首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Economic instrument is indubitably perceived as effective for encouraging or forcing contractors to conduct environmentally friendly construction practices. Previous studies in relation to this topic mainly put emphasis on economic analysis of construction and demolition (C&D) waste management from a static point of view, which failed to consider its dynamics nature by integrating all essential activities throughout the waste chain. This paper is thus intended to highlight the dynamics and interrelationships of C&D waste management practices and analyze the cost-benefit of this process using a system dynamics approach. Data related to concrete and aggregate of a construction project in Shenzhen was collected for the application of the proposed model. The findings reveal that net benefits from conducting C&D waste management will occur, but a higher landfill charge will lead to a higher net benefit, as well as an earlier realization of the net benefit. In addition, the general public under a higher landfill charge will suffer from a higher environmental cost caused by illegal dumping. The simulation results also suggest that current regulation in Shenzhen should be promoted to facilitate a dramatic increase in net benefit from the implementation of C&D waste management. This research is of value in facilitating better understanding on the dynamics of C&D waste management activities throughout the waste chain, as well as providing a tool for simulating the cost-benefit of C&D waste management practices over the project duration.  相似文献   

2.
《Resources Policy》2002,28(1-2):39-47
Material flows of concrete from construction and demolition (C&D) waste in Taiwan have grown considerably over the last two decades, Hsiao et al. (2001). This increased flow puts pressure on limited national disposal capacity and has indirectly caused ecological damage to domestic riparian zones used as sources of natural aggregate. Using existing statistics and literature sources for C&D waste generation in Taiwan we have developed a dynamic model of domestic material flows of concrete waste and employ statistical analyses to obtain projections of future material flows. Our major findings are: (1) Taiwan’s rate of waste concrete generation in 2001 for the residential and commercial construction industry was approximately 2.4 Million Metric Tons (MMT) per year, averaging 0.11 metric tons of waste concrete generated annually by each Taiwanese; (2) Around the year 2009, the national rate will more than triple to exceed the spike in C&D concrete waste generation that occurred after the Chi Chi earthquake 9/21/99, 8.5 MMT. (3) Aside from pilot-scale development of waste concrete utilization technology, nationwide recycling rates remain negligible. Without resource recovery, the volume of C&D waste generation by 2009 is projected to occupy nearly 7% of all existing and planned domestic landfill capacity. A target is established to raise resource recovery rates for waste concrete to 50% by 2005 and a 100% nationwide recycling rate by 2009.  相似文献   

3.
This review of the UK's landfill tax generates two main contributions to our understanding of waste management in the UK. First, the review identifies areas in which the tax is least effective and considers policy implications associated with this. In particular, the tax has failed to significantly change the behaviour of domestic waste producers and SMEs. Second, it identifies continued information gaps that might be addressed. In particular, the landfill tax is intended to contribute to a transition away from landfilling of waste, towards recovery, recycling, re-use and waste minimization. This review of available evidence finds that there is reasonable data to monitor progress towards recycling, but not for re-use or waste minimization.  相似文献   

4.
The use of recycled waste glasses in Portland cement and concrete has attracted a lot of interest worldwide due to the increased disposal costs and environmental concerns. Being amorphous and containing relatively large quantities of silicon and calcium, glass is, in theory, pozzolanic or even cementitious in nature when it is finely ground. Thus, it can be used as a cement replacement in Portland cement concrete. The use of crushed glasses as aggregates for Portland cement concrete does have some negative effect on properties of the concrete; however, practicle applicability can still be produced even using 100% crushed glass as aggregates. The main concerns for the use of crushed glasses as aggregates for Portland cement concrete is the expansion and cracking caused by the glass aggregates. This paper summarizes the progresses and points out the directions for the proper uses of waste glasses in Portland cement and concrete.  相似文献   

5.
Recycling End of Life (EOL) concrete into high-grade aggregate for new concrete is a challenging prospect for the building sector because of the competing constraints of low recycling process cost and high aggregate product quality. A further complicating factor is that, from the perspective of the environment, there is a strong societal drive to reduce bulk transport of building materials in urban environments, and to apply more in situ recycling technologies for Construction & Demolition Waste. The European C2CA project investigates a combination of smart demolition, grinding of the crushed concrete in an autogenous mill to increase the liberation of cement mortar from the surface of aggregates and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in a demonstration project involving 20,000 tons of EOL concrete from two office towers in Groningen, the Netherlands. Results show that the +4 mm recycled aggregate compares favorably with natural aggregate in terms of workability and the compressive strength of the new concrete, showing 30% higher strength after 7 days.  相似文献   

