首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This research evaluates the lifetime cancer risks from trihalomethanes in Tehran's drinking water. The Trihalomethanes were measured in seven different water districts. Sixty-three samples were taken from tap water across the city for 7 months. The samples were analyzed for trihalomethanes using US EPA method 524.2. The average concentration of total trihalomethanes in different districts were between 0.81 and 9.0 μg/L, and the highest concentrations were detected in district 2 at 19.5 μg/L. Total lifetime cancer risks assessment from exposure to trihalomethanes in drinking water (ingestion, inhalation, and skin routes) were performed for people living in different districts in Tehran. The lifetime cancer risk was 7.19 × 10(-5) in district 2 (a more affluent neighborhood) where mostly surface water sources is used to supply drinking water and 9.38 × 10(-6) in district 7 (a less affluent neighborhood) which is mainly supplied with well water sources. Based on the population data, the total expected lifetime cancer cases from exposure to trihalomethanes are 104, 108, 81, 81, 41, 27, and three for districts 1 through 7, respectively. The average lifetime cancer risk was 4.33 × 10(-5) which means a total of 606 lifetime cancer cases for the entire province of Tehran. The highest risk from THMs seems to be from the inhalation route followed by ingestion and dermal contacts.  相似文献   

2.
The concentrations of trihalomethanes (THMs), including chloroform, bromodichloromethane, dibromochloromethane, and bromoform, and haloacetic acids (HAAs; monochloroacetic acid, monobromoacetic acid, dibromoacetic acid, dichloroacetic acid, and trichloroacetic acid) were measured in tap waters passing through water distribution systems of six water treatment plants in Seoul, Korea, and their associated health risks from exposure to THMs through ingestion, dermal contact, and inhalation were estimated using a probabilistic approach. The concentration ranges for total THMs and HAA5 were 3.9–53.5 and <LOD–49.5 μg/L, respectively. Among DBPs, chloroform, bromodichloromethane, dichloroacetic acid, and trichloroacetic acid were the most frequently detected. Spatial and seasonal variations in concentrations of THMs and HAAs in the six water distribution systems were significant (P?<?0.001).The mean lifetime cancer risks through ingestion, dermal contact, and inhalation during showering ranged as 7.23–10.06?×?10?6, 2.19–3.63?×?10?6, and 5.22–7.35?×?10?5, respectively. The major exposure route to THMs was inhalation during showering. Sensitivity analysis showed that shower time and shower frequency had a great impact on the lifetime cancer risk by the exposure to THMs in tap water.  相似文献   

3.
A series of laboratory-based incubations using a stable isotope tracer technique was applied to measure the net and gross fluxes of CH(3)Cl and CH(3)Br as well as the net fluxes of CHCl(3) from surface soils of the Sacramento-San Joaquin Delta of California. Annually averaged flux measurements show that these mineral/oxidized peat soils are a net source of CH(3)Cl (140 ± 266 nmol m(-2) d(-1)) and CHCl(3) (258 ± 288 nmol m(-2) d(-1)), and a net sink of CH(3)Br (-2.3 ± 4.5 nmol m(-2) d(-1)). Gross CH(3)Cl and CH(3)Br fluxes are strongly influenced by both soil moisture and temperature: gross production rates of CH(3)Cl and CH(3)Br are linearly correlated with temperature, whereas gross consumption rates exhibit Gaussian relationships with maximum consumption at soil moisture levels between 20 and 30% volumetric water content (VWC) and a temperature range of 25 to 35 °C. Although soil moisture and soil temperature strongly affect consumption rates, the range of gross consumption rates overall is limited (-506 ± 176 nmol m(-2) d(-1) for CH(3)Cl and -12 ± 4 nmol m(-2) d(-1) for CH(3)Br) and is similar to rates reported in previous studies. CHCl(3) fluxes are not correlated with methyl halide fluxes, temperature, or soil moisture. The annual emission rates of CHCl(3) from the Sacramento-San Joaquin Delta are found to be a potentially significant local source of this compound.  相似文献   

