首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disposal of discarded chromated copper arsenate (CCA)-treated wood in landfills raises concerns with respect to leaching of preservative compounds. When unweathered CCA-treated wood is leached using the toxicity characteristic leaching procedure (TCLP), arsenic concentrations exceed the toxicity characteristic (TC) limit of 5mg/L in most cases. The majority of discarded CCA-treated wood, however, results from demolition activities, where the wood has typically been subjected to weathering. Since preservatives do migrate from the wood during its normal use, leaching characteristics of weathered and aged CCA-treated wood may differ from unweathered wood. To evaluate this, CCA-treated wood removed from service after various degrees of weathering was collected from multiple sources and leached with the TCLP, the synthetic precipitation leaching procedure (SPLP) and California's waste extraction test (WET). Five to seven individual pieces of wood were analyzed from each source. The average TCLP arsenic concentration for the 14 sources ranged from 3.2 to 13 mg/L. The average TCLP concentrations of the 100 wood pieces tested were 6.4, 5.9 and 3.2 mg/L for arsenic, copper and chromium, respectively. Overall, in 60 out of 100 samples tested by the TCLP, arsenic concentrations exceeded 5 mg/L (the TC regulatory value). SPLP leachate concentrations were similar to TCLP concentrations, although copper leached somewhat more with the TCLP. WET leachate concentrations were approximately a factor of 10 higher than TCLP concentrations. Discarded CCA-treated wood, even after exposure to years of weathering, often exceeds the TC limit for arsenic and without the current regulatory exemption would possibly require management as a TC hazardous waste in the US.  相似文献   

2.
Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples.  相似文献   

3.
Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions, but also with the disposal of ash residues. In particular, use of low quality coals with high ash content results in huge quantities of both fly and bottom ashes to be disposed of. A main problem related to coal ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly and bottom ashes are in contact with water. In this study, fly and bottom ash samples obtained from thermal power plants, namely Yenikoy, Kemerkoy and Yatagan, located at the southwestern coast of Turkey, were subjected to toxicity tests such as the extraction (EP) and toxicity characteristic leaching (TCLP) procedures of the US Environmental Protection Agency (USEPA) and the so-called 'Method A' extraction procedure of the American Society of Testing and Material (ASTM). The geochemical composition of ash samples showed variations depending on the coal burned in the plants. Furthermore, the EP, TCLP and ASTM toxicity tests showed variations such that the ash samples were classified as 'toxic waste' based on EP and TCLP results whereas they were classified as 'non-toxic' based on ASTM results, indicating test results are pH dependent. When the extraction results were compared with the chemical composition of water samples obtained in the vicinity of the thermal power plants, it was found that the results obtained using the ASTM procedure cannot be used to predict subsurface contamination whereas the EP and TCLP procedures can be used.  相似文献   

4.
Thiobacillus ferrooxidans to leach metals from APCR to render them nonhazardous. The multistage solubilization process involves an alkaline aqueous phase that removes some Pb. In the second phase, the APCR are acidified to pH 4 with H2SO4, then inoculated with a bacterial culture that has been acclimated in the presence of 2% Fe (FeCl3). Several rinses and decantings achieve removal of the leachable metals. The final step involves the addition of Ca(H2PO4)2 and an increase in the treatment pH prior to the final filtration. Viability of thiobacilli in APCR was poor. Despite this problem, the removal of Pb was 35.9%, 46.0%, and 68.7% (for APCR containing 1594, 3026, and 5038 mg Pb/kg, respectively), which demonstrates greater metal removal with increased APCR contamination. Zn removal varied from 68.2% (8273 mg Zn/kg APCR) to 79.5% (16,873 mg Zn/kg APCR), which was positively correlated to the level of residue contamination, whereas Cu was removed in the proportions of 26.9% (495 mg Cu/kg APCR) to 68.2% (465 mg Cu/kg APCR). Cadmium removal appeared to be independent of the level of Cd in the APCR; Cd was removed to the greatest degree, with a variation of 92.0% (129 mg Cd/kg APCR) to 94.7% (267 mg Cd/kg APCR). The treated APCR were tested using four different leachate tests. The APCR released 43 mg Pb/liter during contact with water, and 7.40 mg Cd/liter during TCLP [the toxicity characterization leaching procedure of the United States Environmental Protection Agency (US EPA)]. After biological treatment, the leachate from TCLP was within the acceptance criteria of the US EPA, if the pH of the APCR was increased to pH 5 after the biological treatment. In the case of the Transport Canada leaching test, a betterment of the process is required in order to satisfy the stringent regulatory level of 0.5 mg Cd/liter (0.68 and 0.57 mg/liter).  相似文献   

