首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 767 毫秒
1.
Floodplains of the European rivers Rhine and Meuse are heavily polluted. We investigated the risk of heavy metal pollution (Cd, Cu, Pb, Zn) for detritivores living in a floodplain area, the Biesbosch, the Netherlands, affected by these rivers. Total soil, pore water and 0.01 M CaCl(2) extractable concentrations and concentrations in plant leaves, earthworms, isopods and millipedes were measured in two sites and compared with literature data to assess possible risks. Based on total metal concentrations in soil, serious effects on detritivores were expected. However, 0.01 M CaCl(2) extractable, pore water and plant leaf concentrations were similar to metal concentrations found in unpolluted areas. Concentrations of Cu and Cd in earthworms and Cu in millipedes were higher in the Biesbosch than in animals from reference areas. All other measured concentrations of heavy metals in earthworms, isopods and millipedes were similar to the ones found in reference areas. Despite high total soil concentrations, effects of Zn, Cu, Pb and Cd pollution on isopods are therefore not expected, while millipedes may only be affected by Cu. Since Cu and Cd levels in earthworms were increased compared to animals in unpolluted soils, this faunal group seems to be most at risk. Given the engineering role of earthworms in ecosystems, effects on the ecological functioning of floodplain soils therefore cannot be excluded.  相似文献   

2.
Amounts of fluoride were measured in whole woodlice Oniscus asellus and Porcellio scaber, together with associated soil and litter, from 17 sites near an aluminium reduction plant at Holyhead, Anglesey, in North Wales. There was a strong positive correlation between amounts of fluoride in woodlice, soil and litter in all comparisons (P<0.02). Highest and lowest fluoride concentrations in woodlice differed by a factor of >50. Where both woodlice species occurred together at the more polluted sites, fluoride levels in Oniscus asellus were generally twice as high as those found in Porcellio scaber. At any given site, amounts of environmental fluoride were determined partly by distance and direction from the pot-rooms of the plant (a function of prevailing winds), modified by the presence of trees which acted as collectors for gaseous and particulate fluoride.  相似文献   

3.
GOAL, SCOPE AND BACKGROUND: [corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. METHODS: A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30-40 cm.The CH4 efflux was computed from CO2 efflux and from the ratio CH4/CO2 in the soil gas. Soil gas samples were collected at a depth of 30-40 cm using a metallic probe and 20 cc hypodermic syringes, and later stored in evacuated 10 cc vacutainers for laboratory analysis of bulk composition. The gas sample was introduced in a vacutainer filled with deionized water and displacing the water until the vacutainer was filled with the gas sample in order to avoid air contamination from entering. The surface landfill temperature of the landfill was measured at a depth of 40 cm using a digital thermometer type OMEGA 871A. Landfill gases, CO2 and CH4, were analyzed within 24 hours using a double channel VARIAN micro-GC QUAD CP-2002P, with a 10 meter PORAPLOT-Q column, a TCD detector, and He as a carrier gas. The analysis temperature was 40 degrees C and the injection time was 10 msec. Surface landfill CO2 efflux measurements were performed using a portable NDIR spectrophotometer Licor-800 according to the accumulation chamber method (Chiodini et al. 1996). The data treatment, aimed at drawing the flux map and computing the total gas output, was based on the application of stochastic simulation algorithms provided by the GSLIB program (Deutsch and Journel 1998). RESULTS: Diffuse CH4 and CO2 efflux values range from negligible values up to 7,148 and 30,573 g m(-2) d(-1), respectively. The spatial distribution of the concentration and efflux of CO2, CH4 and soil temperature, show three areas of maximum activity in the landfill, suggesting a non-uniform pattern of diffuse degassing. This correlation between high emissions and concentration of CO2, CH4 and soil temperatures suggests that the areas of higher microbial activity and exothermic reactions are releasing CO2 and CH4 to the atmosphere from the landfill. Taking into consideration the spatial distribution of the CO2 and CH4 efflux values as well as the extension of the landfill, the Non-controlled emission of CO2 and CH4 to the atmosphere by the Lazareto's landfill are of 167 +/- 13.3 and 16 +/- 2.5 t d(-1), respectively. DISCUSSION: The patterns of gas flow within the landfill seem to be affected by boundary materials at the sides. The basalt layers have a low permeability and the gas flow in these areas is extensive. In this area, where a basalt layer does not exist, the flow gas diffuses toward the sea and the flux emissions at the landfill surface are lower. This behavior reflects the possible dissolution of gases into water and the deflection of gases towards the surface at the basalt boundary. The proximity to the sea, the installation of a palm tree garden and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. The introduction of sea water into the landfill and the type of boundary could be defining the superficial gas discharges. CONCLUSIONS: Results from this study indicate that the spatial distribution of Non-controlled emission of CO2 and CH4 at the Lazareto's landfill shows a non-uniform pattern of diffuse degassing. The northeast, central and northwest areas of the Lazareto's landfill are the three areas of high emissions and concentration of CO2 and CH4, and high temperatures. The correlation between high emissions and the concentration of CO2, CH4, and the high temperatures suggest that the areas of higher microbial activity and exothermic reactions are releasing more CO2 and CH4 to the atmosphere from the landfill. A high concentration of CO2 is probably due to the presence of methanotrophic bacteria in the soil atmosphere of the landfill. Patterns of gas flow within the landfill seem to be affected by boundary materials (basalt layers) of low permeability, and side boundaries of the flux emissions at the surface are higher. At the sides of seawater and sediment boundaries, flux emissions at the landfill surface are lower. This behavior reflects a possible dissolution of gases into the water and the deflection of gases towards the surface at the basalt boundary. With this study, we can compare the data obtained in this landfill with other landfills and observe the different levels of emission. The proximity to the sea and the installation of the palm tree garden palms and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. Many landfills worldwide located in similar settings could experience similar gas production processes. RECOMMENDATIONS AND PERSPECTIVES: The need for investigating and monitoring sea water and sediment quality in these landfills is advisable. Concentrations and fluxes of contaminants and their impact in the area should be assessed. With this study we can compare the data obtained in these landfills with other landfills and observe the different levels of emission.  相似文献   