4.
Water quality throughout south Florida has been a major concern for many years. Nutrient enrichment in the Indian River Lagoon (IRL) is a major surface water issue and is suggested as a possible cause of symptoms of ecological degradation. In 2005-06, water samples were collected weekly from seven sites along Ten Mile Creek (TMC), which drains into the Indian River Lagoon, to investigate and analyze spatial and temporal fluctuations of nutrients nitrogen (N) and phosphorus (P). The objective of this study was to understand the relationships among chlorophyll a concentration, nutrient enrichment and hydrological parameters in the surface water body.High median concentrations of total P (TP, 0.272 mg L(-1)), PO4-P (0.122 mg L(-1)), and dissolved total P (DTP, 0.179 mg L(-1)); and total N (TN, 0.988 mg L(-1)), NO3(-)-N (0.104 mg L(-1)), NH4+-N (0.103 mg L(-1)), and total Kjeldahl N (TKN, 0.829 mg L(-1)), were measured in TMC. The concentrations of TP, PO4-P, DTP, TN, NO3(-)-N, NH4+-N, and TKN were higher in summer and fall than in winter and spring. However, chlorophyll a and pheophytin concentrations during this period in TMC varied in the range of 0.000-60.7 and 0.000-17.4 microg L(-1), with their median values of 3.54 and 3.02 microg L(-1), respectively. The greatest mean chlorophyll a (10.3 microg L(-1)) and pheophytin (5.71 microg L(-1)) concentrations occurred in spring, while the lowest chlorophyll a (1.49 microg L(-1)) and pheophytin (1.97 mug L(-1)) in fall. High concentrations of PO4-P (>0.16 mg L(-1)), DTP (>0.24 mg L(-1)), NO3(-)-N (>0.15 mg L(-1)), NH4+-N (>0.12 mg L(-1)), and TKN (>0.96 mg L(-1)), occurred in the upstream of TMC, while high concentrations of chlorophyll a (>6.8 mug L(-l)) and pheophytin (>3.9 microg L(-l)) were detected in the downstream of TMC. The highest chlorophyll a (11.8 mug L(-l)) and pheophytin (6.06 microg L(-l)) concentrations, however, were associated with static and open water conditions. Hydrological parameters (total dissolved solid, electrical conductivity, salinity, pH, and water temperature) were positively correlated with chlorophyll a and pheophytin concentrations (P < 0.01) and these factors overshadowed the relationships between N and P concentrations and chlorophyll a under field conditions. Principal component analysis and the ratios of DIN/DP and TN/TP in the water suggest that N is the limiting nutrient factor for phytoplankton growth in the TMC and elevated N relative to P is beneficial to the growth of phytoplankton, which is supported by laboratory culture experiments under controlled conditions.  相似文献   

5.
We investigated penetration patterns of monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI), experimentally and as part of commercial products, in excised full-thickness human skin at 5, 10, 30, or 60 min after exposure. We observed that both monomeric and polymeric HDI were readily absorbed into the skin and that the clearcoat composition affects the penetration rate of the individual isocyanates. The short-term absorption rates for HDI monomer, biuret, and isocyanurate were determined and used to estimate the exposure time required to reach a body burden equal to the American Conference of Governmental Industrial Hygienists (ACGIH) inhalation threshold limit value (TLV) or Oregon State occupational exposure limit (OEL). Oregon is the only government entity in the United States to promulgate a short-term exposure limit (STEL) for HDI-based polyisocyanates biuret and isocyanurate. Based on these absorption rates for a slow-drying clearcoat after 10 min (1.33 μg cm(-2) h(-1)) or 60 min (0.219 μg cm(-2) h(-1)), we calculated that 6.5 and 40 min dermal exposure, respectively, is required to achieve a dose of HDI equivalent to the ACGIH TLV. For biuret, the time to achieve a dose equivalent to the Oregon OEL for slow-drying clearcoat was much shorter (<31 min) than that for fast-drying clearcoat (618 min). Isocyanurate had the shortest skin absorption times regardless of clearcoat formulation (14 s-1.7 min). These results indicate that the dose received through dermal exposure to HDI-containing clearcoats has a significant potential to exceed the dose equivalent to that received through inhalation exposure at established regulatory limits. A critical need exists to monitor dermal exposure quantitatively in exposed workers, to use proper protective equipment to reduce dermal exposure, and to re-evaluate regulatory exposure limits for isocyanates.  相似文献   