5.
Leachability of printed wire boards containing leaded and lead-free solder   总被引:1,自引:0,他引:1  
Due to environmental concerns and regulatory initiatives, electronics manufacturers are replacing the tin/lead solder commonly used on printed wire boards (PWBs) with alternative solders. To determine the potential waste management impacts of the alternative solders versus the tin/lead solder, two leaching tests on PWBs manufactured with five alternative types of solder were performed: the toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP). These tests are commonly used in the US regulatory community to assess pollutant leachability in different disposal scenarios. The article discusses the application and limitations of these tests. The five types of solders investigated were 63Sn/37Pb, 99.3Sn/0.7Cu, 95.5Sn/4Ag/0.5 Cu, 96Sn/2.5Ag/1Bi/0.5Cu, and 42Sn/1Ag/57Bi. The leaching tests were conducted on four PWB sections, each with a unique configuration and solder density. The largest lead concentrations were observed from the PWBs containing Sn/Pb solder, with concentrations exceeding the hazardous waste toxicity characteristic (TC) in TCLP leachates. Silver, the other regulated element used in the solders, was rarely detected, with none of the samples exceeding the TC limit for silver. High copper concentrations were observed and were determined to result from the PWB itself, not from the copper-containing solders.  相似文献   

6.
Radium (Ra) removal by an unconventional sorbent, a modified bauxite refinery residue (MBRR), is investigated for a groundwater extracted in Missouri, USA. The MBRR treatment causes substantial reductions of both gross α and combined Ra activities from 0.955 ± 0.005 and 0.66 ± 0.005 Bq L to below detection limits (0.037 Bq L or 1 pCi L). Column breakthrough occurs at 0.555 Bq L for gross α and 0.185 Bq L for combined Ra (15 and 5 pCi L; USEPA's maximum contaminant levels) after 54 and 40 d run time, respectively. At 84 d the MBRR media continues to remove 24.3% of raw water gross α and 39.7% of the combined Ra. The treatment effluent has an initial pH of 10.9, outside the USEPA guides (6.5-8.5); this may be readily mitigated by posttreatment acid injection, or by raw water blending. The MBRR simultaneously removes other potentially hazardous trace elements (e.g., Cu, Zn, and Fe) to extremely low concentrations. In addition, toxicity characteristic leaching procedure testing of spent MBRR suggests that metals are bound tightly, such that it is nonhazardous, permitting cost-effective disposal to landfill without special confinement or storage. Consequently, MBRR may be utilized as an alternative adsorbent for treating Ra-contaminated groundwater.  相似文献   

7.
When mineral wastes are reused in construction materials, a current practice is to evaluate their environmental impact using standard leaching test. However, due to the uncertainty of the measurement, it is usually quite difficult to estimate the pollutant potential compared to other materials or threshold limits. The aim of this paper is to give a quantitative evaluation of the uncertainty of leachate concentrations of cement-based materials, as a function of the number of test performed. The relative standard deviations and relative confidence intervals are determined using experimental data in order to give a global evaluation of the uncertainty of leachate concentrations (determination of total relative standard deviation). Various combinations were realized in order to point out the origin of large dispersion of the results (determination of relative standard deviation linked to analytical measured and to leaching procedure), generalisation was suggested and the results were compared to literature. An actual example was given about the introduction of residue (meat and bone meal bottom ash--MBM-BA) in mortar, leaching tests were carried out on various samples with and without residue MBM-BA. In conclusion large dispersion were observed and mainly due to heterogeneity of materials. So heightened attention needed to analyse leaching result on cement-based materials and further more other tests (e.g. ecotoxicology) should be performed to evaluate the environmental effect of these materials.  相似文献   

8.
Soil testing to predict phosphorus leaching   总被引:12,自引:0,他引:12  
Subsurface pathways can play an important role in agricultural phosphorus (P) losses that can decrease surface water quality. This study evaluated agronomic and environmental soil tests for predicting P losses in water leaching from undisturbed soils. Intact soil columns were collected for five soil types that a wide range in soil test P. The columns were leached with deionized water, the leachate analyzed for dissolved reactive phosphorus (DRP), and the soils analyzed for water-soluble phosphorus (WSP), 0.01 M CaCl2 P (CaCl2-P), iron-strip phosphorus (FeO-P), and Mehlich-1 and Mehlich-3 extractable P, Al, and Fe. The Mehlich-3 P saturation ratio (M3-PSR) was calculated as the molar ratio of Mehlich-3 extractable P/[Al + Fe]. Leachate DRP was frequently above concentrations associated with eutrophication. For the relationship between DRP in leachate and all of the soil tests used, a change point was determined, below which leachate DRP increased slowly per unit increase in soil test P, and above which leachate DRP increased rapidly. Environmental soil tests (WSP, CaCl2-P, and FeO-P) were slightly better at predicting leachate DRP than agronomic soil tests (Mehlich-1 P, Mehlich-3 P, and the M3-PSR), although the M3-PSR was as good as the environmental soil tests if two outliers were omitted. Our results support the development of Mehlich-3 P and M3-PSR categories for profitable agriculture and environmental protection; however, to most accurately characterize the risk of P loss from soil to water by leaching, soil P testing must be fully integrated with other site properties and P management practices.  相似文献   