4.
Several environmental issues are related to the disposal of poultry litter. In an effort to provide a more environmentally friendly alternative than landfill disposal or spreading as a soil amendment, work has been carried out previously at the University of Tennessee Space Institute (UTSI). This past UTSI work was concentrated on developing a catalytic steam gasification concept to produce energy from poultry litter. In the past UTSI studies, preliminary design and economics for a stationary, centralized gasification plant capable of processing approximately 100 ton/day of poultry litter were developed. However, in this preliminary design the economic impact of transporting litter to a centralized gasification plant location was not addressed. To determine the preliminary impact of transporting the poultry litter on the overall economics of this energy conversion plant design, a simple transportation model was developed. This model was used in conjunction with the earlier plant design prepared at UTSI to determine the economic feasibility of a centralized, stationary poultry litter gasification plant. To do so, major variables such as traveling distance, plant feed rate (or capacity), fluctuations in the sales price of the product gas (that means value of the energy), population density of poultry farms, impact of tipping fees, and cost of litter were varied. The study showed that for plant with a capacity of 1000 ton/day to be able to withstand several changes in economic conditions and sustain itself, the poultry farm density would need to be approximately 0.3 houses/mi2. Smaller plants would need either a higher energy price or some kind of subsidy to be economically feasible.  相似文献   

5.
Approximately 80,000 kg polysulfide sealant containing 10,000-18,000 kg polychlorinated biphenyls (PCB) was deposited at a Swedish municipal landfill station during 1965-1973. Investigations during 1994 showed that soil layers underneath the landfill had concentration of PCB not alarmingly high. The concentration of PCB congeners in ground water samples was elevated 4-750 times compared to a reference sample. Based on samples of ground water, leachate water, and flux chambers measuring evaporation of PCB from the landfill surface, the emission of PCB was estimated to be 1 g sigmaPCB/yr. This very low rate was attributed to the high sorptive capacity of the sealant. Compared to a reference site, the evaporation flux was elevated for the most volatile congeners, but factors 20-1400 lower than from another landfill which was contaminated with PCB in paper-pulp fibres.  相似文献   

