首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
Arsenic resistant strains of bacteria and fungi were isolated from soil contaminated by chemical warfare agents. Until now, no metabolic products of microbial attack against the phenyl residues of the model substrate triphenylarsine (TP) were found if it was incubated together with these strains in liquid culture assays. However, one of the isolated fungi, Trichoderma harzianum As 11, was found to oxidize TP to triphenylarsineoxide (TPO). The yeast Trichosporon mucoides SBUG 801 and the white-rot fungus Phanerochaete chrysosporium were also able to oxidize the As(III) in TP. In addition, P. chrysosporium transformed phenylarsineoxide (PAO) to phenylarsonic acid (PAA) under O2-atmosphere. By means of a respirometer system, the oxidation of TP by T. harzianum As 11 was confirmed by a significantly higher consumption of oxygen in the presence of these compounds. HPLC analysis of the oxidation products TPO and PAA in the medium of the assays provided evidence for the transfer reaction of As(III) to As(V) in organic bonds. The oxidation products TPO and PAA are more hydrophilic than TP and PAO. Therefore, it was concluded that particular fungi contribute to the mobilization of arsenic in soil contaminated by chemical warfare agents.  相似文献   

2.
Bacteria and fungi in pristine and oily desert soil samples were counted on inorganic medium aliquots containing 0.5% hexadecane, hexadecanol, hexadecanal or hexadecanoic acid, as sole sources of carbon and energy. It was found that the carbon and energy source most commonly utilized by soil bacteria was the alkane n-hexadecane, and by soil fungi hexadecanoic acid. Representative microorganisms were isolated and identified. The most predominant bacteria in all soil samples belonged to the genera Micrococcus and Pseudomonas; less dominant bacteria belonged to the group of nocardioforms. The most frequent fungal genera were Aspergillus and Penicillium, while Microsporium and Ulocladium were minor fungi. Irrespective of the substrate on which the microbial strains had initially been isolated, the majority of the isolated microorganisms could grow, albeit to a varying degree, on an inorganic medium containing any of the remaining three substrates as sole carbon and energy sources. Bacterial strains preferred the alkane as a carbon and energy source over any of its oxidation products, while fungal strains preferred to grow mainly on the fatty acids. Quantitative analysis by gas liquid chromatography revealed that the predominant bacterial and fungal isolates had a potential for the attenuation of the alkane and its immediate oxidation products in the medium. In view of the continuous release of hydrocarbon oxidation products by oil-utilizing microorganisms in oily environments, it is interesting that the indigenous microflora contribute to the uptake and utilization of all such intermediate compounds, thus, having a potential for efficient self-cleaning and bioremediation of oily soils.  相似文献   

3.
The accumulation of dichloroethenes (DCEs) as dominant products of microbial reductive dechlorination activity in soil and water represent a significant obstacle to the application of bioremediation as a remedial option for chloroethenes in many contaminated systems. In this study, the effects of biostimulation and/or bioaugmentation on the biodegradation of cis- and trans-DCE in soil and water samples collected from contaminated sites in South Africa were evaluated in order to determine the possible bioremediation option for these compounds in the contaminated sites. Results from this study indicate that cis- and trans-DCE were readily degraded to varying degrees by natural microbial populations in all the soil and water samples tested, with up to 44% of cis-DCE and 41% of trans-DCE degraded in the untreated soil and water samples in two weeks. The degradation rate constants ranged significantly (P<0.05) between 0.0938 and 0.560 wk(-1) and 0.182 and 0.401 wk(-1), for cis- and trans-DCE, respectively, for the various treatments employed. A combination of biostimulation and bioaugmentation significantly increased the biodegradation of both compounds within two weeks; 14% for cis-DCE and 18% for trans-DCE degradation, above those observed in untreated soil and water samples. These findings support the use of a combination of biostimulation and bioaugmentation for the efficient biodegradation of these compounds in contaminated soil and water. In addition, the results clearly demonstrate that while naturally occurring microorganisms are capable of aerobic biodegradation of cis- and trans-DCE, biotransformation may be affected by several factors, including isomer structure, soil type, and the amount of nutrients available in the water and soil.  相似文献   

