首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
Open dumping sites in Surabaya and Palembang, Indonesia, have been studied to investigate emissions of polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs), as well as the resulting soil contamination that might be caused by open burning of municipal solid waste. The emission factors of the waste residue, accounting for the ratio of waste burned, have also been characterized. The concentrations of PCDD/Fs and DL-PCBs in soil from Palembang were 61–310 pg-TEQ/g (dry weight) and 6.3–32 pg-TEQ/g, respectively. In Surabaya, very low levels of PCDD/Fs and DL-PCBs, ranging from 0.075 to 0.098 and 0.00032 to 0.095 pg-TEQ/g, respectively, were observed in soil for an open dumping site that included a top cover layer of soil above the compacted waste. The large difference in concentrations can be explained by the fact that open burning of waste is the source of PCDD/Fs and DL-PCBs. The emission factors for the residue for PCDD/Fs ranged from 27 to 140 pg-TEQ/g, and a sensitivity analysis found that the maximum emission factor to the residue could be 5600 pg-TEQ/g. Our results indicate that emissions of PCDD/Fs can be controlled by modifying the open dumping process to one that involves depositing soil layers on top of the compacted waste.  相似文献   

2.
Presence, sources and behaviour of polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were evaluated in Spanish sewage sludge. A total of 120 samples were seasonally collected from October 2005 to September 2006 at 31 urban wastewater treatment plants (WWTPs). Concentrations of PBDEs (ranging between 57.5 and 2606 ng/g dry weight) were two to three orders of magnitude higher than those obtained for PCDDs (0.17-5.03 ng/g d.w.) and PCDFs (0.05-3.07 ng/g d.w.). All the samples presented International Toxicity Equivalents (I-TEQ) levels (ranging between 2.06 and 44.4 ng/kg d.w.) below the limit values proposed by European Union for land application. Congener patterns evaluation revealed that the use of Deca-BDE commercial mixture seems to be the major source of PBDEs in the sludge. Nevertheless, origin of PCDD/Fs should be related to atmospheric deposition, faeces and presence of PCDD/Fs precursors such as pentachlorophenol in the sludge. No correlations (p > 0.05) were found between pollutant concentrations (PBDEs and PCDD/Fs) and wastewater treatment plant (WWTP) characteristics (capacity nor sludge rate). Lower levels of PBDEs and PCDFs were found in WWTPs using biological nitrogen and phosphorous elimination, suggesting that these compounds are susceptible of microbial elimination. According to our knowledge, this is the first work comparing together both PBDEs and PCDD/Fs sludge patterns.  相似文献   

3.
Dioxins like polychlorinated dibenzo-p-dioxins (PCSDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) are mainly emitted from waste incinerators (WIs) and have become an international research focus because of its serious concerns over the adverse health effects. The detoxification of PCCDs/Fs and PCBs is very difficult because of their stable chemical structure. A significant hydrodechlorination/detoxification of polychlorinated 1-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) were achieved in fly ash by using an aqueous mixture of calcium hydroxide and sulfur. Two different fly ashes were studied: originating from municipal waste incinerator (FA1) and industrial waste incinerator (FA2). They were heated with the aqueous mixture at 150 °C for 30 or 60 min with agitation. Higher decomposition (87%) and detoxification (87.7%) of PCDD/Fs and PCBs were achieved at 150 °C with two runs; every run was for 30 min, compared to one run for 60 min. FA2 gave higher decomposition and detoxification as compared to FA1, which might be due to higher metal content that played a catalytic role to decompose and detoxify the PCDDs, PCDFs and PCBs. The decomposition and detoxification of PCDFs in fly ash was higher than PCDDs and was augmented with increasing number of chlorides on aromatic compounds. As the highly significant decomposition and detoxification of higher concentration of PCDD/Fs and PCBs were achieved in 1 hour without additive catalyst and at low temperature of 150 °C, therefore, the developed method is cost effective and most suitable to apply on commercial/industrial level. The detail results of hydrodechlorination/detoxification of PCDD, PCDFs at different conditions are described and its mechanism is discussed.  相似文献   