6.
Quantitative methods to measure dermal and inhalation exposure to the fungicide propiconazole were developed in the laboratory and applied in the occupational exposure setting for monitoring five farm workers' exposure during pesticide preparation and application to peach crops. Dermal exposure was measured with tape-strips applied to the skin, and the amount of propiconazole was normalized to keratin content in the tape-strip. Inhalation exposure was measured with an OVS tube placed in the worker's breathing-zone during pesticide handling. Samples were analyzed by GC-MS in EI+ mode (limit of detection 6 pg microl(-1)). Dermal exposure ranged from non-detectable to 32.1 +/- 22.6 ng per microg keratin while breathing-zone concentrations varied from 0.2 to 2.2 microg m(-3). A positive correlation was observed between breathing-zone concentrations and ambient air temperature (r2 = 0.87, p < 0.01). Breathing-zone concentrations did not correlate with dermal exposure levels (r2 = 0.11, p = 0.52). Propiconazole levels were below limit of detection when rubber gloves, coveralls, and full-face mask were used. The total-body propiconazole dose, determined for each worker by summing the estimated dermal dose and inhalation dose, ranged from 0.01 to 12 microg per kg body weight per day. Our results show that tape-stripping of the skin and the OVS can be effectively utilized to measure dermal and inhalation exposure to propiconazole, respectively, and that the dermal route of exposure contributed substantially more to the total dose than the inhalation route.  相似文献   

7.
The determination of sub-ppm concentrations of aqueous perfluoroalkylsulfonate (PFSt) anions, including perfluorooctylsulfonate (PFOS), has been accomplished with a relatively simple mass spectrometric procedure that does not require extraction of the analytes into an organic solvent or a chromatographic separation prior to injection into the negative-ion electrospray ionization mass spectrometer. Sample pretreatment was minimized and consisted of dilution of the aqueous samples of groundwater, surface water, tap water, and distilled water with acetonitrile, addition of dodecylsulfate (DDS) as an internal standard, and, in some cases, addition of known amounts of perfluorobutylsulfonate (PFBS) or PFOS for standard-addition experiments. The linear-response range for PFOS is 25.0 microg L(-1) to 2.5 mg L(-1). The lower limit of this range is three orders of magnitude lower than an equally straightforward chromatographic method. The relative errors for standard aqueous solutions containing only 25.0 microg L(-1) and 2.5 mg L(-1) PFOS are +/- 14% and +/- 7%, respectively, with 133 microg L(-1) DDS as the internal standard. The detection limit and quantification limit for PFOS in these standards are 5.0 microg L(-1) and 25.0 microg L(-1), respectively. Six different PFS anions, containing three to eight carbon atoms, were identified and quantified in an aqueous film-forming foam (AFFF) formulation using the method of standard additions. Two alkylsulfate anions and two perfluoroalkylcarboxylate anions were also identified in the AFFF formulation.  相似文献   

8.
In this study the occurrence of ten organophosphate triesters in indoor air at 29 different locations was investigated. They were detected at all locations and a total of ten compounds were identified. The predominant compounds were the chlorinated compounds tris(chloroisopropyl) phosphate and tris(2-chloroethyl) phosphate with a concentration around 2 microg m(-3) in some indoor environments. A rough estimation gives at hand a daily inhalation of around 10 microg for each of these two compounds.  相似文献   

9.
N,N-dibutyl-N1-benzoylthiourea (DBBT) impregnated onto a polymeric matrix, Amberlite XAD-16 was prepared. The separation and enrichment of Ag(I) from solution was investigated. Effective extraction conditions were optimized in column methods prior to determination by atomic absorption spectrometry. The optimum pH range for quantitative adsorption is 2-5. Quantitative recovery of Ag was achieved by stripping with 1 mol L(-1) thiourea in 1 mol L(-1) HCl. The sorption capacity of resin is 0.115 mmol Ag+ g(-1) resin. The relative standard deviation and detection limit was 3.1% for 1 microg Ag+ mL(-1) solution and 0.11 microg L(-1), respectively. The method was used for the determination of silver in geological water samples.  相似文献   

