首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
为实现同步硝化内源反硝化除磷(SNEDPR)系统的优化运行,以实际生活污水为处理对象,采用厌氧(180min)/好氧运行的SBR反应器,并通过联合调控好氧段溶解氧(DO)浓度(0.3~1.0mg/L)和好氧时间(150~240min),考察了该系统脱氮除磷特性.并结合荧光原位杂交(FISH)技术对系统优化过程中各功能菌群的结构变化情况进行了分析.试验结果表明,当系统好氧段DO浓度由约1.0mg/L逐渐降至0.3mg/L,且好氧时间由150min逐渐延长至240min后,出水PO43--P浓度稳定在0.4mg/L左右,但出水TN浓度由14.3mg/L降至8.7mg/L,TN去除率由75%提高至84%.此外,随着好氧段DO浓度的降低,SNED现象愈加明显,SNED率由34.7%逐渐升高至63.8%.SNED的加强,降低了出水NO3--N浓度,并提高了系统的脱氮性能和厌氧段的内碳源储存量.FISH结果表明:经127d的优化运行,系统内PAOs,GAOs和AOB(氨氧化菌)仍保持在较高水平(分别全菌的29%±3%,20%±3%和13%±3%),其保证了系统除磷、硝化和反硝化脱氮性能;但NOB(亚硝酸盐氧化菌)含量减少了50%,为系统内实现短程硝化内源反硝化提供了可能.  相似文献   

2.
为了解同步硝化内源反硝化除磷(SNEDPR)系统处理低C/N(<3)污水的脱氮除磷特性,采用厌氧/低氧(溶解氧0.5~1.0mg/L)运行的SBR反应器,以低碳城市污水为处理对象,考察了C/N对SNEDPR启动、脱氮除磷性能优化与菌群结构变化的影响.结果表明:进水C/N由4.3提高至5.15时,系统脱氮除磷性能均逐渐增强,系统总氮(TN)和PO43--P去除率最高达89.3%和90.6%;降低进水C/N <3后,系统脱氮、除磷性能均呈现先降低后逐渐升高的趋势,但低C/N对PAOs(聚磷菌)除磷性能的影响高于其对反硝化聚糖菌(DGAOs)内源反硝化脱氮性能的影响,表现为TN和PO43--P去除率分别先降低至21.4%和3.4%后逐渐升高至92.9%和94.1%.系统稳定运行阶段,单位COD平均释磷量和SNED率达437.1mgP/gCOD和89.1%,出水NH4+-N、NOx--N和PO43--P浓度平均为0,4.4,0.2mg/L.经136d的运行,系统内PAOs,GAOs,AOB(氨氧化菌)和NOB(亚硝酸盐氧化菌)分别占全菌的(16±3)%,(8±3)%,(7±3)%和(3±1)%,其保证了系统除磷、硝化和反硝化脱氮性能.此外,系统好氧段存在同步短程硝化内源反硝化,是实现低C/N(<3)污水高效脱氮除磷的原因.  相似文献   

3.
为研究同步短程硝化内源反硝化除磷(SPNED-PR)系统的脱氮除磷特性及系统内聚磷菌(PAOs)和聚糖菌(GAOs)在氮磷去除的贡献和竞争关系,本研究以实际低C/N比(4左右)生活污水为处理对象,考察了不同浓度的溶解氧(DO)(0.5~2.0mg/L)、NO2--N(4.7~39.9mg/L)和NO3--N(5.0~40.0mg/L)对延时厌氧(150min)/低氧(180min,溶解氧0.5~0.7mg/L)运行的SPNED-PR系统氮磷去除特性和底物转化特性的影响.结果表明,DO浓度均不影响PAOs和GAOs的好氧代谢活性,且两者之间几乎不存在DO竞争.不同NO2--N浓度条件下,GAOs较PAOs更具竞争优势,NO2--N主要是通过GAOs去除的(约占58%);且GAOs所具有的高内源反硝化活性和亚硝耐受力,减弱了高NO2--N浓度(26.2~39.9mg/L)对PAOs反硝化吸磷的抑制,保证了系统的脱氮除磷性能.不同NO3--N浓度条件下,PAOs较GAOs处于竞争优势,其在NO3--N去除中的贡献比例达61.2%.此外,SPNED-PR系统的PURDO > PURnitrate > PURnitrite,PAOs对DO的优先利用保证了低氧条件下系统的高效除磷,且GAOs的内源短程反硝化特性保证了系统的高效脱氮.  相似文献   