4.
The huge amount of medical waste (MW) has caused a tough challenge to environmental protection in China because of its serious infectious potential. At present, incineration is the most common technology for MW disposal. Unfortunately, the medical waste incinerator (MWI) is considered one of the major sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). This study was conducted to investigate the generation and the components of MW; the fingerprint of PCDD/Fs in MWI; and PCDD/F, polychlorinated biphenyl (PCB) and hexachlorobenzene concentrations in residue ash. The estimated annual production of MW was estimated to be 0.97 million tons in China in 2008; in addition, plastic and rubber accounted for 24.5% of MW contents. PCDD/F emissions from MWI could be divided into two main groups according their fingerprints, and the ratio of PCDFs/PCDDs was mostly over 1.5, with a mean value of 3.43. The toxic equivalent of PCDD/Fs was over 30 times that of the value of PCBs in the residue ash, and PCDD/F contents in fly ash accounted for approximately 67% of the total output of PCDD/Fs, which was in line with the UNEP default emission factors for MWI (class 3, 63.7%).  相似文献   

5.
As part of the NJ Toxics Reduction Workplan for NY-NJ Harbor, ambient water samples were collected at fifteen locations along the tidal portions of the Hackensack, Passaic, Raritan, Rahway and Elizabeth Rivers, and in Newark Bay, the Arthur Kill, and Kill van Kull. A Trace Organics Platform Sampler was used to collect a total of 75 suspended sediment phase samples between June 2000 and May 2002. These samples were analyzed for spatial and wet vs. dry weather trends in the 17 polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs; modified USEPA Method 1613b). Mean total PCDD/F (tPCDD/F) concentrations at the sampling locations ranged between 3.8 and 41.5 ng/g. On average, OCDD accounted for almost 80% of the tPCDD/F concentrations; mean total [PCDD/F – OCDD] concentrations ranged between 0.84 and 5.20 ng/g at the sampling locations. Mean 2,3,7,8-TCDD concentrations ranged between 0.003 and 0.28 ng/g, with the highest concentrations (> 0.10 ng/g) along the tidal Passaic and lower Hackensack Rivers, and in upper Newark Bay. Mean tPCDD/F Toxic Equivalency Quotients (TEQ) ranged between 45 and 344 TEQ pg/g, with the highest levels found in the lower Passaic River. Toxicity was primarily driven by 2,3,7,8-TCDD concentrations in the Passaic and Hackensack Rivers, and in Newark Bay. Examples of congener distribution patterns at some of the sampling locations are also presented.  相似文献   

6.
Air emissions and residual ash samples were collected and analyzed during experiments of open, uncontrolled combustion of electronic waste (e-waste), simulating practices associated with rudimentary e-waste recycling operations. Circuit boards and insulated wires were handled separately to simulate processes associated with metal recovery. The average emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDD/PCDFs) were 92 ng toxic equivalency (TEQ)/kg [n = 2, relative standard deviation (RSD) = 98%] and 11 900 ng TEQ/kg (n = 3, RSD = 50%) of the initial mass of the circuit boards and insulated wire, respectively. The value for the insulated wire is about 100 times higher than that for backyard barrel burning of domestic waste. The emission concentrations of polybrominated dibenzodioxins and dibenzofurans (PBDD/PBDFs) from the combustion of circuit boards were 100 times higher than for their polychlorinated counterparts. Particulate matter (PM) sampling of the fly ash emissions indicated PM emission factors of approximately 15 and 17 g/kg of the initial mass for the circuit boards and insulated wire, respectively. Fly ash samples from both types of e-waste contained considerable amounts of several metallic elements and halogens; lead concentrations were more than 200 times the United States regulatory limits for municipal waste combustors and 20 times those for secondary lead smelters. Leaching tests of the residual bottom ash showed that lead concentrations exceeded U.S. Environmental Protection Agency landfill limits, designating this ash as a hazardous waste.  相似文献   

