首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Schwanz LE  Spencer RJ  Bowden RM  Janzen FJ 《Ecology》2010,91(10):3016-3026
Conditions experienced early in life can influence phenotypes in ecologically important ways, as exemplified by organisms with environmental sex determination. For organisms with temperature-dependent sex determination (TSD), variation in nest temperatures induces phenotypic variation that could impact population growth rates. In environments that vary over space and time, how does this variation influence key demographic parameters (cohort sex ratio and hatchling recruitment) in early life stages of populations exhibiting TSD? We leverage a 17-year data set on a population of painted turtles, Chrysemys picta, to investigate how spatial variation in nest vegetation cover and temporal variation in climate influence early life-history demography. We found that spatial variation in nest cover strongly influenced nest temperature and sex ratio, but was not correlated with clutch size, nest predation, total nest failure, or hatching success. Temporal variation in climate influenced percentage of total nest failure and cohort sex ratio, but not depredation rate, mean clutch size, or mean hatching success. Total hatchling recruitment in a year was influenced primarily by temporal variation in climate-independent factors, number of nests constructed, and depredation rate. Recruitment of female hatchlings was determined by stochastic variation in nest depredation and annual climate and also by the total nest production. Overall population demography depends more strongly on annual variation in climate and predation than it does on the intricacies of nest-specific biology. Finally, we demonstrate that recruitment of female hatchlings translates into recruitment of breeding females into the population, thus linking climate (and other) effects on early life stages to adult demographics.  相似文献   

2.
3.
Kendall BE  Fox GA  Fujiwara M  Nogeire TM 《Ecology》2011,92(10):1985-1993
Demographic heterogeneity--variation among individuals in survival and reproduction--is ubiquitous in natural populations. Structured population models address heterogeneity due to age, size, or major developmental stages. However, other important sources of demographic heterogeneity, such as genetic variation, spatial heterogeneity in the environment, maternal effects, and differential exposure to stressors, are often not easily measured and hence are modeled as stochasticity. Recent research has elucidated the role of demographic heterogeneity in changing the magnitude of demographic stochasticity in small populations. Here we demonstrate a previously unrecognized effect: heterogeneous survival in long-lived species can increase the long-term growth rate in populations of any size. We illustrate this result using simple models in which each individual's annual survival rate is independent of age but survival may differ among individuals within a cohort. Similar models, but with nonoverlapping generations, have been extensively studied by demographers, who showed that, because the more "frail" individuals are more likely to die at a young age, the average survival rate of the cohort increases with age. Within ecology and evolution, this phenomenon of "cohort selection" is increasingly appreciated as a confounding factor in studies of senescence. We show that, when placed in a population model with overlapping generations, this heterogeneity also causes the asymptotic population growth rate lambda to increase, relative to a homogeneous population with the same mean survival rate at birth. The increase occurs because, even integrating over all the cohorts in the population, the population becomes increasingly dominated by the more robust individuals. The growth rate increases monotonically with the variance in survival rates, and the effect can be substantial, easily doubling the growth rate of slow-growing populations. Correlations between parent and offspring phenotype change the magnitude of the increase in lambda, but the increase occurs even for negative parent-offspring correlations. The effect of heterogeneity in reproductive rate on lambda is quite different: growth rate increases with reproductive heterogeneity for positive parent-offspring correlation but decreases for negative parent-offspring correlation. These effects of demographic heterogeneity on lambda have important implications for population dynamics, population viability analysis, and evolution.  相似文献   

4.
The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in lambda in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log lambdas, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log lambdas approximately - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act.  相似文献   

5.
Human-caused mortality of wildlife is a pervasive threat to biodiversity. Assessing the population-level impact of fisheries bycatch and other human-caused mortality of wildlife has typically relied upon deterministic methods. However, population declines are often accelerated by stochastic factors that are not accounted for in such conventional methods. Building on the widely applied potential biological removal (PBR) equation, we devised a new population modeling approach for estimating sustainable limits to human-caused mortality and applied it in a case study of bottlenose dolphins affected by capture in an Australian demersal otter trawl fishery. Our approach, termed sustainable anthropogenic mortality in stochastic environments (SAMSE), incorporates environmental and demographic stochasticity, including the dependency of offspring on their mothers. The SAMSE limit is the maximum number of individuals that can be removed without causing negative stochastic population growth. We calculated a PBR of 16.2 dolphins per year based on the best abundance estimate available. In contrast, the SAMSE model indicated that only 2.3–8.0 dolphins could be removed annually without causing a population decline in a stochastic environment. These results suggest that reported bycatch rates are unsustainable in the long term, unless reproductive rates are consistently higher than average. The difference between the deterministic PBR calculation and the SAMSE limits showed that deterministic approaches may underestimate the true impact of human-caused mortality of wildlife. This highlights the importance of integrating stochasticity when evaluating the impact of bycatch or other human-caused mortality on wildlife, such as hunting, lethal control measures, and wind turbine collisions. Although population viability analysis (PVA) has been used to evaluate the impact of human-caused mortality, SAMSE represents a novel PVA framework that incorporates stochasticity for estimating acceptable levels of human-caused mortality. It offers a broadly applicable, stochastic addition to the demographic toolbox to evaluate the impact of human-caused mortality on wildlife.  相似文献   