9.
Physical and chemical characterisation of metal finishing industrial wastes   总被引:5,自引:0,他引:5  
In EU countries approximately 150,000 tons/year of galvanic sludges are generated by 4000 industrial units from the corresponding wastewater treatment plants. These sludges are generally classified as hazardous (European Waste Catalogue as adopted in Council Decision 2000/532/CE and as amended by Decisions 2001/118/EC, 2001/119/EC and 2001/573/CE), basically due to the presence of heavy metals. This work attempts to better understand the physical and chemical characteristics of these sludges, by studying 39 samples collected in different Portuguese industries that should represent all kinds of similar wastes independent of their place of generation. Chemical composition and leaching characteristics are given, together with density, grain size distribution, and specific surface area values. Statistical analysis was used for grouping the wastes according to chemical parameters, which might be useful to predict potential reuse as raw materials for different applications.  相似文献   

10.
Leaching mechanisms of Cr(VI) from chromite ore processing residue   总被引:1,自引:0,他引:1  
Batch leaching tests, qualitative and quantitative x-ray powder diffraction (XRPD) analyses, and geochemical modeling were used to investigate the leaching mechanisms of Cr(VI) from chromite ore processing residue (COPR) samples obtained from an urban area in Hudson County, New Jersey. The pH of the leaching solutions was adjusted to cover a wide range between 1 and 12.5. The concentration levels for total chromium (Cr) and Cr(VI) in the leaching solutions were virtually identical for pH values >5. For pH values <5, the concentration of total Cr exceeded that of Cr(VI) with the difference between the two attributed to Cr(III). Geochemical modeling results indicated that the solubility of Cr(VI) is controlled by Cr(VI)-hydrocalumite and Cr(VI)-ettringite at pH >10.5 and by adsorption at pH <8. However, experimental results suggested that Cr(VI) solubility is controlled partially by Cr(VI)-hydrocalumite at pH >10.5 and by hydrotalcites at pH >8 in addition to adsorption of anionic chromate species onto inherently present metal oxides and hydroxides at pH <8. As pH decreased to <10, most of the Cr(VI) bearing minerals become unstable and their dissolution contributes to the increase in Cr(VI) concentration in the leachate solution. At low pH ( <1.5), Cr(III) solid phases and the oxides responsible for Cr(VI) adsorption dissolve and release Cr(III) and Cr(VI) into solution.  相似文献   

11.
The feasibility of recycling spent foundry sand in clay bricks was assessed in laboratory, pilot line and industrial trials, using naturally occurring sand as a reference. Raw materials were analyzed by X-ray fluorescence, X-ray diffraction, particle size distribution, and leaching and combined to produce bodies containing up to 35% wt. sand. The extrusion, drying and firing behaviour (plasticity, drying sensitivity, mechanical strength, bulk density, water absorption, and shrinkage) were determined. The microstructure, phase composition, durability and leaching (EN 12457, granular materials, end-life step, European Waste Landfill Directive; NEN 7345, monolithic materials, use-life step, Dutch Building Material Decree) were evaluated for bricks manufactured at optimal firing temperature. These results demonstrate that spent foundry sand can be recycled in clay bricks. There are no relevant technological drawbacks, but the feasibility strongly depends on the properties of the raw materials. Spent foundry sand may be introduced into bricks up to 30% wt. Most of the hazardous elements from the spent foundry sand are inertized during firing and the concentrations of hazardous components in the leachates are below the standard threshold for inert waste category landfill excepting for chromium and lead; however, their environmental risk during their use-life step can be considered negligible.  相似文献   

12.
In those states that have not included CWM as hazardous materials in their RCRA programs, the RCRA requirements for management of hazardous waste would not strictly apply to any of the CWM. The Army has historically implemented procedures requiring that chemical warfare agents be managed as RCRA hazardous waste regardless of the concentration, physical form, or configuration of the agent. Such application of strict hazardous waste requirements to management of potentially nonhazardous CWM can result in remedial costs well out of proportion to potential human health and environmental benefits. Recent development of chronic toxicity values for the CWM has opened the door for development of cleanup and waste management standards for waste streams or media containing small residual amounts of CWM. Implementation of this health-based approach to management of CWM remediation wastes may, in part, help to reduce potentially unnecessary hazardous waste management costs for the nonhazardous CWM.  相似文献   