7.
Effects of carbon concentration and Cu additive in simulated fly ash (SFA) and real fly ash (RFA) on the formation of polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), chlorobenzenes, and polychlorinated biphenyls which were all regarded as persistent chlorinated aromatics in iron ore sintering were investigated. In the annealing process of SFA with various carbon contents, the yield of chlorinated aromatics and the I-TEQ obtained their maximum at 10 wt% carbon content. Active carbon in SFA acted as the carbon source as well as an adsorbent which led to higher production of PCDD/F in solid phase at 10 wt% carbon content. The increase of carbon content will be beneficial on the formation of 2,3,7,8-Chloro-substituted PCDF compared with 2,3,7,8-Chloro-substituted PCDD. In addition, the CuCl2·2H2O was a much more powerful catalyst in the formation of chlorinated aromatic compounds compared with elementary Cu, since it served as both a catalyst and a chlorine donor. However, the RFA behaved similarly with SFA with elementary Cu in the formation of chlorinated aromatic compounds. The effect of carbon content and copper additives on formation of 2,3,7,8-chloro-substituted congeners displayed similar characteristics with the tetra- to octa-PCDD/F isomers and even the total PCDD/Fs.  相似文献   

8.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are emitted in trace amounts from municipal solid waste (MSW) incinerators. The exposure to PCDD/Fs experienced by an individual is dominated by the food chain pathway, which accounts for over 98% of the total uptake. Defining a target daily intake (the World Health Organization TDI of 10 pg I-TEQ kg.bw−1day−1) exposure assessment algorithms were then applied to arrive at the corresponding PCDD/F levels in air, soil, plants, food products, etc., which would allow the target intake to be met while retaining the balance of intake between the various exposure pathways. These concentrations were converted to an ambient air concentration of PCDD/Fs and ultimately, by defining criteria for acceptability, to a guide value for PCDD/F concentration in emissions from the MSW incinerator. This strategy was applied to PCDD/F emissions from MSW incinerators of various sizes against two illustrative criteria for acceptability: an “insignificant” release and a threshold above which the release may require further assessment for environmental effects and for control. Using the criteria developed in this paper, the current PCDD/F emission limit of 0.1 ng I-TEQ m−3results in an emission that is classed as “insignificant” for all plant sizes. However, higher emission concentrations can also be accommodated below the threshold for further assessment and control.  相似文献   

9.
A jet resonance-enhanced multiphoton ionization (REMPI) monitor was tested on a hazardous-waste-fired boiler for its ability to determine concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI is a real-time instrument capable of highly selective and sensitive (from parts per billion to parts per trillion) detection of a broad range of aromatic compounds, including a number of air toxic compounds. The PCDD/F toxic equivalency (TEQ) value was derived from a predetermined correlation (R 2 = 0.74) with monochlorobenzene (MClBz). This relationship was applied to nine subsequent jet REMPI on-line measurements of MClBz and parallel, standard extractive sampling for PCDD/F TEQ. For high waste-firing rates, with a range of PCDD/F TEQ values between 3.9 and 6.0 ng TEQ/m3, the TEQ values predicted by jet REMPI had a relative difference of 26% with the standard EPA Method 23 results. At low waste-firing rates (0.9–1.6 ng TEQ/m3), the relative difference increased to 219%. This limited testing shows that jet REMPI has promise as an on-line diagnostic monitor, providing feedback on the effects on PCDD/F emissions of operating parameter changes such as fuel feed interruptions or air pollution control failures.  相似文献   