10.
The present study aimed to assess whether urinary germanium concentration can be used as a biomarker of inhalation exposure to airborne dust from metallic germanium (Ge) or GeO2 in the occupational setting. A novel hydride generation-based method coupled with fow-injection graphite furnace atomic absorption spectrometry (HG/FI-GFAAS) was developed for the determination of urinary germanium. It was found that urinary germanium concentration could be reliably determined by a standard additions method after thorough digestion of the urine and careful pH adjustment of the digest. The limit of detection (LOD) in urine for the HG/FI-GFAAS method was 0.25 microg Ge L(-1). In Belgian control male subjects, the urinary germanium concentration was below this LOD. In 75 workers currently exposed to inorganic germanium compounds, respirable and inhalable concentrations of germanium in the aerosols were measured on Monday and Friday at the job sites using personal air samplers. Spot-urine samples were collected on the same days before and after the work shift. The germanium concentrations of respirable dust correlated very well with those of inhalable dust and represented 20% of the inhalable fraction. Workers exposed to metallic Ge dust were on average ten times less exposed to germanium than those whose exposure involved GeO2 (3.4 versus 33.8 microg Ge m(-3)). This difference was reflected in the urinary germanium concentrations (3.4 versus 23.4 microg Ge g(-1) creatinine). Regression analysis showed that the concentration of germanium in the inhalable fraction explained 42% of the post-shift urinary germanium concentration either on Monday or on Friday, whereas in a subgroup of 52 workers mainly exposed to metallic germanium dust 57% (r = 0.76) of the Monday post-shift urinary germanium was explained. Urinary elimination kinetics were studied in seven workers exposed to airborne dust of either metallic Ge or GeO2. The urinary elimination rate of germanium was characterised by half-times ranging from 8.2 to 18.1 h (on average 12 h 46 min). The present study did not allow discrimination between the germanium species to which the workers were exposed, but it showed fast urinary elimination kinetics for inhalation exposure to dust of metallic Ge and GeO2. It pointed out that urine samples taken at the end of the work shift can be used for biological monitoring of inorganic germanium exposure in the occupational setting.  相似文献   

11.
Cyanide is a very toxic chemical that is used to extract gold from its ores. Wastewaters from gold mining companies such as Bogoso Gold Limited (BGL) contain cyanide and other potentially toxic chemicals that have adverse effects on human beings and aquatic organisms. This study was conducted to evaluate the human health risk assessment from exposure to free cyanide via oral and dermal contact of surface/underground water by resident adults within the concession of Bogoso Gold Limited. The chronic non-cancer health risk from exposure to cyanide in River Bogo Upstream is 230 and 43 (by Central Tendency Exposure (CTE) parameters respectively). This means that approximately 230 and 43 resident adults are likely to suffer diseases related to cyanide intoxication via oral and dermal contact respectively. For chronic exposure to River Bogo Downstream by resident adults, the non-cancer health risks are: 0.031 and 0.57 via oral and dermal contact for CTE parameters respectively, which also means that, the non-cancer health risks associated with cyanide intoxication is negligible as the hazard index is less than 1.0 via oral and dermal contacts respectively. The results showed that health risk for acute exposure to cyanide by the resident adults is very high. Hence the residents attribute most of the unexplained deaths in the communities to accidental ingestion and dermal contact of cyanide water.  相似文献   

12.
Direct mercury analysis was successfully applied to determine trace levels of total mercury in samples from sand boxes in Montréal (Québec, Canada). Twenty sand boxes were sampled from across the city and divided into two size fractions, a fine fraction (<100 microm) and a whole fraction. The concentrations of mercury ranged from 1.6 to 35 microg Hg kg(-1) dry soil for the fine fraction and from 0.7 to 6 microg Hg kg(-1) dry soil for the whole fraction. The mercury concentrations correlated with the soil organic carbon content (R2= 0.67) in the sand. The ratio of the concentration of mercury in the fine over the whole fraction varied from 2.2 to 18. Using published soil ingestion rates for children, the calculated daily intake values varied from 0 to 0.5 ng Hg kg(-1) bw d(-1) with an estimated oral ingestion of 200 mg of sand and from 0.2 to 4.7 ng Hg kg(-1) bw d(-1) with an ingestion of 1750 mg of sand. None of the sand boxes contain sufficient amounts of mercury so as to exceed the currently accepted daily intake threshold of 0.105 microg Hg kg(-1) bw d(-1) established by Health Canada.  相似文献   

13.
OBJECTIVES: The aim of this investigation was to use activated carbon cloth (ACC) patches to study the probability and extent of dermal exposure to benzene and toluene in a shoe factory. METHODS: Inhalation and dermal exposure loading were measured simultaneously in 70 subjects on multiple days resulting in 113 observations. Dermal exposure loading was assessed by ACC patches attached to likely exposed skin areas (e.g. the palm of the hand and abdomen). A control patch at the chest and an organic vapor monitor (OVM) were used to adjust the hand and abdomen patches for the contribution from the air through passive absorption of benzene and toluene on the ACC patches. Systemic exposure was assessed by quantification of unmetabolized benzene (UBz) and toluene (UTol) in urine. RESULTS: Mean air concentrations for the study population were 1.5 and 7.5 ppm for benzene and toluene, respectively. Iterative regression analyses between the control patch, OVM and the dermal patches showed that only a small proportion of the ACC patches at the hand had likely benzene (n = 4; mean 133 microg cm(-2) h(-1)) or toluene (n = 5; mean 256 microg cm(-2) h(-1)) contamination. Positive patches were exclusively observed among subjects performing the task of gluing. Significant dermal exposure loading to the abdomen was detected only for toluene (n = 2; mean 235 microg cm(-2) h(-1)). No relation was found between having a positive hand or abdomen ACC patch and UBz or UTol levels. In contrast a strong association was found between air levels of benzene (p = 0.0016) and toluene (p < 0.0001) and their respective urinary levels. CONCLUSIONS: ACC patches are shown to be a useful technique for quantifying the probability of dermal exposure to organic solvents and to provide estimates of the potential contribution of the dermal pathway to systemic exposure. Using ACC patches we show that dermal exposure to benzene and toluene in a shoe manufacturing factory is probably rare, and when it occurred exposures were relatively low and did not significantly contribute to systemic exposure.  相似文献   