4.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷.结果表明,当好氧段曝气量由1.0 L·min-1降至0.6 L·min-1,缺氧时间为180 min时,出水PO3-4-P浓度由0.06 mg·L~(-1)降至0,出水NH+4-N、NO-2-N和NO-3-N浓度分别由0.18、18.79和0.08 mg·L~(-1)逐渐降低至0、16.46和0.05 mg·L~(-1),TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180 min逐渐延长至420 min,出水PO3-4-P、NH+4-N和NO-3-N浓度分别维持在0、0和0.03 mg·L~(-1)左右,出水NO-2-N低至3.06 mg·L~(-1),SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷.  相似文献   

5.
进水C/N对富集聚磷菌的SNDPR系统脱氮除磷的影响   总被引:1,自引:0,他引:1  
为了解富集聚磷菌(PAOs)的同步硝化反硝化除磷(SNDPR)系统的脱氮除磷特性,采用延时厌氧(180min)/低氧(溶解氧0.5~1.0mg/L)运行的SBR反应器,以实际生活污水为处理对象, 通过投加固态乙酸钠调节进水C/N值(约为11,8,4,3),考察其对系统脱氮除磷特性及同步硝化反硝化(SND)脱氮率的影响.结果表明:C/N对系统的除磷性能没有影响,出水PO43--P浓度均稳定在0.3mg/L左右,这是由于系统内聚磷菌(PAOs)含量高,且在低氧段可同时发生好氧吸磷与反硝化吸磷.随着C/N的增大,出水NH4+-N浓度升高,C/N下降时,出水NO3--N浓度升高.此外,随着C/N的减小,厌氧段反硝化所消耗的COD占进水COD的比例增大,SND可利用的内碳源-PHAs储存量减少,但PHV的利用率增加;当C/N为4~8时,SND现象最明显,SND脱氮率达50.8%,而其它C/N条件下,SND脱氮率都有相应程度的减弱.C/N为8时,系统出水综合指标最好,TN去除率高达80.8%.  相似文献   

6.
不同厌氧时间对富集聚磷菌的SNDPR系统处理性能的影响   总被引:5,自引:0,他引:5  
在延时厌氧(3h)/低氧(2.5h,溶解氧0.5~1.0mg/L)条件下运行的富集聚磷菌的同步硝化反硝化(SNDPR)系统中,以城市生活污水为处理对象,研究了不同厌氧时间(3.5,3,2,1.5h)对系统内碳源贮存以及脱氮除磷效果的影响.试验结果表明:厌氧时间为3.5h,反应器脱氮效果最好.厌氧时间为3h时,反应器除磷效果最好,出水PO43-浓度为0.35mg/L.厌氧时间从1.5h逐渐上升到3.5h时,厌氧末贮存的聚羟基脂肪酸-PHAs的量也随之增加;当厌氧时间从3h升至3.5h时,释P量反而下降,出水P浓度反而升高.这说明增加厌氧时间有利于强化内碳源贮存,但过长的厌氧时间反而不利聚磷菌种群的富集.运行51个周期之后在厌氧时间为1.5h和2h的反应器内出现非丝状菌膨胀;反应周期内pH值的变化曲线可以作为反应各个过程的指示参数.  相似文献   

7.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

8.
亚硝酸型反硝化除磷工艺特性及其应用   总被引:1,自引:0,他引:1  
以亚硝酸盐作为电子受体进行反硝化除磷污泥的驯化,并探究了工艺运行条件、性能及实际应用情况.研究表明:厌氧-缺氧-好氧驯化方式可快速富集以亚硝酸盐为电子受体的反硝化聚磷菌,通过逐步提高底物浓度可以驯化富集耐受高NO2--N浓度的DNPAOs.实际废水运行实验表明,反硝化除磷法处理猪场废水UASB-SFSBR尾水是可行的,当缺氧进水NO3--N、NO2--N和PO43--P浓度分别为5,70,30mg/L时,出水NO3--N和NO2--N浓度基本为0,PO43--P浓度在1.0mg/L以下.  相似文献   

9.
为探究同步硝化内源反硝化除磷(SNEDPR)强化移动床生物膜反应器(MBBR)工艺脱氮除磷的可行性,采用连续曝气和搅拌/曝气交替运行的MBBR反应器,以磁性填料作为载体处理模拟生活污水,考察了SNEDPR启动过程中的脱氮除磷性能,并结合荧光显微镜和高通量测序技术对各个功能菌群结构变化情况进行了分析.结果表明,经两阶段运行后,氨氮和磷去除率分别达到97.6%和85.37%,出水NO2-—N、NO3-—N和COD浓度分别为1.3949,3.88和20.4mg/L,同步硝化内源反硝化率(SNEDR)由0.07%逐渐升高至86.35%.好氧阶段同步硝化内源反硝化率的提高,使出水NOx-—N浓度下降,提高了系统的脱氮性能和厌氧阶段内碳源的储存量.荧光显微镜和高通量测序结果表明,经过53d的运行,微生物群落多样性呈显著提高,系统内GAOs、AOB、NOB丰度的提高(分别由接种污泥中的3.3%、0.84%和0.66%提高至系统内的27.08%/20.48%、1.45%/1.76%和1.05%/0.85%)和PAOs、DPAOs的存在,保证了系统的脱氮除磷性能,在MBBR工艺中实现了EBPR与SNED的耦合.  相似文献   