10.
The toxic equivalency (TEQ) values of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are predicted with a model based on the homologue concentrations measured from a laboratory-scale reactor (124 data points), a package boiler (61 data points), and operating municipal waste incinerators (114 data points). Regardless of the three scales and types of equipment, the different temperature profiles, sampling emissions and/or solids (fly ash), and the various chemical and physical properties of the fuels, all the PCDF plots showed highly linear correlations (R(2)>0.99). The fitting lines of the reactor and the boiler data were almost linear with slope of unity, whereas the slope of the municipal waste incinerator data was 0.86, which is caused by higher predicted values for samples with high measured TEQ. The strong correlation also implies that each of the 10 toxic PCDF congeners has a constant concentration relative to its respective total homologue concentration despite a wide range of facility types and combustion conditions. The PCDD plots showed significant scatter and poor linearity, which implies that the relative concentration of PCDD TEQ congeners is more sensitive to variations in reaction conditions than that of the PCDF congeners.  相似文献   

11.
Pyrolysis and combustion runs at 850°C in a horizontal laboratory furnace were carried out on different parts of a mobile phone (printed circuit board, mobile case and a mixture of both materials). The analyses of the carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorodibenzo-p-dioxin, polychlorodibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, phenol, styrene, and its derivatives had the highest yields. In nearly all the runs the same PAHs were identified, naphthalene being the most common component obtained. Combustion of the printed circuit board produced the highest emission factor of PCDD/Fs, possibly due to the high copper content.  相似文献   

12.
The formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from carbon that was produced by the pyrolysis of paper fibers and from wood charcoal was investigated experimentally. Fibers obtained from filter paper were pyrolyzed at 300° and 800°C to produce low- and high-temperature carbon samples. The two types of carbon and wood charcoal were mixed with silica (SiO2) and trace copper oxide to produce three synthetic fly ash samples. Experiments to measure the formation of PCCDs/Fs from the three ash samples were conducted using a bench-scale reactor. The two carbon samples derived from paper fibers generated more PCDDs/Fs than was generated by the wood charcoal. The PCDDs/Fs generated by the low-temperature carbon and by the wood charcoal were dominated by the lower-chlorinated PCDFs. Such unique homologue distribution patterns are very similar to those generated by the open burning of household waste. The high-temperature carbon generated more highly chlorinated PCDDs/Fs. The effect of pyrolysis temperature on the de novo formation of PCDDs/Fs from residual carbon is discussed. Paper and paper products contained in household waste are likely to be the source of unburned carbon that contributes to high PCDD/F emissions in the open burning of household waste.  相似文献   

13.
Hospital solid waste incinerator (HSWI) fly ash contains a large number of carbon constituents including powder activated carbon and unburned carbon, which are the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in fly ash. Therefore, the removal of carbon constituents could reduce PCDD/Fs in fly ash greatly. In this study, the effects of the main flotation parameters on the removal of carbon constituents were investigated, and the characteristics of the final product were evaluated. The results showed that loss on ignition (LOI) of fly ash increased from 11.1% to 31.6% during conditioning process. By optimizing the flotation parameters at slurry concentration 0.05 kg/l, kerosene dosage 12 kg/t, frother dosage 3 kg/t and air flow rate 0.06 m3/h, 92.7% of the carbon constituents were removed from the raw fly ash. Under these conditions, the froth product has LOI of 56.35% and calorific values of 12.5 MJ/kg, LOI in the tailings was below 5%, and the total toxic equivalent (TEQ) of PCDD/Fs decreased from 5.61 ng-TEQ/g in the raw fly ash to 1.47 ng-TEQ/g in the tailings. The results show that column flotation is a potential technology for simultaneous separation of carbon constituents and PCDD/Fs from HSWI fly ash.  相似文献   

