensified due to rotational interference within a window of instability over a narrow range of Rossby numbers.  相似文献   

5.
In this study, a three-dimensional model was used to numerically study the buoyant flow, along with its mixing characteristics, of heated water discharged from the surface and submerged side outfalls in shallow and deep water with a cross flow. Hydraulic experimental data were used to evaluate the applicability of the model. The simulation results agree well with the experimental results, particularly, the jet trajectories, the dimensions of the recirculating zone, and the distribution of the dimensionless excess temperature. The level of accuracy of the simulation results of the present study is nearly identical to that of the results conducted by McGuirk and Rodi (1978). If the heated water is discharged into shallow water where the momentum flux ratio and the discharge densimetric Froude number are high, the submerged discharge method is better than the surface discharge method in terms of the scale of the recirculating zone and the minimum dilution. In deep water, where the momentum flux ratio and discharge densimetric Froude number are low, however, the submerged discharge method had few advantages. In shallow water, the discharge jet is deflected by the ambient cross flow, while forcing the ambient flow to bend towards the far bank for the full depth. For a submerged discharge in shallow water, the recirculating zone is the largest in the lowest layer but becomes smaller in the upper layer. As the water depth increases, the ambient flow goes over the jet and diminishes the blocking effect, thereby decreasing the bending of the jet.  相似文献   

6.
Experimental investigation of bubbly flow and turbulence in hydraulic jumps   总被引:1,自引:1,他引:0  
Many environmental problems are linked to multiphase flows encompassing ecological issues, chemical processes and mixing or diffusion, with applications in different engineering fields. The transition from a supercritical flow to a subcritical motion constitutes a hydraulic jump. This flow regime is characterised by strong interactions between turbulence, free surface and air–water mixing. Although a hydraulic jump contributes to some dissipation of the flow kinetic energy, it is also associated with increases of turbulent shear stresses and the development of turbulent eddies with implications in terms of scour, erosion and sediment transport. Despite a number of experimental, theoretical and numerical studies, there is a lack of knowledge concerning the physical mechanisms involved in the diffusion and air–water mixing processes within hydraulic jumps, as well as on the interaction between the free-surface and turbulence. New experimental investigations were undertaken in hydraulic jumps with Froude numbers up to Fr = 8.3. Two-phase flow measurements were performed with phase-detection conductivity probes. Basic results related to the distributions of void fraction, bubble frequency and mean bubble chord length are presented. New developments are discussed for the interfacial bubble velocities and their fluctuations, characterizing the turbulence level and integral time scales of turbulence representing a “lifetime” of the longitudinal bubbly flow structures. The analyses show good agreement with previous studies in terms of the vertical profiles of void fraction, bubble frequency and mean bubble chord length. The dimensionless distributions of interfacial velocities compared favourably with wall-jet equations. Measurements showed high turbulence levels. Turbulence time scales were found to be dependent on the distance downstream of the toe as well as on the distance to the bottom showing the importance of the lower (channel bed) and upper (free surface) boundary conditions on the turbulence structure.  相似文献   

7.
Results are presented from a series of large-scale experiments investigating the internal and near-bed dynamics of bi-directional stratified flows with a net-barotropic component across a submerged, trapezoidal, sill obstruction. High-resolution velocity and density profiles are obtained in the vicinity of the obstruction to observe internal-flow dynamics under a range of parametric forcing conditions (i.e. variable saline and fresh water volume fluxes; density differences; sill obstruction submergence depths). Detailed synoptic velocity fields are measured across the sill crest using 2D particle image velocimetry, while the density structure of the two-layer exchange flows is measured using micro-conductivity probes at several sill locations. These measurements are designed to aid qualitative and quantitative interpretation of the internal-flow processes associated with the lower saline intrusion layer blockage conditions, and indicate that the primary mechanism for this blockage is mass exchange from the saline intrusion layer due to significant interfacial mixing and entrainment under dominant, net-barotropic, flow conditions in the upper freshwater layer. This interfacial mixing is quantified by considering both the isopycnal separation of vertically-sorted density profiles across the sill, as well as calculation of corresponding Thorpe overturning length scales. Analysis of the synoptic velocity fields and density profiles also indicates that the net exchange flow conditions remain subcritical (G < 1) across the sill for all parametric conditions tested. An analytical two-layer exchange flow model is then developed to include frictional and entrainment effects, both of which are needed to account for turbulent stresses and saline entrainment into the upper freshwater layer. The experimental results are used to validate two key model parameters: (1) the internal-flow head loss associated with boundary friction and interfacial shear; and (2) the mass exchange from the lower saline layer into the upper fresh layer due to entrainment.  相似文献   

