首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sorption of carbon tetrachloride, ethylene dibromide, and trichloroethylene in two silty clay loam soils and aluminium (Al3+) or calcium (Ca2+) saturated montmorillonite clay was studied. When the adsorbents were exposed to environmental levels of these chemicals (10 to 1000 ppb in water) the amounts of each of the chemicals sorbed were 6% or less of that available except for a 17% sorption of trichloroethylene by Al-saturated clay. In the case of the Ca-saturated clay, there was no apparent sorption of carbon tetrachloride or trichloroethylene. When soil sorption was normalized based on the soil organic carbon content (K oc) a correlation was found between the K oc, water solubility, and octanol/water partitioning coefficients of the chemicals. However, carbon tetrachloride did not behave according to with the predicted relationships.  相似文献   

2.
The adsorption equilibrium time and effects of pH and concentration of 14C-labeled paraquat (1,1??-dimethyl-4,4??-bipyridylium dichloride) in two types of Malaysian soil were investigated. The soils used in the study were clay loam and clay soils from rice fields. Equilibrium studies of paraquat in a soil and pesticide solution were conducted. Adsorption equilibrium time was achieved within 2 h for both soil types. The amount of 14C-labeled paraquat adsorbed onto glass surfaces increased with increasing shaking time and remained constant after 10 h. It was found that paraquat adsorbed by the two soils was very similar: 51.73 (clay loam) and 51.59 ?? g g???1 (clay) at 1 ?? g/ml. The adsorption of paraquat onto both types of soil was higher at high pH, and adsorption decreased with decreasing pH. At pH 11, the amounts of 14C-labeled paraquat adsorbed onto the clay loam and clay soil samples were 4.08 and 4.05 ?? g g???1, respectively, whereas at pH 2, the amounts adsorbed were 3.72 and 3.57 ?? g g???1, respectively. Results also suggested that paraquat sorption by soil is concentration dependent.  相似文献   

3.
It is widely recognised that complex interactions occur between chemicals in mixtures. In many agricultural situations, the use of tank mixes and complex spray programs is a common practice. Insecticides, fungicides and a herbicide being applied in potato protection were used in this research. Interactions between linuron and insecticides, such as thiamethoxam or clothianidin, and fungicides, such as mancozeb or chlorothalonil, were examined in soil. The degradation rate of linuron in soil during laboratory incubation in six treatments was studied. Mixtures of linuron with mancozeb in sandy loam and clay loam soils had a significant effect on the persistence of this herbicide. For example, for the same herbicide, t 1/2 values for linuron were from 37 days in sandy loam to 44 days in clay loam. These values changed (64–67 days) when thiamethoxam and mancozeb were in soil. When mancozeb was added only, the half-life values were from 59 to 62 days, respectively. Other mixtures with chlorothalonil, thiamethoxam and clothianidin did not have any effect. In order to compare linuron degradation rates in soils, a single first-order model and expanded statistical analysis were used.  相似文献   

4.
The adsorption of four volatile organic compounds (1,4-dichloro-benzene, 1,2-dichloroethane, 1,2,2-trichloroethane and 1,1,2,2,-tetrachloroethane) on three soil types from a Superfund site (Petroprocessors Inc) in Baton Rouge, LA was studied with the purpose of obtaining an overall correlation for inclusion in a groundwater transport model being developed for site remediation. The soil-water partition constant, Kd was determined using a standard ASTM procedure (E–1195–87). Using the data for different soil types (fraction organic carbon between 0.11% and 1.13%) and different mineral surface areas (7 to 45 m2/g), the organic carbon contribution (Koc) and the mineral matter contribution (Kmin) to the partition constant were determined. The soils obtained were either from the Pleistocene period or recent shallow deposits at the site. Both log Koc and log Kmin were linearly correlated to log Kow, the octanol-water partition constant. This data provided the basis for obtaining a general correlation for Kd on different soil types at the site. The predicted values were in agreement with that for a composite soil from the same site. The desorption of compounds from the high clay soil after the 24 hour adsorption period was observed to show a biphasic behavior, namely, an easily desorbed fraction and a desorption resistant fraction. The easily desorbed fraction was found to be satisfactorily predicted using the conventional Kd as obtained from the adsorption experiment. The slowly desorbing fraction had a time constant of several weeks. The concentration in the desorption resistant compartment was found to be dependant on the initial amount of contaminant available for adsorption. The aqueous phase concentration in equilibrium with the desorption resistant fraction was found to be 8 g/L for dichlorobenzene and 12 g/L for dichloroethane.  相似文献   