6.
Soil chemical changes produced by metal smelters have mainly been studied on a large scale. In terms of plant survival, determination of small scale variability may be more important because less toxic microhabitats may represent safe sites for successful recruitment and thus for plant survival. Three dominant microhabitats (open spaces and areas below the canopy of Sphaeralcea obtusiloba and Baccharis linearis shrubs) were defined in a heavily polluted area near a copper smelter and characterised in terms of microclimate, general soil chemistry, total and extractable metal concentrations in the soil profile (A0 horizon, 0-5 and 15-20 cm depth), and seedling densities. Results indicated a strong variability in microclimate and soil chemistry not only in the soil profile but also among microhabitats. Air/soil temperatures, radiation and wind speed were much lower under the canopy of shrubs, particularly during the plant growth season. Soil acidification was detected on top layers (0-5 cm depth) of all microhabitats while higher concentrations of N, Cu and Cd were detected on litter and top soil layers below shrubs when compared to open spaces; however, high organic matter content below shrubs decreased bioavailability of metals. Plant recruitment was concentrated under shrub canopies; this may be explained as a result of the nursery effect exerted by shrubs in terms of providing a more favourable microclimate, along with better soil conditions in terms of macronutrients and metal bioavailability.  相似文献   

7.
Jörg Schaller 《Chemosphere》2013,90(10):2534-2538
Organic matter is known to accumulate high amounts of metals/metalloids, enhanced during the process of decomposition by heterotrophic biofilms (with high fixation capacity for metals/metalloids). The colonization by microbes and the decay rate of the organic matter depends on different litter properties. Main litter properties affecting the decomposition of organic matter such as the nutrient ratios and the content of cellulose, lignin and phenols are currently described to be changed by silicon availability. But less is known about the impact of silicon availability during plant growth on elemental fixation during decay. Hence, this research focuses on the impact of silicon availability during plant growth on fixation of 42 elements during litter decay, by controlling the litter properties. The results of this experiment are a significantly higher metal/metalloid accumulation during decomposition of plant litter grown under low silicon availability. This may be explained by the altered litter properties (mainly nutrient content) affecting the microbial decomposition of the litter, the microbial growth on the litter and possibly by the silicon double layer, which is evident in leaf litter with high silicon content and reduces the binding sites for metals/metalloids. Furthermore, this silicon double layer may also reduce the growing biofilm by reducing the availability of carbon compounds at the litter surface and has to be elucidated in further research. Hence, low silicon availability during plant growth enhances the metal/metalloid accumulation into plant litter during aquatic decomposition.  相似文献   

8.
Park S  Lee I  Cho C  Sung K 《Chemosphere》2008,70(6):1117-1123
Landfill gases could be vented through a layer of landfill cover soil that could serve as a biofilter to oxidize methane to carbon dioxide and water. Properly managed landfill cover soil layers may reduce atmospheric CH4 emissions from landfills. In the present study, the effects of earthworm cast and powdered activated carbon (PAC) on the CH4 removal capacity of the landfill cover soil was investigated. For this purpose, column and batch tests were conducted using three different materials: typical landfill cover soil, landfill cover soil amended with earthworm cast, and landfill cover soil amended with PAC. The maximum CH4 removal rate of the columns filled with landfill cover soil amended with earthworm cast was 14.6mol m(-2)d(-1), whereas that of the columns filled with typical landfill cover soil was 7.4mol m(-2)d(-1). This result shows that amendment with earthworm cast could stimulate the CH4-oxidizing capacity of landfill cover soil. The CH4 removal rate of the columns filled with landfill cover soil amended with PAC also showed the same removal rate, but the vertical profile of gas concentrations in the columns and the methanotrophic population measured in the microbial assay suggested that the decrease of CH4 concentration in the columns is mainly due to sorption. Based on the results from this study, amendment of landfill cover soil with earthworm cast and PAC could improve its CH4 removal capacity and thus achieve a major reduction in atmospheric CH4 emission as compared with the same landfill cover soil without any amendment.  相似文献   

9.
Municipal solid waste landfills are the significant anthropogenic sources of N2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 (p < 0.01), 3.56 (p < 0.01), and 2.12 (p < 0.01) from the soil samples preincubated with 5% CH4 for three months when compared with the control, respectively. Among the three selected landfill sites, N2O fluxes in two landfill sites were significantly correlated with the variations of the CH4 emissions without landfill gas recovery (p < 0.001). N2O fluxes were also elevated by the increase of the CH4 emissions with landfill gas recovery in another landfill site (p > 0.05). The annual average N2O flux was 176 ± 566 μg N2O–N m?2 h?1 (p < 0.01) from sandy soil–covered landfill site, which was 72% (p < 0.05) and 173% (p < 0.01) lower than the other two clay soil covered landfill sites, respectively. The magnitude order of N2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N2O emissions.  相似文献   