6.
The UK government has recognised the vital contribution that the construction industry has to play in contributing towards sustainable development. While the issue of hardened concrete waste has received considerable attention, process waste arising from the manufacture of ready-mixed concrete is relatively unexplored. It is apparent that initiatives such as the landfill tax have encouraged UK ready-mixed concrete manufacturers to reduce substantially the amount of waste they produce. Environmental pressures continue to increase and ready-mixed concrete producers are being forced towards a closed loop production system.  相似文献   

7.
Disposal of more than 300 tonnes waste glass daily derived from post-consumer beverage bottles is one of the major environmental challenges for Hong Kong, and this challenge continues to escalate as limited recycling channels can be identified and the capacity of valuable landfill space is going to be saturated at an alarming rate. For this reason, in the past ten years, a major research effort has been carried out at The Hong Kong Polytechnic University to find practical ways to recycle waste glass for the production of different concrete products such as concrete blocks, self-compacting concrete and architectural mortar. Some of these specialty glass-concrete products have been successfully commercialized and are gaining wider acceptance. This paper gives an overview of the current management and recycling situation of waste glass and the experience of using recycled waste glass in concrete products in Hong Kong.  相似文献   

8.
Aggregate is used in road and building construction to provide bulk, strength, support, and wear resistance. Reclaimed asphalt pavement (RAP) and reclaimed Portland cement concrete (RPCC) are abundant and available sources of recycled aggregate. In this paper, current aggregate production operations in Virginia, Maryland, and the District of Columbia are used to develop spatial association models for the recycled aggregate industry with regional transportation network and population density features.The cost of construction aggregate to the end user is strongly influenced by the cost of transporting processed aggregate from the production site to the construction site. More than 60% of operations recycling aggregate in the mid-Atlantic study area are located within 4.8 km (3 miles) of an interstate highway. Transportation corridors provide both sites of likely road construction where aggregate is used and an efficient means to move both materials and on-site processing equipment back and forth from various work sites to the recycling operations.Urban and developing areas provide a high market demand for aggregate and a ready source of construction debris that may be processed into recycled aggregate. Most aggregate recycling operators in the study area are sited in counties with population densities exceeding 77 people/km2 (200 people/mile2). No aggregate recycling operations are sited in counties with less than 19 people/km2 (50 people/mile2), reflecting the lack of sufficient long-term sources of construction debris to be used as an aggregate source, as well as the lack of a sufficient market demand for aggregate in most rural areas to locate a recycling operation there or justify the required investment in the equipment to process and produce recycled aggregate.Weights of evidence analyses (WofE), measuring correlation on an area-normalized basis, and weighted logistic regression (WLR), are used to model the distribution of RAP and RPCC operations relative to transportation network and population distribution data. The models can be used on a regional scale to quickly map the relative site suitability for a RAP or RPCC aggregate recycling operation in a particular area based on transportation network and population parameters. The results can be used to identify general areas to be further evaluated on a site-specific basis using more detailed marketplace information. As transportation or population features change due to planning or actual development, the models can be easily revised to reflect these changes.  相似文献   

9.
A national material flow model for concrete, the most popular construction material in Ireland, was developed based on the framework of material flow analysis. Using this model the Irish concrete cycle for the year 2007 was constructed by analysing the material life cycle of concrete which consists of the three phases of: production (including extraction of raw materials and manufacture of cement), usage (ready-mix and other products) and waste management (disposal or recovery). In this year, approximately 35 million metric tonnes of raw materials were consumed to produce 5 million metric tonnes of cement and 33 million metric tonnes of concrete. Concrete production was approximately 8 metric tonnes per capita. By comparison, the concrete waste produced in that year was minimal at only 0.3 million metric tonnes. Irish building stock is young and there was little demolition of structures in the year of study. However this build up of construction stock will have implications for the future waste flows when the majority of stock built in the last decade (43% of residential stock was constructed in the last 15 years) reaches its end of life.  相似文献   

10.
The environmental performance of the University of Maribor (Engineering Campus) has been assessed on a life cycle basis. The following activities have been considered in the study: the use and operation of lecture theatres (construction and maintenance, heating, lighting and water consumption) and day-to-day consumption of sundries (paper and plastic bottles). The results indicate that the heating and construction of buildings are the ‘hot spots’ in the system, for most environmental impacts. Different waste management options for the plastic and paper, including recycling, incineration and landfill, have also been compared for environmental impacts and economic costs. The option combining 70% recycling, 29% incineration and 1% landfill has been found to be most economically and environmentally sustainable.  相似文献   