13.
This paper deals with process identification and model development for the case of a porous reference material leaching under certain hydrodynamic conditions. Four different dynamic leaching tests have been applied in order to take into account different types of solid/liquid contact conditions corresponding to various real leaching scenarios: monolithic and granular material with sequential eluate renewal, and granular material and continuously renewed eluate with different hydrodynamic conditions (dispersion, residence time). A coupled chemical-mass transfer model has been developed to describe the leaching behaviour under all experimental conditions. Diffusion has been considered as the mass transport mechanism inside the saturated porous material and dispersive convection as that in the leachate. Two specific phenomena have been identified and considered in the model: (i) the early surface dissolution of the material which results in high Ca concentration and (ii) the late weak dissolution of Na and K giving rise to a long-term residual release. The intrinsic material parameters such as the initial concentrations in the pore water and solid phases were determined by applying equilibrium leaching tests and geochemical modelling. Diffusion coefficients for different elements and the late solubility of alkalines have been found to reach the same values in the four tests. The estimated values of the surface dissolution kinetic constant have shown a dependence on leachate hydrodynamics when the thickness of the degraded layer is nearly the same in the four tests (intrinsic parameter of the material). The competition between the four main dynamic processes, i.e. diffusion, convection, late dissolution, and surface dissolution, has been emphasized and compared in the four leaching tests: the hydrodynamic dispersion and the residence time had no effect on the leaching behaviour of alkalines, which is controlled by diffusion, whereas the behaviour of calcium (a major element of the material) was strongly influenced. This has significant effects on eluate pH values and on the concentration of Pb (the monitored pollutant). The model was then applied to simulate a landfill scenario in the case of a stabilized/solidified incinerator residue containing heavy metals and chloride. A high rain infiltration level and the use of small blocs are favourable conditions for enhanced pollutant release.  相似文献   

14.
Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.  相似文献   

15.
Time constraints associated with conducting long-term (>20 yr) field experiments to test the stability of drinking water treatment residuals (WTR) sorbed phosphorus (P) inhibit improved understanding of the fate of sorbed P in soils when important soil properties (e.g., pH) change. We used artificially aged samples to evaluate aging and pH effects on lability of WTR-immobilized P. Artificial aging was achieved through incubation at elevated temperatures (46 or 70 degrees C) for 4.5 yr, and through repeated wetting and drying for 2 yr. Using a modified isotopic ((32)P) dilution technique, coupled with a stepwise acidification procedure, we monitored changes in labile P concentrations over time. This technique enabled evaluation of the effect of pH on the lability of WTR-immobilized P. Within the pH range of 4 to 7, WTR amendment, coupled with artificial aging, ultimately reduced labile P concentrations by > or = 75% relative to the control (no-WTR) samples. Soil samples with different physicochemical properties from two 7.5-yr-old, one-time WTR-amended field sites were utilized to validate the trends observed with the artificially aged samples. Despite the differences in physicochemical properties among the three (two field-aged and one artificially aged) soil samples, similar trends of aging and pH effects on lability of WTR-immobilized P were observed. Labile P concentrations of the WTR-amended field-aged samples of the two sites decreased 6 mo after WTR amendment and the reduction persisted for 7.5 yr, ultimately resulting in > or = 70% reduction, compared to the control plots. We conclude that WTR application is capable of reducing labile P concentration in P-impacted soils, doing so for a long time, and that within the commonly encountered range of pH values for agricultural soils WTR-immobilized P should be stable.  相似文献   