10.
为实现低C/N城市污水与含硝酸盐废水的同步处理,采用SBR接种活性污泥,通过合理控制厌氧/缺氧/低氧时间和溶解氧(DO)浓度,实现了反硝化除磷耦合同步硝化内源反硝化(DPR-SNED)系统的启动,并对启动过程中系统的脱氮除磷特性进行了研究.结果表明采用厌氧/低氧的运行方式,控制厌氧时间为3 h,好氧段DO浓度为0. 5~1. 0 mg·L-1,60 d可实现同步硝化内源反硝化除磷(SNEDPR)系统的启动,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统氮磷去除率维持在90%以上,COD的去除率维持在80%以上,系统SNED率和CODins率分别维持在70%和95%左右;随后改变运行方式,采用厌氧/缺氧/低氧的方式运行,缺氧段前进含硝酸盐废水,45 d可实现DPR-SNED系统的启动,缺氧末PO_4~(3-)-P浓度1. 1 mg·L-1,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统磷、COD去除率均维持在90%以上,氮去除率维持在88%以上,系统SNED率和CODins率分别维持在62%和90%左右. DPR-SNED系统的成功启动后,厌氧段聚糖菌和聚磷菌对城市污水有限碳源的充分利用和强化储存,可为后续缺氧段及好氧段的脱氮除磷提供充足的内碳源.此外,DPR-SNED系统缺氧段内源短程反硝化的进行保障了系统在低C/N(4)条件下的高效脱氮.  相似文献   

11.
接种厌氧/缺氧/好氧-生物接触氧化(AAO-BCO)系统的反硝化除磷污泥,采用厌氧/缺氧/好氧-序批式(AAO-SBR)系统,重点考察了乙酸盐和丙酸盐配比(1:0,2:1,1:1,1:2和0:1)对反硝化除磷效率的影响,同时通过高通量测序对比了不同配比下微生物菌群结构的变化.结果表明,5种工况下,AAO-SBR系统均具有较高的有机物去除和反硝化除磷能力.而当乙酸钠/丙酸钠=1:0时,厌氧阶段在高效利用COD(87.63%)的同时完成聚-β-羟基烷酸(PHAs)的合成(174mgCOD/gMLSS),释磷量高达31.22mg/L;缺氧阶段PO43--P的去除(74%)伴随着NO3--N反硝化(90%),PHAs利用率为72.4%,实现了氮磷的高效去除.高通量测序结果表明:不同碳源配比影响了微生物菌群的丰富度和多样性,其中变形菌门(Proteobacteria,31%~76%)、绿弯菌门(Chloroflexi,1%~26%)、拟杆菌门(Bacteroidetes,2%~31%)等占据绝大比例,而乙酸钠、丙酸钠共存时,微生物的多样性较好.当乙酸钠为单一碳源时,系统中聚磷菌(PAOs,21.364%)在与聚糖菌(GAOs,2.317%)的竞争中占绝对优势.  相似文献   

12.
根据2016年初夏渤海湾营养盐、叶绿素a和相关水文参数等数据,利用浮游植物吸收营养盐最低阈值和化学计量关系作为判断依据对渤海湾营养盐限制状况进行分析.结果表明:受陆地径流和渤海中部冷水输入的影响,初夏渤海湾在近岸、中部和湾口呈现三个明显的温盐特征海区.溶解无机氮(DIN)和活性硅酸盐(SiO32--Si)受陆源输入影响,呈现近岸高湾口低的特征;DIN平均浓度为(7.67±6.48)μmol/L,SiO32--Si平均浓度为(5.44±3.01)μmol/L,在湾口表层,DIN含量较低仅为(2.21±2.94)μmol/L,其中50%站点含量低于阈值(1μmol/L),58.3%的站点存在DIN限制.而活性磷酸盐(PO43--P)受陆源输入和浮游植物吸收储存作用等因素影响,呈现西部和曹妃甸外近海高中部较低的分布特征,平均浓度为(0.07±0.07)μmol/L,近岸受陆源氮磷输入总量差异影响,表层存在磷潜在限制比例达100%,而中部表层受浮游植物消耗吸收的影响,PO43--P含量较低,仅为(0.02±0.02)μmol/L (未检出设为0),其中近74.3%的水样含量低于阈值(0.03μmol/L),磷限制状况严重.随着渤海湾氮磷营养盐陆源输入总量差距不断扩大,磷限制状况必将会进一步发展.  相似文献   