8.
Tang  Rongcai  Bai  Ruidi  Wang  Hang 《Environmental Fluid Mechanics》2021,21(6):1333-1355
Environmental Fluid Mechanics - A hydraulic jump forming in the stilling basin at the base of a high-head dam spillway is often characterized by high Froude number and inflow pre-aeration...  相似文献   

9.
The mechanics of buoyant jet flows issuing with a general three-dimensional geometry into an unbounded ambient environment with uniform density or stable density stratification and under stagnant or steady sheared current conditions is investigated. An integral model is formulated for the conservation of mass, momentum, buoyancy and scalar quantities in the turbulent jet flow. The model employs an entrainment closure approach that distinguishes between the separate contributions of transverse shear (leading to jet, plume, or wake internal flow dynamics) and of azimuthal shear mechanisms (leading to advected momentum puff or thermal flow dynamics), respectively. Furthermore, it contains a quadratic law turbulent drag force mechanism as suggested by a number of recent detailed experimental investigations on the dynamics of transverse jets into crossflow. The model is validated in several stages: First, comparison with basic experimental data for the five asymptotic, self-similar stages of buoyant jet flows, i.e., the pure jet, the pure plume, the pure wake, the advected line puff, and the advected line thermal, support the choice and magnitude of the turbulent closure coefficients contained in the entrainment formulation. Second, comparison with many types of non-equilibrium flows support the proposed transition function within the entrainment relationship, and also the role of the drag force in the jet deflection dynamics. Third, a number of spatial limits of applicability have been proposed beyond which the integral model necessarily becomes invalid due to its parabolic formulation. These conditions, often related to the breakdown of the boundary layer nature of the flow, describe features such as terminal layer formation in stratification, upstream penetration in jets opposing a current, or transition to passive diffusion in a turbulent ambient shear flow. Based on all these comparisons, that include parameters such as trajectories, centerline velocities, concentrations and dilutions, the model appears to provide an accurate and reliable representation of buoyant jet physics under highly general flow conditions.  相似文献   

10.
Gravity driven flows on inclines can be caused by cold, saline or turbid inflows into water bodies. Another example are cold downslope winds, which are caused by cooling of the atmosphere at the lower boundary. In a well-known contribution, Ellison and Turner (ET) investigated such flows by making use of earlier work on free shear flows by Morton, Taylor and Turner (MTT). Their entrainment relation is compared here with a spread relation based on a diffusion model for jets by Prandtl. This diffusion approach is suitable for forced plumes on an incline, but only when the channel topography is uniform, and the flow remains supercritical. A second aspect considered here is that the structure of ET’s entrainment relation, and their shallow water equations, agrees with the one for open channel flows, but their depth and velocity scales are those for free shear flows, and derived from the velocity field. Conversely, the depth of an open channel flow is the vertical extent of the excess mass of the liquid phase, and the average velocity is the (known) discharge divided by the depth. As an alternative to ET’s parameterization, two sets of flow scales similar to those of open channel flows are outlined for gravity currents in unstratified environments. The common feature of the two sets is that the velocity scale is derived by dividing the buoyancy flux by the excess pressure at the bottom. The difference between them is the way the volume flux is accounted for, which—unlike in open channel flows—generally increases in the streamwise direction. The relations between the three sets of scales are established here for gravity currents by allowing for a constant co-flow in the upper layer. The actual ratios of the three width, velocity, and buoyancy scales are evaluated from available experimental data on gravity currents, and from field data on katabatic winds. A corresponding study for free shear flows is referred to. Finally, a comparison of mass-based scales with a number of other flow scales is carried out for available data on a two-layer flow over an obstacle. Mass-based flow scales can also be used for other types of flows, such as self-aerated flows on spillways, water jets in air, or bubble plumes.  相似文献   

11.
This study investigates energy dissipation due to air bubble entrainment for three typical phenomena; a hydraulic jump, a 2-D vertical plunging jet and a vertical circular plunging jet into water. A simple model is presented here which enables to estimate the energy transformation and dissipation achieved by air bubbles quantitatively for three above phenomena. The average rate of energy dissipation by air bubbles obtained from the experimental data are 25%, 1.4%, and 2.15% with respect to total energy loss for the hydraulic jump, 2-D vertical plunging jet and vertical circular plunging jet, respectively.  相似文献   