4.
Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review.  相似文献   

5.
In this study we investigated the interactions among plant, rhizosphere microorganisms and Zn pollution. We tested the influence of two bacterial strains isolated from a Zn-polluted soil on plant growth and on the symbiotic efficiency of native arbuscular mycorrhizal fungi (AMF) under Zn toxicity. The two bacterial strains exhibited Zn tolerance when cultivated under increasing Zn levels in the medium. However, strain B-I showed a higher Zn tolerance than strain B-II at the two highest Zn levels in the medium (75 and 100 mg l(-1) Zn). Molecular identification placed the strain B-I within the genus Brevibacillus. Our results showed that bacterial strain B-I consistently enhanced plant growth, N and P accumulation, as well as nodule number and mycorrhizal infection which demonstrated its plant-growth promoting (PGP) activity. This strain B-I has been shown to produce IAA (3.95 microg ml) and to accumulate 5.6% of Zn from the growing medium. The enhanced growth and nutrition of plants dually inoculated with the AMF and bacterium B-I was observed at three Zn levels assayed. This effect can be related to the stimulation of symbiotic structures (nodules and AMF colonization) and a decreased Zn concentration in plant tissues. The amount of Zn acquired per root weight unit was reduced by each one of these bacterial strains or AMF and particularly by the mixed bacterium-AMF inocula. These mechanisms explain the alleviation of Zn toxicity by selected microorganisms and indicate that metal-adapted bacteria and AMF play a key role enhancing plant growth under soil Zn contamination.  相似文献   

6.
不同释钾菌对粉煤灰的生态效应   总被引:1,自引:0,他引:1  
粉煤灰治理难度大,但它含有植物生长必需的营养元素钾,将其就地资源化生物利用是一条较好的途径。释钾菌是一种能把矿物中的难溶性钾转化为有效钾的细菌,从土壤中筛选出2种释钾菌,经过在粉煤灰基质中的驯化培养,通过盆栽试验种植紫花苜蓿,比较不同菌株对粉煤灰的改良作用及其对植物生长的影响。结果表明,筛选出的菌株C6对粉煤灰中速效钾的释放效果明显,降低了基质pH,显著地促进了植物的生长,对粉煤灰生态修复具有重要意义。  相似文献   

7.
Straining phenomena in bacteria transport through natural porous media   总被引:1,自引:0,他引:1  

Background, aim, and scope  

Transport of bacteria through natural porous media is an issue of increasing concern arising in several very important environmental processes. These include the percolation of bacteria from fecal waste to drinking water reservoirs, thus leading to a risk for human health, or the bioremediation of contaminated soils in which the bacteria are expected to travel long distances underground in order to reach contaminated areas and degrade chemicals originating from accidental spills. An understanding of bacterial retention and transport mechanisms in porous media would be of great help in the development of models able to predict the distance covered by bacterial suspensions in these situations.  相似文献   

8.
Chemical pollution of the environment has become a major source of concern. Studies on degradation of organic compounds have shown that some microorganisms are extremely versatile at catabolizing recalcitrant molecules. By harnessing this catabolic potential, it is possible to bioremediate some chemically contaminated environmental systems. Composting matrices and composts are rich sources of xenobiotic-degrading microorganisms including bacteria, actinomycetes and lignolytic fungi, which can degrade pollutants to innocuous compounds such as carbon dioxide and water. These microorganisms can also biotransform pollutants into less toxic substances and/or lock up pollutants within the organic matrix, thereby reducing pollutant bioavailability. The success or failure of a composting/compost remediation strategy depends however on a number of factors, the most important of which are pollutant bioavailability and biodegradability. This review discusses the interactions of pollutants with soils; look critically at the clean up of soils contaminated with a variety of pollutants using various composting strategies and assess the feasibility of using composting technologies to bioremediate contaminated soil.  相似文献   

9.
Deposited gas-purifier wastes are commonly contaminated with trace metals, sulfate and cyanide (CN) compounds. We investigated their release from three soils contaminated with gas-purifier wastes into solution in microcosm experiments under varying redox conditions (E(H) 170-620 mV). The soils differed in pH (2.2; 4.9; 7.4) and featured low amounts of trace metals, but large amounts of total S and total CN. The pH governed trace metal release in the case of the acidic soil and CN release in the case of the slightly alkaline soil. The redox potential controlled trace metal and CN release in the case of the moderately acidic soil. Sources of dissolved SO(4)(2-) were dissolution of gypsum, desorption from Fe oxides and probably oxidation of elemental S. The geochemical behaviors of trace metals (soluble under acidic and reducing conditions) and CN (soluble under alkaline and oxidizing conditions) were diametrically opposed.  相似文献   