14.
The analysis of BTEX and other substituted benzenes in water samples using solid phase microextraction (SPME) and quantification by gas chromatography with flame ionization detection (GC-FID) was validated. The best analytical conditions were obtained using PDMS/DVB/CAR fibre using headspace extraction (HS-SPME) at 50 [degree]C for 20 min without stirring. The linear range for each compound by HS-SPME with GC/FID was defined. The detection limits for these compounds obtained with PDMS/DVB/CAR fibre and GC/FID were: benzene (15 ng L(-1)), toluene (160 ng L(-1)), monochlorobenzene (54 ng L(-1)), ethylbenzene (32 ng L(-1)), m-xylene (56 ng L(-1)), p-xylene (69 ng L(-1)), styrene (35 ng L(-1)), o-xylene (42 ng L(-1)), m-dichlorobenzene (180 ng L(-1)), p-dichlorobenzene (230 ng L(-1)), o-dichlorobenzene (250 ng L(-1)) and trichlorobenzene (260 ng L(-1)). This headspace SPME-GC-FID method was compared with a previously validated method of analysis using closed-loop-stripping analysis (CLSA). The headspace SPME-GC-FID method is suitable for monitoring the production and distribution of potable water and was used, in field trials, for the analysis of samples from main intakes of water (surface or underground) and from the water supply system of a large area (Lisbon and neighbouring municipalities).  相似文献   

15.
氯仿,四氯化碳对蚕豆根尖细胞微核诱发效应的比较研究   总被引:1,自引:0,他引:1  
利用蚕豆根尖细胞微核方法检测氯仿、四氯化碳的诱变效应,结果表明,氯仿从0.01g/L至1.0各浓度组微核率明显高于阴性对照组(P〈0.01),亦高于阳性对照组(P〈0.01),四氯化碳从0.01g/L至1.0g/L各浓度组微核率同样明显高于阴性及阳性对照组(P〈0.01),且同一浓度的2种药物诱发微核率比较,氯仿高于四氯化碳,差异非常显著,说明氯仿的诱变活性强于四氯化碳。  相似文献   

16.
The aim of this study was risk characterization of a replaced urban industrial land located north of Qingdao, in relation to heavy metals values. Soil concentrations of Cd, Pb, Cu, Ni, Cr, and Zn were analyzed. It was observed that the components of Cd, Pb, Cu, Ni, Cr, and Zn are about 2.22, 8.07, 4.70, 6.81, 2.65, and 3.0-folds, respectively, when compared with the local natural background values in Qingdao. The spatial distribution of heavy metals indicated that these hotspots for Cr and Zn located in the southwestern part, Ni and Cd in the middle of the south area, Pb in the northwest, and Cu in the middle of the east area. The values of pollution index and Nemerow integrated pollution index revealed that 100 % of soil samples were moderately or heavily contaminated by six heavy metals. From these results, human health risk assessment for sensitive population was performed according to two different land uses. For non-carcinogenic risk, the direct oral ingestion appeared to be the main exposure pathway followed by dermal and inhalation absorption. The HI values of Pb and Cr characterized for children were larger than 1, while HI values of each metal for adults in two scenarios were lower than 1. Besides, carcinogenic risk from inhalation exposure to Cr for children and adults in two scenarios all exceeded the safety limit.  相似文献   