10.
A field study near the copper smelter of a large industrial complex examined air pollution effects on vegetation and soil parameters in Cama?ari (northeast Brazil). Close to the smelter, soil pH-value was lower and total acidity as well as organic carbon contents were higher compared with a site far from the source and two reference sites. The acidification of top soil particularly and the drastically enhanced plant-available copper concentrations were caused by atmospheric deposition. High sulphur and copper deposition significantly reduced microbial biomass and altered functional diversity of soil microorganisms (arylsulphatase and xylanase). Large accumulations of sulphur, arsenic and copper were detected in mango leaves (Mangifera indica) growing downwind from the smelter suggesting potential food chain-mediated risk.  相似文献   

11.
Decomposition of white birch (Betula papyrifera Marshall) foliar litter was examined at metal-contaminated and uncontaminated sites established along gradients of soil Cu, Ni, Pb and Zn concentrations near Sudbury, Ontario and Rouyn-Noranda, Quebec. Over an 18-month study period, a significantly lower rate of litter mass loss was observed at the Sudbury contaminated site (S1) than at the uncontaminated site (S2). This result was not duplicated at corresponding sites (RN1, RN2) in Rouyn-Noranda, despite similar levels of soil metal contaminants and atmospheric inputs. Concentrations of metals in litter increased at all sites with time. However, the greatest litter Cu and Ni concentrations were observed at S1 (188 and 192 microg/g, respectively), a result of substantial net gains of these elements from atmospheric inputs. On a per hectare basis, Cu accumulation in litter at S1 approached recommended application rates of Cu as copper sulphate for control of fungal diseases in agricultural operations, indicating that the current rate of Cu smelter emissions in Sudbury may cause the observed impairment of decomposition.  相似文献   

12.
Effects of composting on phytotoxicity of spent pig-manure sawdust litter   总被引:9,自引:0,他引:9  
The phytotoxicity of spent pig-manure sawdust litter (spent litter) was evaluated during further composting. Aqueous extracts of the spent litter were prepared by shaking the sample with water (1:10 w/v), and the toxicity of these extracts was determined on relative seed germination, relative root elongation and germination index (GI, a factor of relative seed germination and relative root elongation). The sensitivity of six plant species, namely Brassica parachinensis (Chinese cabbage), Brassica albogalera (Chinese kale), Allium sativum (onion), Cucumis sativus (cucumber), Amaranthus espinosus (Chinese spinach), and Lycopersicon esculentum (tomato) were compared. The effect of different moisture levels during composting on the phytotoxicity of the spent litter was also examined. Phytotoxicity of the spent litter was only evident during the earlier stage of composting (first 14 days) and, that seed germination and root elongation reached 100% (same as the control) towards the end of the composting. The concentrations of the major inhibitors, water-extractable Cu and Zn, and NH4(+)-N of the spent litter, declined during composting, indicating that these inhibitors were gradually eliminated as composting proceeded. Multiple regression analysis showed that the NH4(+)-N content of the spent litter was the most important chemical factor affecting phytotoxicity of the plant species selected for this study. Relative root elongation and GI were more sensitive indicators of phytotoxicity than seed germination. In the present study, the GI's of all plant species were >80% at day 60, indicating that the spent litter had reached its maturation by day 60. The responses of different plant species to the water-extracts of the spent litter were different. Among the six species, Chinese cabbage and Chinese spinach were the most sensitive species, and tomato and cucumber were the least sensitive species to indicate phytotoxicity of the spent litter. Moisture adjustment during the composting process did not affect the results of the phytotoxicity test.  相似文献   