10.
从不同土壤环境中筛选出的4类不同土壤微生物91株,分别标记为细菌、固氮菌、分解纤维素菌和放线菌。然后通过将定量的聚乳酸(PLA)分别加入对应液态培养基中,恒温(30℃)摇床培养,连续测定这4类不同的土壤微生物对PLA的降解性能以及该种聚合物对各种微生物生长的影响。结果表明,虽然在自然界中PLA的降解率比较高,但不同类型的土壤微生物对PLA的降解性能却存在明显个体差异。在测试期内,放线菌对于PLA的总降解率最高;而细菌中RB-4的日降解率最高,达到3%左右;纤维分解菌HX-8及固氮菌RG-28的日降解率能达到2.4%。PLA降解产物对于细菌及纤维分解菌的抑制性普遍较强。  相似文献   

11.
Waste streams associated with a variety of agricultural runoff sources are major contributors of nutrients, pesticides and enteric microorganisms to surface and ground waters. Water soluble anionic polyacrylamide (PAM) was found to be a highly effective erosion-preventing and infiltration-enhancing polymer, when applied at rates of 1-10 g m(-3) in furrow irrigation water. Water flowing from PAM treated irrigation furrows show large reductions in sediment, nutrients and pesticides. Recently PAM and PAM + CaO and PAM + Al(SO4)3 mixtures have been shown to filter bacteria, fungi and nutrients from animal wastewater. Low concentrations of PAM [175-350 g PAM ha(-1) as PAM or as PAM + CaO and PAM + Al(SO4) mixture] applied to the soil surface, resulted in dramatic decreases (10 fold) of total, coliform and fecal streptococci bacteria in cattle, fish and swine wastewater leachate and surface runoff. PAM treatment also filtered significant amounts of NH4, PO4 and total P in cattle and swine wastewater. This points to the potential of developing PAM as a water quality protection measure in combination with large-scale animal feeding operations. Potential benefits of PAM treatment of animal facility waste streams include: (1) low cost, (2) easy and quick application. (3) suitability for use with other pollution reduction techniques. Research on the efficacy of PAM for removal of protozoan parasites and viruses and more thorough assessment of PAM degradation in different soils is still needed to completely evaluate PAM treatment as an effective waste water treatment. We will present analysis and feasibility of using PAM, PAM + Al(SO4)3, and PAM + CaO application for specific applications. Our results demonstrate their potential efficacy in reducing sediment, nutrients and microorganisms from animal production facility effluents.  相似文献   

12.
Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation. In this work, the ability of two rhizobacteria, Burkholderia kururiensis KP 23 and Agrobacterium rhizogenes LBA 9402, to tolerate and degrade phenolic compounds was evaluated. Both microorganisms were capable of tolerating high concentrations of phenol, 2,4-dichlorophenol (2,4-DCP), guaiacol, or pentachlorophenol (PCP), and degrading different concentrations of phenol and 2,4-DCP. Association of these bacterial strains with B. napus hairy roots, as model plant system, showed that the presence of both rhizospheric microorganisms, along with B. napus hairy roots, enhanced phenol degradation compared to B. napus hairy roots alone. These findings are interesting for future applications of these strains in phenol rhizoremediation processes, with whole plants, providing an efficient, economic, and sustainable remediation technology.  相似文献   

13.
Mercury-resistant bacteria belonging to the genera Bacillus, Escherichia, Klebsiella, Micrococcus, Pseudomonas, Salmonella, Sarcina, Shigella, Staphylococcus and Streptococcus were isolated from gills and guts of fresh water fish collected from wetland fisheries around Calcutta, India, contaminated with mercury compounds. The total number of bacteria, as well as Hg-resistant bacteria, were always higher in guts than gills. Bottom-dwelling fish contained higher number of bacteria, including Hg-resistant bacteria, than surface and middle water dwelling fish. They belonged either to narrow-spectrum or to broad-spectrum Hg-resistant groups and they also possessed other heavy metal and antibiotic resistant properties. In the presence of toxic levels of HgCl(2), phenylmercuric acetate (PMA) and methylmercuric chloride (MMC), the lag in growth of the bacterial strains gradually increased with increasing concentration of Hg-compounds. Narrow-spectrum Hg-resistant bacterial strains volatilized only HgCl(2) from the liquid medium in the range of 64-89%, whereas the broad-spectrum group exhibited a high level of HgCl(2) (80-94%), PMA (72-84%) and MMC (64-80%) volatilizing capacity with inducible mercuric reductase and organomercurial lyase enzyme activities in their cell-free extracts. Cell-free extracts prepared from narrow-spectrum Hg-resistant bacterial strains induced by HgCl(2) exhibited Hg(+2)-dependent NADPH oxidation, indicating the presence of only mercuric reductase enzyme.  相似文献   