11.
The lack of landfill capacity, forthcoming EU waste disposal and landfill management legislation and the use of non-renewable and energy intensive natural resources for the end-treatment of old landfills increase pressures to develop new landfill management methods. This paper considers a method for the end-management of old landfills in Finland, which is based on the utilization of forest and paper industry waste flows, wastes from paper recycling (de-inking) and wastes from forest industry energy production. Fibre clay wastes from paper mills, de-inking sludges from de-inking of recovered waste paper and incineration ash from forest industry power plants serve to substitute the use of natural clay for the building of landfill structures for closed landfills. Arguably, this method is preferable to existing practices of natural clay use for landfill building, because it (1) substitutes non-renewable natural clay, (2) consumes less energy and generates less CO2 emissions than the use of natural clay, and (3) eliminates considerable amounts of wastes from paper production, paper consumption and from forest industry energy production. Some difficulties in the application of the method are considered and the waste flow utilization is incorporated into a local forest industry recycling network.  相似文献   

12.
The Lower Rio Grande Valley (LRGV) region in South Texas emerges as a warehouse and transportation center between Central America and the US with positive growth impacts due to the North American Free Trade Agreement (NAFTA). In 10 years time, a 39.8% population increase has resulted in a 25% boost in solid waste per capita disposal rate in the region. A landfill space shortage drives a need for landfill operators to understand their optimal management strategies in this highly-competitive market. Initially, a strategic plan for optimal solid waste pattern distribution minimizes net costs for cities. This is accomplished through a grey integer programming algorithm that encapsulates all uncertainty present in the solid waste system. Secondly, a series of grey integer submodels construct payoff matrices for a zero-sum two-person game. The ensuing game theoretic analysis is critical for evaluating optimal pricing strategies for tipping fees available to the most significant regional landfills (e.g. Browning-Ferris Industries (BFI) and City of Edinburg) as they compete over disposal contracts. The BFI landfill intrinsically benefits from its competitive pricing policy and central location to solid waste generators. The City of Edinburg landfill, on the other hand, wishes to secure its lucrative solid waste management revenue. It desires a gaming strategy backed by optimality that integrates ambiguity in solid waste generation, design capacity boundaries, and unitary shipping costs. Results show that a two-tiered analysis via grey integer programming-based games may pave the way for 'grey Nash equilibria' pricing tactics that will help the Edinburg landfill maintain its waste contracts.  相似文献   

13.
The state of solid waste recycling by scavengers in Onitsha, a heavily commercial city in Anambra State, and some other urban areas such as Nsukka, Enugu, and Port Harcourt was analyzed. Data were obtained through interviews of scavengers who deal with recyclables. Although the activities of scavengers are sub-optimal, they can have a great impact on Nigerian economy with respect to resource conservation, creation of job opportunities, and reduction of the magnitude of waste disposal problems. A cost analysis is presented to compare the different forms of recycling utilized by municipal solid waste management. It is shown that a well-planned recycling program with recycling and composting would result in 18.6% savings in waste management costs and 57.7% in landfill avoidance costs. However, if the compost materials are not recycled, the corresponding savings in cost become 8.6% and 28.6%, respectively. The option with the lowest cost involves encouraging individual households to separate at the source their recyclables, which are bought by scavengers. This results in 78.0% savings in waste management cost and 79.5% landfill avoidance cost. A low-cost approach aimed at the integration of scavenging activities into conventional solid waste management is presented.  相似文献   

14.
The European Union Landfill Directive calls on member states to reduce the amount of biodegradable municipal solid waste disposed of to landfill. In addition, national waste strategies will require the constituent parts of the United Kingdom to achieve increased household waste recycling and recovery rates. Both these measures will require the development of the infrastructure to support national high-intensity recycling and composting schemes and the construction of at least 35 new municipal waste to energy incinerators. Before plans can be developed for meeting the targets several areas relating to municipal solid waste need to be clarified. Depending on the definition of municipal solid waste, its composition and likely future growth rates the number of incinerators required could be up to 170.  相似文献   

15.
Discussions of municipal solid waste (MSW) management are influenced increasingly by the concept of the waste hierarchy which, broadly speaking, places landfill as the least acceptable option for dealing with MSW, followed by incineration, recycling, re-use and reduction at source. In this paper, we want to question the wisdom of applying the waste hierarchy in a region with a low population density. The hierarchy was first developed with reference to the high population density areas such as the core of the EU. However, in low population density areas the economics of the various approaches to MSW is likely to be quite different. As a result, the application of the hierarchy could place an undue economic burden on a region relative to the environmental benefits that might arise. We estimate the costs, both internal and external, of the various methods of dealing with MSW in an area with the appropriate population density, drawing on information from a wide variety of sources. We find that landfill is significantly cheaper than in high population density areas, even when account is taken of the associated externalities. In addition, it is generally cheaper than the alternative methods. As such, we conclude that landfill should not be shunned as a disposal method in low population density areas.  相似文献   