13.
This study determined the effects of increased N deposition on rates of N and P transformations in an upland moor. The litter layer and the surface of the organic Oh horizon were taken from plots that had received long-term additions of ammonium nitrate at rates of 40, 80 and 120 kg N ha(-1) yr(-1). Net mineralisation processes were measured in both field and laboratory incubations. Soil phosphomonoesterase (PME) activity and rates of N(2)O release were measured in laboratory incubations and root-surface PME activity measured in laboratory microcosms using Calluna vulgaris bioassay seedlings. Net mineralisation rates were relatively slow, with net ammonification consistently stimulated by N addition. Net nitrification was marginally stimulated by N addition in the laboratory incubation. N additions also increased soil and root-surface (PME) activity and rates of N(2)O release. Linear correlations were found between litter C:N ratio and all the above processes except net nitrification in field incubations. When compared with data from a survey of European forest sites, values of litter C:N ratio were greater than a threshold below which substantial, N input-related increases in net nitrification rates occurred. The maintenance of high C:N ratios with negligible rates of net nitrification was associated with the common presence of ericaceous litter and a mor humus layer in both this moorland as well as the forest sites.  相似文献   

14.
生活垃圾填埋场封场后种植植物中重金属迁移研究   总被引:3,自引:1,他引:3  
在上海老港生活垃圾填埋场填埋单元封场的覆盖土中掺混了矿化垃圾种植植物,分析Cd、Pb、Cu、Zn 4种重金属在土壤和植物中的迁移变化,研究表明:(1)覆盖土土质从一般耕作土变成肥沃土壤;覆盖土和种植混合土重金属Cd、Pb、Cu、Zn中Cd、Pb含量相近,但种植土的Cu含量略大于覆盖原土,Zn含量远大于覆盖原土;(2)植物能富集土壤和垃圾中的重金属,木本植物的根部富集重金属的能力强于草本植物,但重金属在草本植物根、茎、叶中的迁移速度大于木本植物;(3)植物根、茎、叶的Cu、Zn含量均远大于未受污染土壤种植植物相应部位的Cu、Zn含量,种植的植物不能供家养动物食用,以免通过食物链作用危及人体安全.  相似文献   

15.
Sacred natural sites (SNS) are instances of biocultural landscapes protected for spiritual motives. These sites frequently host important biological values in areas of Asia and Africa, where traditional resource management is still upheld by local communities. In contrast, the biodiversity value of SNS has hardly been quantitatively tested in Western contexts, where customs and traditions have relatively lost importance due to modernization and secularization. To assess whether SNS in Western contexts retain value for biodiversity, we studied plant species composition at 30 SNS in Central Italy and compared them with a paired set of similar but not sacred reference sites. We demonstrate that SNS are important for conserving stands of large trees and habitat heterogeneity across different land-cover types. Further, SNS harbor higher plant species richness and a more valuable plant species pool, and significantly contribute to diversity at the landscape scale. We suggest that these patterns are related not only to pre-existent features, but also to traditional management. Conservation of SNS should take into account these specificities, and their cultural as well as biological values, by supporting the continuation of traditional management practices.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0738-5) contains supplementary material, which is available to authorized users.  相似文献   

16.
We evaluated the effects of livestock grazing on C content of the plant-soil system (to 60 cm) of two semi-arid grasslands: a mixed-grass prairie (grazed 12 years), and a short-grass steppe (grazed 56 years). Grazing treatments included season-long grazing at heavy and light stocking rates, and non-grazed exclosures. Significantly higher soil C (0-30cm) was measured in grazed pastures compared to non-grazed exclosures, although for the short-grass steppe higher soil C was observed with the heavy grazing treatment only. Excluding grazing caused an immobilization of C in excessive aboveground plant litter, and an increase in annual forbs and grasses which lack dense fibrous rooting systems conducive to soil organic matter formation and accumulation. Our data indicate that higher soil C with grazing was in part the result of more rapid annual shoot turnover, and redistribution of C within the plant-soil system as a result of changes in plant species composition.  相似文献   

17.
Selecting guidelines to evaluate elevated metals in urban brownfields is hindered by the lack of information for these sites on ecosystem structure and function. A study was performed to compare three trace metal-contaminated sites in the metropolitan Montreal area. The goal was to obtain an idea of the organisms that may be present on urban brownfields and to measure if elevated metals alter the presence and activity of the indigenous biota. Field and laboratory studies were conducted using simple methodologies to determine the extent to which microbial activity affected by trace metal content, to assess diversity of plant and soil invertebrate communities and to measure phytoaccumulation of trace metals. It was found that microbial activity, as measured by substrate-induced respiration (SIR) and nitrification, was not affected by the levels of soil Cd, Cu, Ni, Pb and Zn recorded on the sites. Seven of the 12 invertebrate groups collected were sampled on soils with similar Cd, Cu, Ni, Pb and Zn concentrations. Diversity of plant species increased as a function of the length of time the sites had been inactive. Levels of metals in plant tissue were influenced by soil characteristics and not by total soil Cd, Cu, Ni, Pb and Zn.  相似文献   