14.
The presence of endocrine disrupting chemicals (EDCs) in the environment has wide-ranging potential ecological and health impacts on animals and humans. A significant amount of experimental and theoretical work has been performed the examining formation and control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), which account for only part of the EDCs being emitted from combustion devices. Generally accepted mechanistic theories for PCDD/F formation propose heterogeneous reactions in the cooler regions of the combustor involving gas-phase organic precursors (such as chlorobenzenes or chlorophenols), a chlorine donor [such as hydrogen chloride (HCl)], and a flyash-bound metallic catalyst (such as copper chloride). There is evidence that some other proposed EDCs, including polychlorinated biphenyls (PCBs), are formed through a similar mechanistic pathway as PCDD/Fs. In addition, there is evidence that certain important steps in the catalytic reaction between the copper catalyst and the organic precursors may suggest a common rate limiting step for the heterogeneous formation of the previously mentioned EDCs. This paper reports on a bench-scale experimental study to characterize a newly built reactor system that was built to: produce levels and distributions of PCDD/F production similar to those achieved by previous researchers; verify similar responses to changes in independent variables; examine the hypothesis that PCB formation rates exhibit trends similar to PCDD/F formation rates as reactor variables are changed; and begin to explore the dependence of PCB formation on temperature and precursor type. The reactor system has been built, and initial reactor characterization studies have been performed. Initial experiments yielded results that support the hypothesis of a similar formation mechanism of PCBs and PCDD/Fs in combustors. Initial experiments uncovered potential deficiencies with the reactor system and the experimental procedures and have suggested corrective action to improve the experimental system.  相似文献   

15.
Detailed composition of chlorinated and brominated polycyclic aromatic hydrocarbons (Cl-PAHs and Br-PAHs) generated during informal recycling of e-waste and their toxic relevance are still poorly understood. This study investigated the occurrence of Cl-PAHs and Br-PAHs in surface soil samples from the Agbogbloshie e-waste recycling site (Accra, Ghana) using quantitative gas chromatography–mass spectrometry (GC–MS) and comprehensive two-dimensional GC–time-of-flight mass spectrometry (GC × GC–ToFMS) profiling. The results of GC–MS analysis showed elevated concentrations in open e-waste burning areas (160–220 and 19–46 ng/g dry weight for Cl- and Br-PAHs, respectively) with substantial contribution from unidentified compounds (respectively, more than 36 and 70%, based on the total areas of potential peaks). Cl- and Br-PAHs from e-waste burning had a distinctive composition dominated by ring–ring compounds. Several homologue groups not monitored with GC–MS were found using GC × GC–ToFMS: PAHs with up to 5Cl or 3Br, mixed halogenated PAHs and chlorinated methylPAHs. The dioxin-like toxic equivalents of the identified Cl-/Br-PAHs in soils, estimated from their in vitro AhR agonist potencies relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin, were much lower than the range reported for chlorinated and brominated dioxins. However, the toxicity of the unidentified halogenated PAHs remained unclear.  相似文献   

16.
Sludge as dioxins suppressant in hospital waste incineration   总被引:1,自引:0,他引:1  
Nitrogen containing compounds such as ammonia, urea and amines can effectively inhibit the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Sewage sludge accumulates both sulfur and nitrogen during wastewater treatment so it could be used to reduce PCDD/Fs formation. Indeed, it is observed in this study that the gas evolving from the sludge drying process can significantly suppress chlorobenzene (CBz) and PCDD/Fs formation from fly ash collected from a hospital waste incinerator. For instance, the reduction of hexachlorobenzene (HxCBz) and PCDD/Fs amount was 92.1% and 78.7%, respectively, when the drying gas evolving from 2g sludge flew through 2g fly ash. These tests were conducted in the frame of projects devoted to hospital waste incineration. The disposal technology for hospital waste (HW), developed in this institute, features rotary kiln pyrolysis combined with post-combustion followed by flue gas cleaning. Hence, some preliminary tests were devoted to investigate dioxins suppression by co-pyrolysis and co-combustion of polyvinyl chloride (PVC) and sludge in lab scale. More experimental research will be conducted to appropriately assess these effects of sludge on PCDD/Fs emissions during co-pyrolysis/combustion of HW and sludge.  相似文献   