12.
In hydraulic structures, free-surface aeration is commonly observed: i.e., the white waters. The air bubble entrainment may be localised (hydraulic jumps, plunging jets) or continuous along an interface (water jets, chutes). Despite recent advances, there are some basic concerns about the extrapolation of laboratory results to large size prototype structures. Herein the basic air bubble entrainment processes are reviewed and the relevant dynamic similarities are discussed. Traditionally, physical studies are conducted using a Froude similitude which implies drastically smaller laboratory Reynolds numbers than in the corresponding prototype flows. Basic dimensional analyses are developed for both singular and interfacial aeration processes. The results are discussed in the light of systematic investigations and they show that the notion of scale effects is closely linked with the selection of relevant characteristic air–water flow properties. Recent studies of local air–water flow properties highlight that turbulence levels, entrained bubble sizes and interfacial areas are improperly scaled based upon a Froude similitude even in large-size models operating with the so defined Reynolds numbers ρ w × q w/μ w up to 5 E+5. In laboratory models, the dimensionless turbulence levels, air–water interfacial areas and mass transfer rates are drastically underestimated.  相似文献   

13.
A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising, and the bore front corresponds to the leading edge of the tidal wave in a funnel shaped estuarine zone with macro-tidal conditions. Some field observations were conducted in the tidal bore of the Garonne River on 7 June 2012 in the Arcins channel, a few weeks after a major flood. The tidal bore was a flat undular bore with a Froude number close to unity: $\hbox {Fr}_{1} = 1.02$ and 1.19 (morning and afternoon respectively). A key feature of the study was the simultaneous recording of the water elevation, instantaneous velocity components and suspended sediment concentration (SSC) estimates, together with a detailed characterisation of the sediment bed materials. The sediment was some silty material ( $\hbox {d}_{50} \approx 13~\upmu \hbox {m}$ ) which exhibited some non-Newtonion thixotropic behaviour. The velocity and SSC estimate were recorded simultaneously at high frequency, enabling a quantitative estimate of the suspended sediment flux at the end of the ebb tide and during the early flood tide. The net sediment flux per unit area was directed upstream after the bore, and its magnitude was much larger than that at end of ebb tide. The field observations highlighted a number of unusual features on the morning of 7 June 2012. These included (a) a slight rise in water elevation starting about 70 s prior to the front, (b) a delayed flow reversal about 50 s after the bore front, (c) some large fluctuations in suspended sediment concentration (SSC) about 100 s after the bore front and (d) a transient water elevation lowering about 10 min after the bore front passage. The measurements of water temperature and salinity showed nearly identical results before and after the tidal bore, with no evidence of saline and thermal front during the study.  相似文献   

14.
Meandering flows in rectangular shallow reservoirs were experimentally investigated. The characteristic frequency, the longitudinal wave length and the mean lateral extension of the meandering jet were extracted from the first paired modes, obtained by a proper orthogonal decomposition of the surface velocity field measured by large scale PIV. The depth-normalised characteristic lengths and the Strouhal number were then compared to the main dimensionless numbers characterizing the experiments: Froude number, friction number and reservoir shape factor. The normalised wave length and mean lateral extension of the meandering jet are neither correlated with the Froude number nor with the reservoir shape factor; but a clear relationship is found with the friction number. Similarly, the Strouhal number is found proportional to a negative power of the friction number. In contrast, the Froude number and the reservoir shape factor enable to predict the occurrence of a meandering flow pattern: meandering jets occur for Froude number greater than 0.21 and for a shape factor smaller than 6.2.  相似文献   

15.
Hydraulic jumps have complex flow structures, characterised by strong turbulence and large air contents. It is difficult to numerically predict the flows. It is necessary to bolster the existing computer models to emphasise the gas phase in hydraulic jumps, and avoid the pitfall of treating the phenomenon as a single-phase water flow. This paper aims to improve predictions of hydraulic jumps as bubbly two-phase flow. We allow for airflow above the free surface and air mass entrained across it. We use the Reynolds-averaged Navier–Stokes equations to describe fluid motion, the volume of fluid method to track the interface, and the k–ε model for turbulence closure. A shear layer is shown to form between the bottom jet flow and the upper recirculation flow. The key to success in predicting the jet flow lies in formulating appropriate bottom boundary conditions. The majority of entrained air bubbles are advected downstream through the shear layer. Predictions of the recirculation region’s length and air volume fraction within the layer are validated by available measurements. The predictions show a linear growth of the shear layer. There is strong turbulence at the impingement, and the bulk of the turbulence kinetic energy is advected to the recirculation region via the shear layer. The predicted bottom-shear-stress distribution, with a peak value upstream of the toe of the jump and a decaying trend downstream, is realistic. This paper reveals a significant transient bottom shear stress associated with temporal fluctuations of mainly flow velocity in the jump. The prediction method discussed is useful for modelling hydraulic jumps and advancing the understanding of the complex flow phenomenon.  相似文献   