6.
Abstract:  We performed a capture-mark-recapture study on one of the last populations of Zingel asper , an endemic percid species of the Rhône River basin in France. The distribution of Z. asper has decreased dramatically during the last century. We sampled three sites in suitable habitats in the Beaume River. No impact of individual tagging on survival was found. The demography of the population was analyzed using capture-recapture methods that allow the estimation of survival, recruitment, and demographic growth rates. Annual survival rates were low (0.35–0.50). The level of transience was high (5% to 25%), suggesting that a significant number of individuals were highly mobile or shifted to suboptimal habitats. Seniority rates suggested random highly variable recruitment between years. The three sites had similar variation patterns in all demographic parameters, indicating broad spatial covariation in population dynamics. We found some local differences in demographic parameters, which could be linked to local habitat quality. Individual tagging allowed for the estimation of demographic parameters that improved our understanding of Z. asper population dynamics and revealed mechanisms that may affect population persistence, such as stochastic recruitment, low survival, and frequent dispersal. The fragmentation of habitat through river damming inhibits dispersal and represents a threat to the persistence of Z. asper in the Rhône basin. Our results offer evidence of the importance of dispersal in nonmigratory fishes and confirm the usefulness of individual tagging methods in rare fish demography.  相似文献   

7.
Simulation modeling was used to reconstruct Black-browed Albatross (Diomedea melanophris) population trends. Close approximations to observed data were accomplished by annually varying survival rates, reproductive success, and probabilities of returning to breed given success in previous years. The temporal shift in annual values coincided with the start of longline fishing at South Georgia and potential changes in krill abundance. We used 23 years of demographic data from long-term studies of a breeding colony of this species at Bird Island, South Georgia, to validate our model. When we used annual parameter estimates for survival, reproductive success, and probabilities of returning to breed given success in previous years, our model trajectory closely followed the observed changes in breeding population size over time. Population growth rate was below replacement (lambda < 1) in most years and was most sensitive to changes in adult survival. This supports the recent IUCN uplisting of this species from "Vulnerable" to "Endangered." Comparison of pre-1988 and post-1988 demography (before and after the inception of a longline fishery in the breeding area) reveals a decrease in lambda from 0.963 to 0.910. A life table response experiment (LTRE) showed that this decline in lambda was caused mostly by declines in survival of adults. If 1988-1998 demographic rates are maintained, the model predicts a 98% chance of a population of fewer than 25 pairs within 78 years. For this population to recover to a status under which it could be "delisted," a 10% increase in survival of all age classes would be needed.  相似文献   

8.
Harvesting nontimber forest products (NTFPs) is a major economic activity in tropical forests. As many NTFPs are overexploited, sustainability analyses are required to set harvest guidelines. Here we introduce and apply a new approach to evaluating sustainability, which combines prospective (elasticity) and retrospective (Life Table Response Experiments [LTRE]) demographic analyses of matrix population models. We relate the elasticity of vital rates (representing their importance for population growth rate, lamda) to their contribution to harvest-induced change in lamda ("LTRE contribution"). When high-elasticity vital rates have a low LTRE contribution, exploitation is potentially sustainable as negative effects for population growth are buffered. If the reverse is found, there is little scope for sustainability because crucial vital rates are affected. Our approach is less sensitive to chance fluctuations than the commonly used sustainability criterion of lamda = 1.0, as it does not depend on the absolute value of lamda. We applied this analysis to Geonoma deversa, a clustered forest understory palm. We studied three experimentally defoliated and control populations in a Bolivian rainforest during two years. Cutting all leaves of large ramets did not change mortality but strongly affected growth and reproduction. In spite of severe changes in some vital rates, population growth rate was not significantly reduced after defoliation. A literature review revealed that six other understory palms species responded very similarly to defoliation. The combination of LTRE contributions and elasticity analyses showed that low-elasticity vital rates were mainly responsible for the defoliation-induced change in lamda for Geonoma deversa. For two other understory palms (Astrocaryum mexicanum and Chamaedorea radicalis) new demographic analyses yielded very similar results. For Geonoma, the LTRE contribution-elasticity relation strongly changed when we mimicked harvest damage. Adding 5% mortality to defoliated palms caused stronger change in lamda, mainly due to changes in a high-elasticity vital rate (survival). Therefore, harvest practices that involve stem killing are clearly unsustainable. Our results show that commercial leaf cutting in Geonoma deversa is potentially sustainable, and that this is likely the case for understory palms in general. Our approach to evaluating harvest sustainability can be applied to other NTFPs.  相似文献   

