首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   5篇
  国内免费   1篇
环保管理   23篇
综合类   3篇
基础理论   3篇
评价与监测   4篇
  2023年   1篇
  2019年   8篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   
2.
A simple and sensitive spectrophotometric method for the determination of chromium has been developed. The method is based on the diazotization of Dapsone in hydroxylamine hydrochloride medium and coupling with N-(1-Napthyl) Ethylene Diamine Dihydrochloride by electrophilic substitution to produce an intense pink azo-dye, which has absorption maximum at 540 nm. The Beer's law is obeyed from 0.02-1.0 microg mL(-1) and the molar absorptivity is 3.4854 L mol(-1) cm(-1). The Limits of quantification and Limit of detection of the proposed method are 0.0012 microg mL(-1) and 0.0039 microg mL(-1) respectively. The method has been successfully applied for the determination of chromium in water samples and the results were statistically evaluated with that of the reference method.  相似文献   
3.
Multiple-species reserves aim at supporting viable populations of selected species. Population viability analysis (PVA) is a group of methods for predicting such measures as extinction risk based on species-specific data. These methods include models that simulate the dynamics of a population or a metapopulation. A PVA model for the California gnatcatcher in Orange County was developed with landscape (GIS) data on the habitat characteristics and requirements and demographic data on population dynamics of the species. The potential applications of this model include sensitivity analysis that provides guidance for planning fieldwork, designing reserves, evaluating management options, and assessing human impact. The method can be extended to multiple species by combining habitat suitability maps for selected species with weights based on the threat faced by each species, and the contribution of habitat patches to the persistence of each species. These applications and extensions, together with the ability of the model to combine habitat and demographic data, make PVA a powerful tool for the design, conservation, and management of multiple species reserves.  相似文献   
4.
5.
Use of models to simulate crop production has become important in optimizing irrigation management in arid and semiarid regions. However, applicability and performance of these models differ across regions, due to differences in environmental and management factors. The AquaCrop model was used to simulate soil water content (SWC), evapotranspiration (ET), and yield for grain sorghum under different irrigation regimes and dryland conditions at two sites in Central and Southern High Plains. Prediction error (Pe), estimated as the difference between simulated and measured divided by measured, for SWC ranged from ?17% to 4% in fully irrigated, ?3% to ?10% in limited irrigated, and ?16% to 25% in dryland treatments. The Pe within ±4%, ?5%, and ?17% to 24% were attained for seasonal ET under fully irrigated, limited irrigated, and dryland conditions, respectively. Pe values for grain yield were within those previously reported and ranged from ?10% to 12%, ?12% to 7%, and 9% to 17% for fully irrigated, limited irrigated and dryland conditions, respectively. Overall performance of the AquaCrop model showed it could be used as an effective tool for evaluating the impacts of variable crop and irrigation managements on the production of grain sorghum in the study area. Finally, the application of the model in the study area revealed planting date has a significant impact on sorghum yield and irrigation requirements, but the impact of planting density was negligible. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
6.
The Agricultural Production Systems sIMulator model validated in a prior study for winter wheat was used to simulate yield, aboveground crop biomass (BM), transpiration (T), and evapotranspiration under four irrigation capacities (ICs) (0, 1.7, 2.5, and 5 mm/day) with two nitrogen (N) application rates (N1, 94 kg N/ha; N2, 160 kg N/ha) to (1) understand the performance of winter wheat under different ICs and (2) develop crop water production function under various ICs and N rates. Evaluation was based on yield, aboveground crop BM, transpiration productivity (TP), crop water productivity (WP), and irrigation WP (IWP). Simulation results showed winter wheat yield increased with increase in N application rate and IC. However, the rate of yield increase gradually reduced with additional irrigation beyond 2.5 mm/day. A 5 mm/day IC required a total of 190 mm irrigation and produced a 5%–16% yield advantage over 2.5 mm/day. This indicates it is possible to reduce groundwater use for wheat by 50% incurring only 5%–16% yield loss relative to 5 mm/day. The TP and IWP for grain were slightly higher under IC of 1.7 mm/day (15.2–16.1 kg/ha/mm and 0.98–1.6 kg/m3) when compared to 5 mm/day (14.7–15.5 kg/ha/mm and 0.6–1.06 kg/m3), respectively. Since TP and IWPs are relatively higher under lower ICs, winter wheat could be a suitable crop under lower ICs in the region. Relationship between yield–T and yield–ET was linear with a slope of 15–16 and 9.5–10 kg/ha/mm, respectively. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
7.