16.
Analyses of results from laboratory flume experiments are presented in which flow within gaps in canopies of flexible, submerged aquatic vegetation simulations is investigated. The aims of the work are (a) to identify the different flow regimes that may be found within such gaps, using Morris’ classical definitions of skimming flow, wake interference flow and isolated roughness flow as a template, (b) to determine the parameter space in which those flow regimes are most consistently delineated, and (c) to provide quantitative measurements of the loci of each flow regime within that parameter space for these experiments. The sedimentary and biological implications of each flow regime are also discussed. The results show that five flow regimes may be identified, expanding on Morris’ original set of three. The five are: (i) skimming flow; (ii) recirculation flow; (iii) boundary layer recovery; (iv) canopy through-flow; and (v) isolated roughness flow, the last being assumed to occur in some cases though it is not directly observed in these experiments. A Reynolds number based on the canopy overflow speed and the gap depth, and the gap aspect ratio are found to be the key parameters that determine these flow regimes, though a Froude number is found to be important for determining bed shear stress, and the length of leaves overhanging the gap from the upstream canopy is found to be important in determining the location of flow recirculation cells within the gap.  相似文献   

17.
Field observations of the interactions between a stratified flow and a canopy suspended from the free surface above a solid boundary are described and analysed. Data were recorded in and around the canopy formed by a large long-line mussel farm. The canopy causes a partial blockage of the water flow, reducing velocities in the upper water column. Deceleration of the approaching flow results in a deepening of isopycnals upstream of the canopy. Energy considerations show that the potential for an approaching stratified flow to be diverted beneath a porous canopy is indicated by a densimetric Froude number. Strong stratification or low-velocities inhibit vertical diversion beneath the canopy, instead favouring a horizontal diversion around the sides. The effect on vertical mixing is also considered with a shear layer generated beneath the canopy and turbulence generated from drag within the canopy. In the observations, stratification is shown to be of sufficient strength to limit the effectiveness of the first mixing process, while the turbulence within the canopy is likely to enhance vertical exchange. Velocity and temperature microstructure measurements are used to investigate the effect of the canopy on turbulent dissipation and show that dissipation is enhanced within the canopy.  相似文献   

18.
19.
At the smallest scales of sediment transport in rivers, the coherent structures of the turbulent boundary layer constitute the fundamental mechanisms of bedload transport, locally increasing the instantaneous hydrodynamic forces acting on sediment particles, and mobilizing them downstream. Near the critical threshold for initiating sediment motion, the interactions of the particles with these unsteady coherent structures and with other sediment grains, produce localized transport events with brief episodes of collective motion occurring due to the near-bed velocity fluctuations. Simulations of these flows pose a significant challenge for numerical models aimed at capturing the physical processes and complex non-linear interactions that generate highly intermittent and self-similar bedload transport fluxes. In this investigation we carry out direct numerical simulations of the flow in a rectangular flat-bed channel, at a Reynolds number equal to Re = 3632, coupled with the discrete element method to simulate the dynamics of spherical particles near the bed. We perform two-way coupled Lagrangian simulations of 48,510 sediment particles, with 4851 fixed particles to account for bed roughness. Our simulations consider a total of eight different values of the non-dimensional Shields parameter to study the evolution of transport statistics. From the trajectory and velocity of each sediment particle, we compute the changes in the probability distribution functions of velocities, bed activity, and jump lengths as the Shields number increases. For the lower shear stresses, the intermittency of the global bedload transport flux is described by computing the singularity or multifr actal spectrum of transport, which also characterizes the widespread range of transport event magnitudes. These findings can help to identify the mechanisms of sediment transport at the particle scale. The statistical analysis can also be used as an ingredient to develop larger, upscaled models for predicting mean transport rates, considering the variability of entrainment and deposition that characterizes the transport near the threshold of motion.  相似文献   

20.
Environmental Fluid Mechanics - When the Froude number F of a free-surface flow ranges between 0.3 and 3, the flow is unstable and frequently characterised by free surface undulations, with the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号