9.
Population Viability Analysis for an Endangered Plant   总被引:9,自引:0,他引:9  
Abstract: Demographic modeling is used to understand the population viability of Furbish's lousewort, Pedicularis furbishiae , a perennial plant species endemic to the St. John River Valley in northern Maine. Environment-specific summaries of demographic parameters (survivorship, growth, and fecundity) over four years, organized into stage-based projection matrices, provide predictions of future population dynamics given a deterministic extension of past conditions. Stochastic modeling, using (I) empirically observed variation in demographic parameters, and (2) estimated rates of natural catastrophes, leads to predictions of extinction probability.
P. furbishiae viability has varied widely over the study period Viable populations with finite rates of increase > 1 are found where cover is low, woody plants do not dominate, and disturbance does not occur. Rates of increase vary over time, suggesting that stochastic analyses would be realistic. Stochastic measures of population viability incorporating environmental variation suggest that early successional environments, especially wetter sites, can support viable populations in the absence of disturbance. However; observed rates of natural catastrophe dominate viability estimates of individual populations. Metapopulation dynamics feature extinction rates that are greater than recolonization rates, and may be affected by land use in the watershed Species management needs to consider a large-scale view of the riverine corridor.  相似文献   

10.
Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution.  相似文献   

11.
Williams JL  Crone EE 《Ecology》2006,87(12):3200-3208
Negative impacts of invasive plants on natives have been well documented, but much less is known about whether invasive plants can cause population level declines. We used demographic models to investigate the effects of two invasive grasses on the demography and population growth of Anemone patens, a long-lived native perennial of North American grasslands. Demographic data of A. patens growing in patches characterized by Bromus inermis, Poa pratensis, or native grasses were used to parameterize integral projection models. Models based on both average conditions and those allowing for environmental stochasticity indicate that A. patens is slowly increasing in patches of native grass (lambda = 1.02) and declining in patches of invasive grasses, particularly those dominated by B. inermis (lambda = 0.93). Extinction probabilities indicate that A. patens should persist in native grass patches, but has a much higher probability of extinction in Bromus patches compared to Poa patches. While sensitivity analyses showed that survival had the biggest effect on population growth rates in all habitats, results of a Life Table Response Experiment (LTRE) revealed that slower individual growth rates in patches of invasive grasses contributed the most to the observed reduction in population growth. These results suggest that invasive grasses may cause slow declines in A. patens, despite short-term coexistence, and that controlling B. inermis only would not be sufficient to ensure A. patens persistence.  相似文献   

12.
In addition to forecasting population growth, basic demographic data combined with movement data provide a means for predicting rates of range expansion. Quantitative models of range expansion have rarely been applied to large vertebrates, although such tools could be useful for restoration and management of many threatened but recovering populations. Using the southern sea otter (Enhydra lutris nereis) as a case study, we utilized integro-difference equations in combination with a stage-structured projection matrix that incorporated spatial variation in dispersal and demography to make forecasts of population recovery and range recolonization. In addition to these basic predictions, we emphasize how to make these modeling predictions useful in a management context through the inclusion of parameter uncertainty and sensitivity analysis. Our models resulted in hind-cast (1989-2003) predictions of net population growth and range expansion that closely matched observed patterns. We next made projections of future range expansion and population growth, incorporating uncertainty in all model parameters, and explored the sensitivity of model predictions to variation in spatially explicit survival and dispersal rates. The predicted rate of southward range expansion (median = 5.2 km/yr) was sensitive to both dispersal and survival rates; elasticity analysis indicated that changes in adult survival would have the greatest potential effect on the rate of range expansion, while perturbation analysis showed that variation in subadult dispersal contributed most to variance in model predictions. Variation in survival and dispersal of females at the south end of the range contributed most of the variance in predicted southward range expansion. Our approach provides guidance for the acquisition of further data and a means of forecasting the consequence of specific management actions. Similar methods could aid in the management of other recovering populations.  相似文献   