5.
Metribuzin is a widely used herbicide around the world but it could lead to soil and water contamination. Metribuzin retention on a silty–clay agricultural soil of Algeria was studied in laboratory batch experiments to assess the contamination risk of the groundwater. Factors conditioning the fate of metribuzin were investigated: soil nature, metribuzin formulation, NPK fertilizer, and soil pH. Freundlich sorption isotherms gave the coefficients K F between 1.2 and 4.9 and 1/n a between 0.52 and 0.93. The adsorption is directly dependent on organic and clay soil contents. Formulated metribuzin (Metriphar) reduces the adsorption (K F?=?1.25) compared to pure metribuzin (K F?=?2.81). The addition of an NPK fertilizer decreases the soil pH (6.67 for the soil without fertilizer and 5.86 for 2 % of fertilizer) and increases metribuzin adsorption (K F is 4.83 for 2 % of fertilizer). The pH effect on the adsorption is corroborated in experiments changing the soil pH between 5 (K F is 4.17) and 8 (K F is 1.57) under controlled conditions. Desorption isotherms show a hysteresis and only 30 to 40 % of the initially adsorbed metribuzin is released. The estimated GUS index is ≥2.8 for a DT50?≥?30 days. K F values and the hysteresis show that metribuzin is little but strongly retained on the soil. Formulated metribuzin and addition of fertilizer affect the retention. However, the GUS index indicates a high mobility and a significant risk of leaching. The most appropriate risk management measure would be an important increase in organic matter content of the soil by addition of organic amendments.  相似文献   

6.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

7.
Nowadays, herbicides are applied large ly in India, creating the need to evaluate potential leaching of herbicides. Thus leaching potential of metsulfuron in sandy loam and clay loam soils conditions was evaluated under laboratory conditions with simulated rainfall of 318-mm. Metsulfuron-methyl was applied at 4 and 8 g a.i. ha(-1) on soil columns, respectively. Maximum concentration of metsulfuron was recovered from 0-20 cm depths in both the soils. Results indicated high mobility of metsulfuron under continuous saturated moisture condition that may be significant in terms of ground water contamination.  相似文献   

8.
Adsorption and degradation of sulfosulfuron in soils   总被引:3,自引:0,他引:3  
Adsorption of sulfosulfuron was studied in two soils (topsoil from Alfisol and Inceptisol). The adsorption of sulfosulfuron was greater in topsoil collected from Alfisol than in Inceptisol. The soil sorption coefficient K and the soil organic carbon sorption coefficient K oc are the basic parameters used for describing the environmental fate of the herbicides. In topsoil the calculated K values from Alfisol was 4.43 and in topsoil from Inceptisol was 2.00. K c values were 6.06 in topsoil from Alfisol and 3.33 in topsoil from Inceptisol. The K oc values were 886.36 in topsoil from Alfisol and 770.26 in topsoil from Inceptisol. Field experimental plots with no previous history of sulfosulfuron were selected and studied the degradation of sulfosulfuron in the topsoil collected from Alfisol and Inceptisol. The half-life of sulfosulfuron in topsoil from Alfisol: T 1− 3.97 days and T 2− 4.54 days; topsoil from Inceptisol: T 1 − 4.68 days and T 2 − 5.52 days. The degradation of sulfosulfuron followed first-order kinetics. The persistence of sulfosulfuron was found relatively longer in the Inceptisol than in Alfisol. The combination of degradation data (t 1/2 – soil) and organic carbon based sorption (K oc) data of herbicides have been used to assess the pesticide environmental impact in soils through Gustafson Ubiquity Score (GUS). The GUS values were found to be 0.69 in topsoil from Alfisol and 0.83 in Inceptisol.  相似文献   