14.
A combined chemical and biological treatment scheme was evaluated in this study aiming at obtaining the simultaneous removal of metalloid arsenic and cationic heavy metals from contaminated soils. The treatment involved the use of the iron reducing microorganism Desulfuromonas palmitatis, whose activity was combined with the chelating strength of EDTA. Taking into consideration that soil iron oxides are the main scavengers of As, treatment with iron reducing microorganisms aimed at inducing the reductive dissolution of soil oxides and thus obtaining the release of the retained As. The main objective of using EDTA was the removal of metal contaminants, such as Pb and Zn, through the formation of soluble metal chelates. Experimental results however indicated that EDTA was also indispensable for the biological reduction of Fe(III) oxides. The bacterial activity was found to have a pronounced positive effect on the removal of arsenic, which increased from the value of 35% obtained during the pure chemical treatment up to 90% in the presence of D. palmitatis. In the case of Pb, the major part, i.e. approximately 85%, was removed from soil with purely chemical mechanisms, whereas the biological activity slightly improved the extraction, increasing the final removal up to 90%. Co-treatment had negative effect only for Zn, whose removal was reduced from 80% under abiotic condition to approximately 50% in the presence of bacteria.  相似文献   

15.
BACKGROUND AND OBJECTIVE: Indigenous soil microorganisms are used for the biodegradation of petroleum hydrocarbons in oily waste residues from the petroleum refining industry. The objective of this investigation was to determine the potential of indigenous strains of fungi in soil contaminated with petroleum hydrocarbons to biodegrade polycyclic aromatic hydrocarbons (PAH). MATERIALS AND METHODS: Twenty one fungal strains were isolated from a soil used for land-farming of oily waste residues from the petrochemical refining industry in Singapore and identified to genus level using laboratory culture and morphological techniques. Isolates were incubated in the presence of 30 mg/L of phenanthrene over a period of 28 days at 30 degrees C. The most effective strain was further evaluated to determine its ability to oxidise a wider range of PAH compounds of various molecular weight i.e acenaphthene, fluorene, fluoranthene, chrysene, benzo(a)pyrene and dibenz(ah)anthracene RESULTS AND DISCUSSION: After 28 days of incubation, 18 of the 21 fungal cultures were capable of oxidising over 50% of the phenanthrene present in culture medium, relative to abiotic controls. Fungal isolate, Penicillium sp. 06, was able to oxidise 89% of the phenanthrene present. This isolate could also oxidise more than 75% of the acenaphthene, fluorene and fluoranthene after 30 days of incubation. However, the oxidation of high molecular weight PAH i.e. chrysene, benzo(a)pyrene and dibenz(ah)anthracene by the Penicillium sp. 06 isolate was limited, where the extent of oxidation was inversely proportional to PAH molecular weight. CONCLUSIONS: Fungal isolate, Penicillium sp. 06, was effective at oxidising a range of PAH in petroleum contaminated soils, but higher molecular weight PAH were more recalcitrant. RECOMMENDATIONS AND OUTLOOK: There is potential for the re-application of this fungal strain to soil for bioremediation purposes.  相似文献   

16.
A soil which has been polluted with chlorinated benzenes for more than 25 years was used for isolation of adapted microorganisms able to mineralize 1,2,4-trichlorobenzene (1,2,4-TCB). A microbial community was enriched from this soil and acclimated in liquid culture under aerobic conditions using 1,2,4-TCB as a sole available carbon source. From this community, two strains were isolated and identified by comparative sequence analysis of their 16S-rRNA coding genes as members of the genus Bordetella with Bordetella sp. QJ2-5 as the highest homological strain and with Bordetella petrii as the closest related described species. The 16S-rDNA of the two isolated strains showed a similarity of 100%. These strains were able to mineralize 1,2,4-TCB within two weeks to approximately 50% in liquid culture experiments. One of these strains was reinoculated to an agricultural soil with low native 1,2,4-TCB degradation capacity to investigate its bioremediation potential. The reinoculated strain kept its biodegradation capability: (14)C-labeled 1,2,4-TCB applied to this inoculated soil was mineralized to about 40% within one month of incubation. This indicates a possible application of the isolated Bordetella sp. for bioremediation of 1,2,4-TCB contaminated sites.  相似文献   