13.
Abstract: The demographic impacts of harvesting nontimber forest products (NTFP) have been increasingly studied because of reports of potentially unsustainable harvest. Nevertheless, our understanding of how plant demographic response to harvest is altered by variation in ecological conditions, which is critical for developing realistic sustainable‐use plans, is limited. We built matrix population models to test whether and how variation in ecological conditions affects population responses to harvest. In particular, we examined the effect of bark and foliage harvest on the demography of populations of African mahogany (Khaya senegalensis) in two contrasting ecological regions of Benin, West Africa. K. senegalensis bark and foliage harvest significantly reduced its stochastic population growth rates, but ecological differences between regions had a greater effect on population growth rates than did harvest. The effect of harvest on population growth rates (Δλ) was slightly stronger in the moist than in the drier region. Life‐table response experiments revealed that the mechanism by which harvesting reduced λ differed between ecological regions. Lowered stasis (persistence) of larger life stages lead to a reduction in λ in the drier region, whereas lowered growth of all life stages lowered λ in moist region. Potential strategies to increase population growth rates should include decreasing the proportion of individuals harvested, promoting harvester‐owned plantations of African mahogany, and increasing survival and growth by promoting no‐fire zones in gallery forests. Our results show how population responses to harvest of NTFP may be altered by ecological differences across sites and emphasize the importance of monitoring populations over the climatic range in which they occur to develop more realistic recommendations for conservation.  相似文献   

14.
Abstract:  Although land preservation and promotion of successful regeneration are important conservation actions, their ability to increase population growth rates of slow-growing, long-lived trees is limited. We investigated the demography of Taxus floridana Nutt., a rare understory conifer, in three populations in different ravine forests spanning its entire geographic range along the Apalachicola River Bluffs in northern Florida (U.S.A.). We examined spatial and temporal patterns in demographic parameters and projected population growth rates by using four years of data on the recruitment and survival of seedlings and established stems, and on diameter growth from cross-sections of dead stems. All populations experienced a roughly 10-fold increase in seedling recruitment in 1996 compared with other years. The fates of seedlings and stems between 8 and 16 mm differed among populations. The fates of stems in two other size classes (the 2- to 4-mm class and the 4- to 8-mm class) differed among both populations and years. Individual stems in all populations exhibited similarly slow growth rates. Stochastic matrix models projected declines in all populations. Stochastic matrix analysis revealed the high elasticity of a measure of stochastic population growth rate to perturbations in the stasis of large reproductive stems for all populations. Additional analyses also indicated that occasional episodes of high recruitment do not greatly affect population growth rates. Conservation efforts directed at long-lived, slow-growing rare plants like Taxus floridana should both protect established reproductive individuals and further enhance survival of individuals in other life-history stages, such as juveniles, that often do not appear to contribute greatly to population growth rates.  相似文献   

15.
Spatial Structure and Population Extinction: A Study with Drosophila Flies   总被引:2,自引:0,他引:2  
Abstract: The total amount of habitat and also its distribution and subdivision affect the extinction probability of a resident population Two species of Drosophila are studied in spatial configurations of a single large habitat patch, single small habitat patches, and two small but connected habitat patches in which a low rate of migration, roughly one fly per generation, is possible. The single large habitat patch shows the lowest extinction rate lower than the combined rate of two small patches of the same total size. For one of the species, the "corridor" between the pair of small patches seems to produce a "rescue effect" that lowers extinction rates, probably due to a decrease in the coefficient of variation in fluctuations of the population sire in this coupled system. The systems seem to have been influenced by demographic stochasticity, based on the relationship of population size to extinction probability.  相似文献   

16.
Abstract:  In transient environments, where local extinctions occur as a result of destruction or deterioration of the local habitat, the long-term persistence of a species requires successful colonizations at new, suitable sites. This kind of habitat tracking should be associated with the asynchronous dynamics of local populations, and it can be especially important for the conservation of rare plant species in riparian habitats. We determined spatiotemporal variation in the demography of the perennial Silene tatarica (L.) Pers. in 15 populations (1998–2003) located in periodically disturbed riparian habitats. The habitats differed according to their morphology (flat shores, slopes) and the amount of bare ground (open, intermediate, closed) along a successional gradient. We used elasticity and life-table response analyses and stochastic simulations to study the variation in population demography. Finite population growth rate was higher in intermediate habitats than in open and closed habitats. In stochastic simulations population size increased in most cases, but four populations were projected to become extinct within 12–70 years. The viability of local populations depended most on the survival and growth of juvenile individuals and on the fecundity of large fertile individuals. On a regional scale, the persistence of this species will require a viable network of local populations as protection against local extinctions caused by natural disturbances and succession. Accordingly, the long-term persistence of riparian species may depend on habitat changes; thus, their conservation requires maintenance of natural disturbance dynamics. Along regulated rivers, management activities such as the creation of open habitats for new colonization should be implemented. Similarly, these activities can be rather general requirements for the conservation of endangered species dependent on transient habitats along successional gradients.  相似文献   