Accurate estimation of evapotranspiration (ET) is essential to improve water use efficiency of crop production systems managed under different water regimes. The Agricultural Policy/Environmental eXtender (APEX) model was used to simulate ET using four potential ET (ETp) methods. The objectives were to determine sensitive ET parameters in dryland and irrigated cropping systems and compare ET simulation in the two systems using multiple performance criteria. Measured ET and crop yield data from lysimeter fields located in the United States Department of Agriculture‐Agricultural Research Service Bushland, Texas were used for evaluation. The number of sensitive parameters was higher for dryland (11–14) than irrigated cropping systems (6–8). Only four input parameters: soil evaporation plant cover factor, root growth soil strength, maximum rain intercept, and rain intercept coefficient were sensitive in both cropping systems. Overall, it is possible to find a set of robust parameter values to simulate ET accurately in APEX in both cropping systems using any ETp method. However, more computation time is required for dryland than irrigated cropping system due to a relatively larger number of sensitive input parameters. When all inputs are available, the Penman–Monteith method takes the shortest computation time to obtain one model run with robust parameter values in both cropping systems. However, in areas with limited datasets, one can still obtain reasonable ET simulations using either Priestley–Taylor or Hargreaves. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
8.
The Soil and Water Assessment Tool (SWAT) is one of the most widely used watershed models for simulating hydrology in response to agricultural management practices. However, limited studies have been performed to evaluate the SWAT model's ability to estimate daily and monthly evapotranspiration (ET) in semiarid regions. ET values were simulated using ArcSWAT 2012 for a lysimeter field managed under dryland conditions at the USDA‐ARS Conservation and Production Research Laboratory at Bushland, Texas, and compared with measured lysimeter values from 2000 to 2010. Two scenarios were performed to compare SWAT's performance: (1) use of default plant leaf area index (LAI) values in the embedded plant database and (2) adjusted LAI values. Scenario 1 resulted in an “unsatisfactory” Nash‐Sutcliffe efficiency (NSE) of 0.42 and 0.38 for the calibration and validation periods, respectively. Scenario 2 resulted in a “satisfactory” NSE value for the calibration period while achieving a “good” NSE of 0.70 for the validation period. SWAT generally underestimated ET at both the daily and monthly levels. Overestimation during fallow years may be due to the limitations of the pothole function used to simulate furrow diking. Users should be aware of potential errors associated with using default LAI parameters. Inaccuracies in ET estimation may also stem from errors in the plant stress functions, particularly when evaluating water management practices for dryland watersheds.  相似文献   
9.
Nitrate-N losses to surface waters in the Upper Midwest of the Untied States have increased in recent decades, contributing to hypoxia in the Gulf of Mexico. This paper investigates whether increasing nitrate-N export from cropland in the Upper Midwest since the late 1960s results from changes in land use or climate. The Agricultural Drainage and Pesticide Transport (ADAPT) Model simulated current and historical agricultural systems under past and recent wet climate for Seven Mile Creek in Minnesota. Simulations were run with management and climate for three distinctly different periods--namely, 1965 to 1969, 1976 to 1980, and 1999 to 2003 (wettest period). Results showed discharge and nitrate-N losses responded more to changes in climate than management. The wetter period (1999-2003) caused a simulated 70% increase in discharge under 1960s-era management compared with that period's observed climate and a simulated 51% increase in discharge under 1970s-era management compared with the 1976 to 1980 climate. The recent, wetter climate also produced a 62% increase in nitrate-N losses for 1960s-era management compared with the actual climate and a 137% increase in nitrate-N losses for 1978 management conditions compared with actual 1970s climate. Had recent climate been in place and stable since 1965, agricultural changes would have decreased discharge by 6.4% through the late 1970s and then by another 21.1% under modern management but would have increased nitrate-N losses by 184% through the late 1970s and then decreased nitrate-N losses by 13.5% between 1978 and 2001. Management changes that were important drivers included increasing N-fertilizer rates, increases in corn acreage, and increases in crop yield. But the most important factor driving increased nitrate-N losses from agriculture since the 1970s was an increasingly wetter climate.  相似文献   
10.
The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large‐scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETref maps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号