9.
The objective of this study was to examine the effects of vegetation change from a native broadleaf forest to a coniferous plantation on selected soil properties, including soil texture, pH, organic matter, total nitrogen (N), total phosphorus (P), exchangeable cations (Ca2+, K+, Na+), and cation exchange capacity (CEC). Results showed that the amount of clay particles, Ca2+, and K+ values significantly increased, whereas Na+, total N, and organic matter and soil pH values decreased on the treatment plot after vegetation change. Soil acidity also increased and soil textural group changed from moderately fine-textured soils (clay loam) to medium-textured soils (loam) under both control and treatment plots. Organic matter, total N, and Na+ values increased, whereas Ca2+ concentration decreased through time on the control plot. Soil pH, total P, K+, and CEC did not show significant changes through time on the control plot.  相似文献   

10.
Agroforesty systems, which are recommended as a management option to lower the shallow groundwater level and to reuse saline subsurface drainage waters from the tile-drained croplands in the drainage-impacted areas of Jan Joaquin Valley of California, have resulted in excessive boron buildup in the soil root zone. To assess the efficacy of the long-term impacts of soil boron buildup in agroforesty systems, a mathematical model was developed to simulate non-conservative boron transport. The developed dynamic two-dimensional finite element model simulates water flow and boron transport in saturated–unsaturated soil system, including boron sorption and boron uptake by root-water extraction processes. The simulation of two different observed field data sets by the developed model is satisfactory, with mean absolute error of 1.5 mg/L and relative error of 6.5%. Application of the model to three different soils shows that boron adsorption is higher in silt loam soil than that in sandy loam and clay loam soils. This result agrees with the laboratory experimental observations. The results of the sensitivity analysis indicate that boron uptake by root-water extraction process influences the boron concentration distribution along the root zone. Also, absorption coefficient and maximum adsorptive capacity of a soil for boron are found to be sensitive parameters.  相似文献   

11.
Labile fractions of soil organic matter (SOM) respond rapidly to land management practices and can be used as a sensitive indicator of changes in SOM. However, there is little information about the effect of agroforestry practices on labile SOM fractions in semiarid regions of China. In order to test the effects of land use change from monocropping to agroforestry systems on labile SOM fractions, we investigated soil microbial biomass C (MBC) and N, particulate organic matter C (POMC) and N (POMN), as well as total organic C (TOC) and total N (TN) in the 0- to 15-cm and the 15- to 30-cm layers in 4-year-old poplar-based agroforestry systems and adjoining monocropping systems with two different soil textures (sandy loam and sandy clay loam) in a semiarid region of Northeast China. Our results showed that poplar-based agroforestry practices affected soil MBC, POMC, and POMN, albeit there was no significant difference in TOC and TN. Agroforestry practices increased MBC, POMC, and POMN in sandy clay loam soils. However, in sandy loam soils, agroforestry practices only increased MBC and even decreased POMC and POMN at the 0- to 15-cm layer. Our results suggest that labile SOM fractions respond sensitively to poplar-based agroforestry practices and can provide early information about the changes in SOM in semiarid regions of Northeast China and highlight that the effects of agroforestry practices on labile SOM fractions vary with soil texture.  相似文献   

12.
Soil, rock and water samples were collected from India??s oldest coalfield Raniganj to investigate trace metal contamination from mining activity. Our data reveal that trace metal concentration in soil samples lies above the average world soil composition; especially, Cr, Cu, Ni and Zn concentrations exceed the maximum allowable concentration proposed by the European Commission for agricultural soils. In particular, Cr, Cu and Ni exceed the ecotoxicological limit, and Ni exceeds the typical value for cultivated soils. Mineral dissolution from overburden material and high adsorption capacity of laterite soil are responsible for the elevated concentrations. This is evident from enrichment factor (E f), geoaccumulation index (I geo) and metal pollution index values. Sediment quality guideline index indicates toxicity to local biota although enrichment index suggests no threat from consuming crops cultivated in the contaminated soil.  相似文献   