17.
The logic of demographic modeling, the apparent simplicity of its quantifiably substantiated answers, and the ready availability of software correlate with increasing use of demographic modeling as the means of applying biology to the conservation of potentially endangered populations. I investigated that use by considering a small population (about 300 individuals) of a large, forest-dwelling mammal of the tropics, the Virunga gorilla ( Gorilla gorilla ) of Zaire, Uganda, and Rwanda. Because censuses of forest populations are so inaccurate and data on variance of some parameters takes so long to collect, models might not be broadly applicable. Therefore, simple demographic indices of potential extinction should replace sophisticated models. The current best index could be problematic, however, because it is based on detecting adult mortality, perhaps the most difficult demographic parameter to measure. Models of the Virunga gorilla population that incorporate aspects of demographic heterogeneity valuably indicate genetic and demographic persistence for several hundred years. Deterministic change in habitat is a greater threat than stochastic demographic variation, and yet our ecological ignorance is such that we could not begin to model the consequences of removal of even the main food plant. We must add to our ability to model outcomes of demographic perturbation a far greater understanding of the processes by which the perturbations occur. Demography allows us to model demographic response to demographic change, but we usually need ecology to tell us how the threat produced the demographic change in the first place. In a time of change, accurate prediction requires ecological understanding of process as well as demographic understanding of outcome.  相似文献   

18.
Wide-ranging marine species are often described as having a low effective population size (N e) to census size (N) ratio. This genetic phenomenon is typically attributed to large variation among individuals in reproductive success because of the high mortality rates and unpredictable environments associated with larval dispersal. In this study, we examined patterns of genetic variation in gag (Mycteroperca microlepis) on the West Florida Shelf across year classes of post-settlement juveniles and spawning adults. With no significant genetic differentiation among year classes despite varying recruitment dynamics, little evidence for chaotic genetic patchiness, and no truncation of adult genetic diversity in subsequent juvenile cohorts, there was little support for large variation among individual in reproductive success contributing to a low N e/N ratio. In fact, the consistent lack of significant differences in annual recruitment classes indicated that reproductive success among individuals was resistant to skewing. Among the various evolutionary forces that may be affecting N e, changes to demography due to fishing pressure are posited as a likely mechanism affecting current levels of genetic variation.  相似文献   

19.
Most population viability analyses (PVA) assume that the effects of species interactions are subsumed by population-level parameters. We examine how robust five commonly used PVA models are to violations of this assumption. We develop a stochastic, stage-structured predator-prey model and simulate prey population vital rates and abundance. We then use simulated data to parameterize and estimate risk for three demographic models (static projection matrix, stochastic projection matrix, stochastic vital rate matrix) and two time series models (diffusion approximation [DA], corrupted diffusion approximation [CDA]). Model bias is measured as the absolute deviation between estimated and observed quasi-extinction risk. Our results highlight three generalities about the application of single-species models to multi-species conservation problems. First, our collective model results suggest that most single-species PVA models overestimate extinction risk when species interactions cause periodic variation in abundance. Second, the DA model produces the most (conservatively) biased risk forecasts. Finally, the CDA model is the most robust PVA to population cycles caused by species interactions. CDA models produce virtually unbiased and relatively precise risk estimates even when populations cycle strongly. High performance of simple time series models like the CDA owes to their ability to effectively partition stochastic and deterministic sources of variation in population abundance.  相似文献   

20.
Baguette M  Schtickzelle N 《Ecology》2006,87(3):648-654
Little is known about the connection between demography and dispersal in metapopulations. The meta-analysis of the population time series of five butterfly species indicated that (meta)population dynamics are driven by density-dependent factors. Inter-specific comparison reveals a significant inverse relationship between population growth rate and the magnitude of dispersal distance. As the range of dispersal distances is constrained by the patch system, dispersing individuals moving too far away would (probably) get lost. This generates selective pressures on individuals with a high dispersal propensity, but favors individuals investing more in reproduction and results in a higher (meta)population growth rate. From a conservation perspective, individuals from (meta)populations and species sacrificing dispersal for the sake of reproductive performances are most vulnerable because of their higher sensitivity to stochastic events: the temporal variation of growth rate was much higher in the two metapopulations where dispersal was limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号