17.
Respiratory sensitization and occupational asthma are associated with exposure to 1,6-hexamethylene diisocyanate (HDI) in both monomeric and oligomeric forms. The monomer and polymers of diisocyanates differ significantly in their rates of absorption into tissue and their toxicity, and hence may differ in their contribution to sensitization. We have developed and evaluated a liquid chromatography/mass spectrometry (LC-MS) method capable of quantifying HDI and its oligomers (uretidone, biuret, and isocyanurate) in air, tape-stripped skin, and paint samples collected in the automotive refinishing industry. To generate analytical standards, urea derivatives of HDI, biuret, and isocyanurate were synthesized by reaction with 1-(2-methoxyphenyl)piperazine and purified. The urea derivatives were shown to degrade on average by less than 2% per week at -20 degrees C over a 2 month period in occupational samples. The average recovery of HDI and its oligomers from tape was 100% and the limits of detection were 2 and 8 fmol microl(-1), respectively. Exposure assessments were performed on 13 automotive spray painters to evaluate the LC-MS method and the sampling methods under field conditions. Isocyanurate was the most abundant component measured in paint tasks, with median air and skin concentrations of 2.4 mg m(-3) and 4.6 microg mm(-3), respectively. Log-transformed concentrations of HDI (r = 0.79, p < 0.0001) and of isocyanurate (r = 0.71, p < 0.0001) in the skin of workers were correlated with the log-transformed product of air concentration and painting time. The other polyisocyanates were detected on skin for less than 25% of the paint tasks. This LC-MS method provides a valuable tool to investigate inhalation and dermal exposures to specific polyisocyanates and to explore relative differences in the exposure pathways.  相似文献   

18.
The purification of water by the electro-removal process using different metal electrodes is widely used in different spheres of science and industry. The comparative characteristics under galvanostatic conditions of zinc (Zn), brass (Cu-Zn), copper (Cu) and iron (Fe) anodes for arsenic (As) removal from water by the electro-removal process in laboratory scale experiments were determined at current densities of 1.5, 3 and 12 mA cm(-2) for 60 min, from a solution containing different concentrations of As(v) (from 70 to 130 microg L(-1)). The results at these different current densities indicated that rapid arsenic removal was achieved at higher current densities (12 mA cm(-2)), with the chemical precipitation of arsenate complexes. The removal of As was relatively efficient, with the following tendency (at 1.5 mA cm(-2)): Fe (>93%) congruent with Zn (>93%) > Cu-Zn (>73%) >Cu (>67%), these efficiencies were relatively independent of the removal rate for all the initial arsenic concentrations investigated. This behaviour is attributed to the electrochemical intrinsic properties of the most active metals, and to the chemical precipitation reactions following the electrochemical process, iron being the most attractive metal for arsenic removal for practical applications.  相似文献   

19.
An in situ chemical and biological study was conducted in the lower Muskingum River (southeast Ohio, U.S.A.) to evaluate potential effects of copper (Cu) discharged from a coal ash effluent. Effluent total Cu, dissolved Cu, TSS and pH measurements were performed monthly during January-December 1995. Benthic macroinvertebrates were sampled at five river locations using artificial substrate samplers, and in situ Cu analyses were conducted. Effluent Cu (total) ranged from 8 to 142 microg L(-1) (mean = 58 microg L(-1)), but dissolved Cu never exceeded 78 microg L(-1) (mean = 20 microg L(-1)). The mean ratio of dissolved Cu to total Cu in these samples was 32%. Total Cu concentrations at the biological sampling sites adjacent to the effluent discharge were higher than levels at ambient sites, but dissolved Cu levels were similar among all sites. The macroinvertebrate community proximal to the coal ash effluent had the highest number of taxa and total number of individuals; a high number of mayfly and caddis fly taxa; and the highest Invertebrate Community Index score. The high water velocity of the discharge (which likely contained particulate organic matter) apparently created a favorable microhabitat that, combined with Cu-complexing constituents in the discharge, superceded potential adverse effects of high Cu levels. This study emphasizes the importance of instream biological data when obtained in conjunction with chemical analyses.  相似文献   

20.
A simple and sensitive spectrophotometric method for the determination of chromium has been developed. The method is based on the diazotization of Dapsone in hydroxylamine hydrochloride medium and coupling with N-(1-Napthyl) Ethylene Diamine Dihydrochloride by electrophilic substitution to produce an intense pink azo-dye, which has absorption maximum at 540 nm. The Beer's law is obeyed from 0.02-1.0 microg mL(-1) and the molar absorptivity is 3.4854 L mol(-1) cm(-1). The Limits of quantification and Limit of detection of the proposed method are 0.0012 microg mL(-1) and 0.0039 microg mL(-1) respectively. The method has been successfully applied for the determination of chromium in water samples and the results were statistically evaluated with that of the reference method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号