17.
Inoculation of plants with microorganisms may reduce the toxicity of heavy metals to plants in contaminated soils. In this study, we have shown that the plant growth promoting bacteria Methylobacterium oryzae strain CBMB20 and Burkholderia sp. strain CBMB40 from rice reduce the toxicity of Ni and Cd in tomato and promote plant growth under gnotobiotic and pot culture experiments. The bacterial strains bound considerable amounts of Ni(II) and Cd(II) in their growing and resting cells and showed growth in the presence of NiCl2 and CdCl2. In gnotobiotic assay, inoculation with the bacterial strains reduced the ethylene emission and increased the tolerance index of the seedlings against different concentrations of NiCl2/CdCl2. In pot experiments carried out with non-polluted, Ni and Cd supplemented Wonjo-Mix bed soil, the results clearly demonstrated reduction in the accumulations of Ni(II) and Cd(II) in roots and shoots, with significant increase in the plant growth attributes with bacterial inoculations compared to untreated control. Strain CBMB20 performed better than CBMB40 in reducing the heavy metal accumulations in plants. Our results suggest conclusively, that protection against the heavy metals toxicity is rendered by these bacterial strains by reducing their uptake and further translocation to shoots in plants and promote the plant growth by other PGP characteristics.  相似文献   

18.
植物-微生物联合修复石油污染土壤的实验研究   总被引:1,自引:0,他引:1  
筛选高效石油降解菌并考察菌株的石油降解能力,通过植物-微生物联合修复石油污染土壤室内实验,在修复过程中测定了土壤中细菌和固氮菌,碱解氮、速效磷和速效钾的含量变化,同时采用傅立叶变换离子回旋共振质谱(ESI FT-ICR MS)考察了植物-微生物联合修复效果。结果表明,菌株3#、4#的生长适应性较强,其混合菌的降解效果最好,将其混合菌液与植物进行植物-微生物联合修复不同浓度的石油污染土壤,经过150 d的温室降解,最高降解率达到73.47%。ESI FT-ICR MS分析结果表明,与空白组相比,植物组的O1、O2和N1类等化合物相对丰度都发生了显著变化,石油污染物得到一定程度的生物降解。  相似文献   

19.
Changes in aerobic bacteria and autotrophic nitrifier numbers, and in respiration and nitrification in two soils treated with cinosulfuron at 42 (field rate) and 4200 microg/kg were studied after 1 and 4 weeks of incubation under laboratory conditions. Only nitrification at 1 week was slightly inhibited by the cinosulfuron treatment, even at the field rate. In vitro toxicity tests carried out in agar media on representative aerobic bacteria, fungi and Azotobacter strains isolated from the two soils, as well as on nine collection soil bacteria, showed that only a very high cinosulfuron concentration (100 mg/l) can have negative effects on the growth of a limited number of soil heterotrophic microorganisms, under conditions similar to those of soil environment. The absence of three branched-chain amino acids increased bacterial sensitivity, thus showing the importance of the chemical conditions and suggesting acetolactate synthase enzyme blockage as the toxicity mechanism. It is concluded that cinosulfuron has a negative effect on only a few aspects of the microbial community in soil ecosystems, even at concentrations higher that those currently in use.  相似文献   

20.
Two petroleum-degrading strains were screened from oil fields and denoted as SWH-1 (Bacillus subtilis) and SWH-2 (Sphingobacterium multivorum), which were used to ferment and prepare bacterial agent to remediate petroleum-contaminated sites in Shengli Oil Field in China. The optimal liquid fermentation medium and conditions were MgSO4·7H2O (0.5 %), NaCl (0.5 %), soybean dregs (3 %), pH 7.0, culturing at 30 °C, and 220 r/min for 16 h. Peat was chosen as the bacterial carrier due to its ability of keeping microbial activity. Mixed fermented liquid was added into peat (1:2) and air-dried, and the bacterial agent was obtained. It was applied to the petroleum-contaminated soil, which was irrigated, tilled, and fertilized. The removal rate reached 67.7 % after 2 months of remediation. During remediation, the quantity of indigenous bacteria varied a lot, while the inoculated bacteria remained stable; the dehydrogenase activity was at high levels and then decreased. Indigenous microorganisms, inoculated bacterial agent, nutrients, water, and soil permeability all played important roles. The study prepared an environment-friendly bacterial agent and established a set of bioremediation technique, which provided further insights into integration of fermentation engineering and soil remediation engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号