13.
The effect of two fly ashes as soil amendment on the adsorption–desorption of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl)] and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was studied in alluvial and laterite soils. The adsorption data for both the herbicides fitted well the Freundlich equation, and Freundlich adsorption coefficient (K f) increased with an increase of fly ash amount. Both the fly ashes differed in their extent to increase herbicide sorption, and the effect was different in different soils. Atrazine was sorbed more in the soils/soils?+?fly ash mixtures than the metolachlor. The K f values showed significant correlation with the amount of fly ash amendment (correlation coefficient, R?>?0.982). The desorption isotherms also fitted the Freundlich equation, and desorption showed hysteresis which increased with an increase in the content of fly ash amendment. The free energy change (ΔG) indicated that the sorption process is exothermic, spontaneous, and physical in nature. The study has shown that fly ash as soil amendment significantly increased the sorption of metolachlor and atrazine, but the effect is soil- and fly ash-specific.  相似文献   

14.
Water is a limiting factor to plant growth in Horqin Sand Land of China. Knowledge of soil saturated hydraulic conductivity (K sat) is of importance because K sat influences soil evaporation and water cycling at various scales. In order to analyze the variation of K sat along with sand types and soil depths, and its relationship with soil physiochemical properties, six typical lands were chosen, including mobile dune, fixed dune, pine woodland, poplar woodland, grassland, and cropland, and K sat was measured in situ by Guelph Permeameter at each type of land. Soil bulk density, organic matter content, and soil particle size distribution were determined in parallel with K sat measurement. The results showed that (1) The averaged K sat was decreased in the order: mobile dune > fixed dune > pine woodland > poplar woodland > grassland > cropland; changes in K sat varied considerably as soil depth increased, e.g., the changes of K sat along with soil depth in fixed dune was fitted by exponential model, but it was fitted by parabola model in the pine woodland and grassland. (2) The K sat values of fixed dune and mobile dune were varied considerably among three slope positions (dune top, windward slope, and leeward slope). (3) The relationships of K sat and soil physiochemical property revealed that soil bulk density, organic matter content, and coarse sand fraction (2~0.1 mm) were the key factors affecting K sat in Horqin Sand Land. Compared with clay and silt content proportion, sand fraction in this region showed a more significant positive correlation with K sat.  相似文献   

15.
An experiment was conducted to assess the role of different concentrations of dicyandiamide (DCD), a potent nitrification inhibitor, on temporal changes in nitrous oxide emission from sandy loam agricultural soil. It was found that with increasing concentration of DCD i.e. from 6 to 12% of nitrogen applied in the form of urea, there was a decrease in the both average and peak N2O emissions. However, from 14% DCD treated soil, there was a non-significant alteration in the N2O emission. Maximum average N2O efflux of 217.55 μg m−2 h−1 was noted from control plots. As compared to control, there was an attenuation of 50, 58, 65, and 91% average N2O efflux from 6, 8, 10 and 12% DCD applied pots, respectively, whereas, there was a negative average of N2O efflux from the soil with 14% DCD treatment. The soil N content also showed a significant correlation with N2O emission. Therefore, 12% DCD treatment has been found to be the best with regard to attenuation of nitrous oxide from sandy loam agricultural soils.  相似文献   

16.
Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.  相似文献   

17.
Medium (i.e. 15 years) and long-term (i.e. 20 years) impact of irrigation using secondary-treated municipal wastewater (TWW) was assessed on two agricultural soil samples, denoted by E and G, respectively, in the vicinity of El Hajeb region (Southern Tunisia). Soil pH, electrical conductivity particle size grading, potential risk of salinity, water holding capacity and chemical composition, as well as organic matter content, pathogenic microorganisms and heavy metal concentrations in the TWW-irrigated (E and G) and rainwater-irrigated (T) soils at various depths, were monitored and compared during a 5-year experiment. Our study showed that bacterial abundance is higher in sandy–clayey soil, which has an enhanced ability to retain moisture and nutrients. The high level of bacterial flora in TWW-irrigated soils was significantly (p?<?0.05) correlated (r?=?~0.5) with the high level of OM. Avoidance assays have been used to assess toxic effects generated by hazards in soils. The earthworms gradually avoided the soils from the surface (20 cm) to the depth (60 cm) of the G transect and then the E transect, preferring the T transect. The same behaviour was observed for springtails, but they seem to be less sensitive to the living conditions in transects G and E than the earthworms. The avoidance response test of Eisenia andrei was statistically correlated with soil layers at the sampling sites. However, the avoidance response test of Folsomia candida was positively correlated with silt-clay content (+0.744*) and was negatively correlated with sand content (?0.744*).  相似文献   