16.
This study presents the results of a comparative life cycle assessment (LCA) on the energy requirements and greenhouse gas (GHG) emission implications of recycling construction and demolition (C&D) rubble and container glass in Cape Town, South Africa. Cape Town is a medium sized city in a developing country with a growing population and a rising middle class, two factors that are resulting in increased generation of solid waste. The City is constrained in terms of landfill space and competing demands for municipal resources.The LCA assessment was based on locally gathered data, supplemented with ecoinvent life cycle inventory data modified to the local context. The results indicated that recycling container glass instead of landfilling can achieve an energy savings of 27% and a GHG emissions savings of 37%, with a net savings still being achieved even if collection practices are varied. The C&D waste results, however, showed net savings only for certain recycling strategies. Recycling C&D waste can avoid up to 90% of the energy and GHG emissions of landfilling when processed and reused onsite but, due to great dependence on haulage distances, a net reduction of energy use and GHG emissions could not be confidently discerned for offsite recycling. It was also found that recycling glass achieves significantly greater savings of energy and emissions than recycling an equivalent mass of C&D waste.The study demonstrated that LCA provides an important tool to inform decisions on supporting recycling activities where resources are limited. It also confirmed other researchers’ observations that strict adherence to the waste management hierarchy will not always result in the best environmental outcome, and that more nuanced analysis is required. The study found that the desirability of recycling from an energy and climate perspective cannot be predicted on the basis of whether such recycling conserves a non-renewable material. However, recycling that replaces a virgin product from an energy-intensive production process appears to be more robustly beneficial than recycling that replaces a product with little embodied energy. Particular caution is needed when applying the waste management hierarchy to the latter situations.  相似文献   

17.
A decision support system (DSS) developed to assist the planner in decisions concerning the overall management of solid waste at a municipal scale is described. The DSS allows to plan the optimal number of landfills and treatment plants, and to determine the optimal quantities and the characteristics of the refuse that has to be sent to treatment plants, to landfills and to recycling. The application of the DSS is based on the solution of a constrained non-linear optimization problem. Various classes of constraints have been introduced in the problem formulation, taking into account the regulations about the minimum requirements for recycling, incineration process requirements, sanitary landfill conservation, and mass balance. The cost function to be minimized includes recycling, transportation and maintenance costs. The DSS has been tested on the municipality of Genova, Italy, and the results obtained are presented.  相似文献   

18.
由于社会和经济因素的要求,当今的建筑生命周期要最大程度地完成圆形的循环过程,即重新使用拆建物料制造新产品。循环经济的大背景下,承建商通过坚实的理论基础,采用分层次的方法来进行建筑废弃物的管理。文中总结了两种方法的优点和缺点,进行了混合回收与源头分离两种方法的比较研究。最值得注意的是两个不同的意向方案:绿色星球计划和ICC-ESSAVETM方案。突出的可持续认证和设计方案及绿色星球计划侧重的能源效率模型时常被繁重调试系统的LEED所青睐。一旦被国际编码理事会所批准,这些文件可以在LEED的评分系统下或绿色星球计划中,帮助其寻找资格评分。文章最后分析了建筑废弃物的回收流程,并得出结论:高达95%的建筑和拆迁建筑废弃物都可以回收;回收相比垃圾填埋更节省资金;源头分离较混合回收需要更多的管理和劳动力,但能获得更大的经济利益;承建商应该组织和管理现场的回收工作。  相似文献   

19.
It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000–2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.  相似文献   

20.
Due to ever increasing quantities of waste materials and industrial by-products, solid waste management is the prime concern in the world. Scarcity of land-filling space and because of its ever increasing cost, recycling and utilization of industrial by-products and waste materials has become an attractive proposition to disposal. There are several types of industrial by-products and waste materials. The utilization of such materials in concrete not only makes it economical, but also helps in reducing disposal concerns. One such industrial by-product is waste foundry sand (SFS). Waste foundry sand is a by-product of ferrous and nonferrous metal casting industries. Foundries successfully recycle and reuse the sand many times in a foundry. When the sand can no longer be reused in the foundry, it is removed from the foundry and is termed as waste foundry sand.Published literature has shown that WFS could be used in manufacturing Controlled Low-Strength Materials (CLSM) and concrete. This paper presents an overview of some of the research published on the use of WFS in concrete. Effect of WFS on concrete properties such as compressive strength, splitting tensile strength, modulus of elasticity, freezing-thawing resistance, and shrinkage are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号