17.
The biosolids (BS) generated in the wastewater treatment process of a meat processing plant were monitored and the priority pollutant content was characterized. The trace metal and organic pollutant content – polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) – were determined quantitatively and compared to guideline limits established by the US EPA and EU. PCBs were not detected in the solid samples, while trace metals, PAHs and PCDD/PCDF were detected in concentrations below the limits established by international standards. Toxic equivalent factors were evaluated for the biosolids, and the results proved that these wastes can be safely deposited on land or used in combustion/incineration plants. Since no previous data were found for meat processing waste, comparisons were made using municipal sewage sludge data reported in the literature. Since, this report monitored part of the priority pollutants established by the US EPA for meat and poultry processing wastewater and sludge, the results verified that low pollution loads are generated by the meat processing plant located in the southern part of Brazil. However, the BS generated in the treatment processes are in accordance with the limits established for waste disposal and even for soil fertilizer.  相似文献   

18.
Pollutant emissions from co-firing of refuse derived fuel (RDF) and coal were investigated in a vortexing fluidized bed combustor (VFBC). RDF-5 was made of common municipal solid waste (MSW). CaCO3 was injected in the combustor to absorb HCl at 850 °C. The results show that NOx and HCl emissions increase with RDF-5 co-firing ratio. The NOx concentration in flue gas at the bottom of the combustor is higher than that at the top. However, the trend of HCl released is reverse compared with NOx emissions. It was found that the HCl concentration decreases with increasing the molar ratio of Ca/Cl. However, the effect of CaCO3 addition on HCl retention is not significant when the molar ratio of Ca/Cl is higher than 5. The chlorine content in fly ash increases obviously with the molar ratio of Ca/Cl. PCDD/Fs emissions decrease slightly with an addition of CaCO3. In this study incomplete combustion is regarded as the main cause for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation.  相似文献   

19.
Emissions from open burning of military food waste and ration packaging compositions were characterized in response to health concerns from open burning disposal of waste, such as at military forward operating bases. Emissions from current and prototype Meals, Ready-to-Eat (MREs), and material options for their associated fiberboard packaging were quantified to assess contributions of the individual components. MREs account for 67–100% of the particulate matter (PM), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins and -furans (PCDDs/PCDFs) emissions when burned in unison with the current fiberboard container and liner. The majority of the particles emitted from these burns are of median diameter 2.5 µm (PM2.5). Metal emission factors were similar regardless of waste composition. Measurements of VOCs and PAHs indicate that targeted replacement of MRE components may be more effective in reducing emissions than variation of fiberboard-packaging types. Despite MRE composition variation, equivalent emission factors for PM, PAH, VOC, and PCDD/PCDF were seen. Similarly, for fiberboard packaging, composition variations exhibited essentially equivalent PM, PAH, VOC, and PCDD/PCDF emission factors amongst themselves. This study demonstrated a composition-specific analysis of waste burn emissions, assessing the impact of waste component substitution using military rations.  相似文献   

20.
An efficient catalytic detoxification method for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in fly ash produced by municipal waste incinerator has been studied using palladium on carbon (Pd/C) catalyst. As one of the trace components in fly ash, the detoxification of PCDD/Fs is very difficult because of the interferences of other persistent components with higher concentrations. However, the detoxification reaction of PCDD/Fs shows higher activity in water/isopropanol solution using commercial Pd/C catalyst at 40 degrees C under normal pressure. The results indicated that the catalytic degradation of PCDFs has been found to be easier than that of PCDDs. Moreover, the dechlorination ratios were higher for octa- and hepta-chlorinated congeners than those for tetra- and penta-chlorinated ones. The detoxification process worked well in water. The dechlorination efficiencies of almost all of the PCDD/Fs congeners can reach over 99% within a shorter reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号