18.
The decomposition of Scots pine (Pinus sylvestris) fine root and needle litter was examined along a heavy metal pollution gradient in the vicinity of Harjavalta Metals Smelter complex at Harjavalta, south-west Finland. The study area was found to exhibit a defined gradient of copper and nickel soil contamination along a 8 km long transect starting at 0.5 km from the point emission source with the highest levels found at this site. The background site is located 200 km from the point source. The majority of the heavy metals are confined to the soil organic layer. Litter decomposition and litter quality were compared between litter types after 12, 18, and 30 months incubation at each of four sites. The analyses clearly showed differences in accumulated mass loss, C:N ratio, and nutrient composition that were related to the site of incubation. Needle and fine root litter that was incubated at 0.5 km had a lower accumulated mass loss, 28.1 and 40.9%, respectively, over time when compared to litter incubated at the background site (37.9 and 50.9%, respectively). Concentrations of exchangeable cations in the litter incubated at 0.5 km were considerably less. The heavy metal contamination may provide an explanation for the amount of mass lost and the litter quality through impacts on the soil microbiota.  相似文献   

19.
Evidently increased environmental pollution as a consequence of the 25-year manufacture of polychlorinated biphenyls (PCBs) in eastern Slovakia was observed. PCB levels determined in ambient air, soil, surface water, bottom sediment, wildlife (fish and game) samples collected in a potentially contaminated area of about 250 km2 (a part of the Michalovce district) were compared with those determined in a control area (Stropkov district). Up to 1700 ng/m3 were found in ambient air in a village close to a manufacturer's dumping site and a highly contaminated manufacturer's effluent canal whereas PCB concentrations in ambient air samples taken in villages in the control area were about 80 ng/m3 only. While soil samples taken from the agricultural fields of the polluted area contained PCBs at levels comparable with soil samples from the control area (about 0.008 mg/kg) much higher values (from 0.4 to 53,000 mg/kg) were determined in soil taken in the vicinity of manufacturer's landfill and storage sites and especially plants preparing asphalted gravel using formerly PCBs in their heat-exchanging systems. The contamination of the Laborec river and large Zemplinska Sirava reservoir is caused by the manufacturer's effluent canal since PCB levels in the canal sediment are still to be found about 3000 mg/kg. While PCB levels in sediment samples from Michalovce watercourses ranged between 1.7 and 6 mg/kg, sediment samples from the control Stropkov district ranged between 0.007 and 0.052 mg/kg only. Fish living in contaminated Michalovce waters contained about hundred times higher PCB levels than those caught in Stropkov ones. Similarly, game animals shot in Michalovce forests contained several times higher levels than those shot in Stropkov ones.  相似文献   

20.
In this research, toxicological safety of two newly developed methods for the treatment of landfill leachate from the Piškornica (Croatia) sanitary landfill was investigated. Chemical treatment procedure combined chemical precipitation with CaO followed by coagulation with ferric chloride and final adsorption by clinoptilolite. Electrochemical treatment approach included pretreatment with ozone followed by electrooxidation/electrocoagulation and final polishing by microwave irradiation. Cell viability of untreated/treated landfill leachate was examined using fluorescence microscopy. Cytotoxic effect of the original leachate was obtained for both exposure periods (4 and 24 h) while treated samples showed no cytotoxic effect even after prolonged exposure time. The potential DNA damage of the untreated/treated landfill leachate was evaluated by the comet assay and cytokinesis-block micronucleus (CBMN) assay using either human or plant cells. The original leachate exhibited significantly higher comet assay parameters compared to negative control after 24 h exposure. On the contrary, there was no significant difference between negative control and chemically/electrochemically treated leachate for any of the parameters tested. There was also no significant increase in either CBMN assay parameter compared to the negative control following the exposure of the lymphocytes to the chemically or electrochemically treated landfill leachate for both exposure periods while the original sample showed significantly higher number of micronuclei, nucleoplasmic bridges and nuclear buds for both exposure times. Results suggest that both methods are suitable for the treatment of such complex waste effluent due to high removal efficiency of all measured parameters and toxicological safety of the treated effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号