16.
Application of municipal biosolids to mine tailings can enhance revegetation success, but may cause adverse environmental impacts, such as increased leaching of NO3- and metals to ground water. Kinetic weathering cells were used to simulate geochemical weathering to determine the effects of biosolid amendment on (i) pH of leachate and tailings, (ii) leaching of NO3- and SO4(2-), (iii) leaching and bioavailability (DTPA-extractable) of selected metals, and (iv) changes in tailing mineralogy. Four Cu mine tailings from southern Arizona differing in initial pH (3.3-7.3) and degree of weathering were packed into triplicate weathering cells and were unamended and amended with two rates (equivalent to 134 and 200 Mg dry matter ha(-1)) of biosolids. Biosolid application to acid (pH 3.3) tailings resulted in pH values as high as 6.3 and leachate pH as high as 5.7, and biosolids applied to circumneutral tailings resulted in no change in tailing or leachate pH. Concentrations of NO3--N of up to 23 mg L(-1) occurred in leachates from circumneutral tailings. The low pH of the acidic tailing apparently inhibited nitrification, resulting in leachate NO3--N of <5 mg L(-1). Less SO4(2-)-S was leached in biosolid-amended versus unamended acid tailings (final rate of 0.04 compared with 0.11 g SO4(2-)-S wk(-1)). Copper concentrations in leachates from acidic tailings were reduced from 53 to 27 mg L(-1) with biosolid amendment. Copper and As concentrations increased slightly in leachates from biosolid-amended circumneutral tailings. Small increases in DTPA-extractable Cu, Ni, and Zn occurred in all tailings with increased biosolid rate. Overall, there was little evidence of potential for adverse environmental impacts resulting from biosolid application to these Cu mine tailings.  相似文献   

17.
Phosphate treatment of lead (Pb)-contaminated soils relies on the premise that Pb converts to the thermodynamically stable, insoluble mineral class of pyromorphites. Recent research showed that treatment performance is kinetically controlled and strongly dependent on soil pH; this study employed an acidic phosphate (P) form, monobasic calcium phosphate (MCP), to investigate treatment performance of Pb occurring in an alkaline-buffered and an acidic firing range soil. The results of leaching, X-ray powder diffraction (XRPD), and modeling analyses showed that P and Pb dissolution in the alkaline soil and transformation reactions were kinetically controlled, so that: (i) TCLP (toxicity characteristic leaching procedure) and SPLP (synthetic precipitation leaching procedure) results were poor to marginal even at high MCP dosages; (ii) brushite (Ca(HPO(4)).2H(2)O) and cerussite (PbCO(3)) persisted in XRPD patterns; and, (iii) geochemical modeling failed to predict leaching and phase assemblages. In the acidic soil, Pb-P reactions promoted further soil acidification, improved TCLP performance, and generated better agreement with the equilibrium-based model; however, SPLP and modeling results showed that Pb concentrations could not be reduced below 15 microg/L mainly due to the low soil pH. The marginal or inadequate Pb immobilization was observed in both soils despite the elevated MCP dosages, which were well in excess of the pyromorphite stoichiometric ratio (P/Pb = 0.6). Additionally, P leaching concentrations and rates were extremely high (>300 mg/L), under both SPLP and deionized (DI) water extraction conditions, and as predicted by thermodynamic equilibrium. The performance and sustainability of phosphate-based treatment therefore seem questionable.  相似文献   

18.
钻井固废渗滤液的处理研究   总被引:2,自引:2,他引:0  
针对油气田钻井产生大量固体废物渗滤液的问题,利用化学混凝沉降+氧化还原法对固废渗滤液的处理进行了实验研究。实验结果表明:经过调整渗滤液pH值,加入聚合氯化铝铁及助凝剂PAM,进行絮凝沉降,再用芬顿试剂和氯酸钠氧化,可以处理高浓度废水,特别是对CODCr、色度等指标获得有效去除,达到GB8978-1996《污水综合排放标准》一级指标。  相似文献   

19.
采用氨吹脱--三维电极法对广东某环保发电厂经混凝--生化处理后的垃圾渗滤液进行深度处理,实验结果表明:在渗滤液pH为11,温度60℃,吹脱时间50min时脱氨率达95%;脱氨后的渗滤液经三维电极电解处理,COD去除率达81%,颜色清澈,可达《生活垃圾渗滤液排放限值》(GB16889-1997)的二级排放标准。  相似文献   

20.
The characterization of total and leachable metals in foundry molding sands   总被引:1,自引:0,他引:1  
Waste molding sands from the foundry industry have been successfully used as a component in manufactured soils, but concern over metal contamination must be addressed before many states will consider this beneficial use. Since there is little data available on this topic, the purpose of this study was to characterize total and leachable metals from waste molding sands. A total elemental analysis for Ag, Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, V, and Zn was conducted on 36 clay-bonded and seven chemically bonded molding sands. Total metal concentrations in the molding sands were similar to those found in agricultural soils. The leaching of metals (i.e. Ag, As, Ba, Be, Cd, Cr, Cu, Ni, Pb, Sb, and Zn) was assessed via the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and ASTM water leach test. Based on the TCLP data, none of the 43 molding sands would meet the Resource Conservation and Recovery Act (RCRA) characteristic for toxicity due to high Ag, As, Ba, Cd, Cr, and Pb. Compared to the TCLP results, the metal concentrations were generally lower in the SPLP and ASTM extracts, which is likely related to the buffering capacity of the extraction fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号