18.
Fipronil belongs to phenylpyrazole class of chemical compounds. Degradation of fipronil in sandy loam soil was investigated under field conditions by applying fipronil (Regent 5 % SC) at 50 (T 1) and 100 g a.i. ha?1 (T 2) in field. Samples were drawn periodically in triplicate on 0 (1 h after treatment), 1, 3, 7, 10, 15, 30, 60, and 90 days after treatment and analyzed on GC-ECD system equipped with capillary column. The residues of fipronil in both the doses dissipated in the range of 93.33–100 % in 90 days. Limit of detection (LOD) and limit of determination (LODe/LOQ) were 0.0003 and 0.001 mg kg?1, respectively. Dissipation followed a biphasic first-order kinetics with half-life values of 10.81 and 9.97 days for fipronil alone and 8.14 and 13.05 days for fipronil along with metabolites in soil at (T 1) and (T 2) treatments, respectively.  相似文献   

19.
This paper is based on long-term monitoring data for soil water, salt content, and groundwater characteristics taken from shelterbelts where there has been no irrigation for at least 5 years. This study investigated the distribution characteristics of soil water and salt content in soils with different textures. The relationships between soil moisture, soil salinity, and groundwater level were analyzed using 3 years of monitoring data from a typical oasis located in an extremely arid area in northwest China. The results showed that (1) the variation trend in soil moisture with soil depth in the shelterbelts varied depending on soil texture. The soil moisture was lower in sandy and loamy shelterbelts and higher in clay shelterbelts. (2) Salinity was higher (about 3.0 mS cm?1) in clay shelterbelts and lower (about 0.8 mS cm?1) in sandy shelterbelts. (3) There was a negative correlation between soil moisture in the shelterbelts and groundwater level. Soil moisture decreased gradually as the depth of groundwater table declined. (4) There was a positive correlation between soil salinity in the shelterbelts and the depth of groundwater table. Salinity increased gradually as groundwater levels declined.  相似文献   

20.
The movement and degradation of pesticide residues in soils and groundwater are complex processes affected by soil physical, (bio)chemical, and hydrogeological properties, climatic conditions, and agricultural practices. This work presents a physically-based analytical model suitable for long-term predictions of pesticide concentrations in groundwater. The primary interest is to investigate the impact of soil environment, related physical and (bio)chemical processes, especially, volatilization, crop uptake, and agricultural practices on long-term vulnerability of groundwater to contamination by pesticides. The soil is separated into root and intermediate vadose zones, each with uniform properties. Transport in each soil zone is modeled on the basis of complete mixing, by spatial averaging the related point multiphase-transport partial differential equation (i.e., linear-reservoir models). Transport in the aquifer, however, is modeled by a two-dimensional advection-dispersion transport equation, considering adsorption and first-order decay rate. Vaporization in the soil is accounted for by assuming liquid-vapor phase partitioning using Henry's law, and vapor flux (volatilization) from the soil surface is modeled by diffusion through an air boundary layer. Sorption of liquid-phase solutes by crops is described by a linear relationship which is valid for first-order (passive) crop uptake. The model is applied to five pesticides (atrazine, bromacil, chlordane, heptachlor, and lindane), and the potential for pesticide contamination of groundwater is investigated for sandy and clayey soils. Simulation results show that groundwater contamination can be substantially reduced for clayey soil environments, where bio(chemical) degradation and volatilization are most efficient as natural loss pathways for the pesticides. Also, uptake by cross can be a significant mechanism for attenuating exposure levels in ground-water especially in a sandy soil environment, and for relatively persisting pesticides. Further, simulations indicate that changing agricultural practices can have a profound effect on vulnerability of groundwater to mobile and relatively persisting pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号