13.
Laboratory scale experiments were conducted to study the characteristics of N and P removal under different influent organic carbon concentration in a sequencing batch reactor (SBR) with simple anaerobic/aerobic operating mode. Experimental results indicated that, under the operating condition of influent N concentration of 89 mg/L and P concentration of 15 mg/L, when the influent C/N ratio increased from 1.5 to 6.9 (influent C/P ratio from 9 to 41), total N and P removal efficiency improved from 50% and 46% to 78% and 96% respectively. Track studies of N, P and other operating parameters demonstrated that N removal of the SBR was realized through simultaneous nitrification and denitrification (SND) in the aeration phase and anoxic denitrificaiton in the filling phase, P removal was accomplished through conventional anaerobic P release and aerobic P taken-up process. Keeping dissolved oxygen (DO) concentration during the first two aeration hours as low as 0.1-0.6 mg/L is essential for the simultaneous occurrences of nitrification, denitrification and P-taken up.  相似文献   

14.
根据2013年7月(夏季),11月(秋季)和2014年5月(春季)渤海中部海域营养盐数据以及温盐等数据,以浮游植物对营养盐的吸收阈值和化学计量关系为判断标准,对研究海域营养盐分布、限制状况以及季节变化特征进行分析,结果表明:调查海域内各营养盐组分变化均呈现明显季节性特征,表现为夏季低秋季上升春季下降的趋势.夏季受冲淡水影响,海水存在层化现象,溶解无机氮(DIN)、PO43--P和SiO32--Si含量分别为(10.33±7.75)、(0.05±0.03)和(3.94±3.19)μmol/L,DIN/P较高,Si/DIN远低于1,其中表层和10m层存在P和Si限制站位分别达93%、93%和40%、20%,限制状况严重.秋季受底层沉积物扰动再悬浮及营养盐矿化释放等因素影响,各种营养盐含量迅速上升,DIN、PO43--P和SiO32--Si含量为(16.44±6.51)、(0.54±0.20)和(16.94±6.37)μmol/L,分别升高了1.6、10.8和4.3倍,垂向分布差异较小,且仅存在P潜在限制现象.春季由于陆源输入相对较少,同时受浮游植物吸收等因素影响,各营养盐含量急剧下降,DIN、PO43--P和SiO32--Si含量分别为(9.04±8.06)、(0.06±0.04)和(2.47±1.90)μmol/L,分别降低了45%、89%和85%,其中部分站位PO43--P和SiO32--Si含量低于阈值,在表层和10m层海水中存在P和Si限制站位分别达70%、65%和55%、50%,对海域内硅藻作为优势种的浮游植物生长和初级生产力产生影响.  相似文献   

15.
以处理实际低C/N生活污水的前置A2NSBR系统为研究对象,考察系统内生物膜的硝化特性和活性污泥的反硝化除磷特性.试验研究了有机物和NO2--N浓度对生物膜硝化性能的影响,以及不同电子受体浓度对反硝化吸磷速率的影响.结果测得硝化速率为11.3mgNH4+-N/(L·h),在填充率40%的条件下容积负荷为0.27kgNH4+-N/(m3·d),有机物的存在会对硝化有抑制,但是系统表现出了良好的抗有机负荷冲击能力,硝化速率为9.72mg NH4+-N/(L·h).NO2--N处理对AOB活性几乎无影响,对NOB活性抑制作用明显,当NO2--N浓度为400mg/L时,NOB活性仅为1.63%,几乎接近完全被抑制.根据本次不同电子受体条件下除磷批次试验的结果,好氧吸磷速率为17.62mg P/(g VSS·h),以NO3--N为电子受体的缺氧吸磷速率是12.94mg P/(g VSS·h),从而可知缺氧聚磷菌占总聚磷菌的比例大约是73.4%,其中在NO2--N浓度为30mg/L出现吸磷抑制,当NO2--N和NO3--N共存时,NO2--N在初始浓度为15mg/L便出现吸磷抑制.  相似文献   

16.
进水C/N对A~2/O-BCO工艺反硝化除磷特性的影响   总被引:1,自引:0,他引:1  
采用厌氧/缺氧/好氧与生物接触氧化工艺组成的双污泥系统(A~2/O-BCO)处理实际生活污水.通过投加乙酸钠调节进水碳氮比(C/N=2.44~8.85),考察了系统的反硝化除磷特性.试验结果表明:进水有机物主要是通过改变硝化性能(即缺氧段反硝化负荷)以及聚-β-羟基链烷酸脂(PHA)的贮存和利用,进而影响系统的脱氮除磷效果.当进水C/N为4~5时,COD、TN和PO_4~(3-)-P去除率分别达到88%,80%和96%,实现了有机物、氮和磷的同步高效去除.碳平衡分析表明,A~2/O反应器去除的COD占去除总量的71.86%~77.28%,BCO反应器去除的COD仅占2%~12%,碳源的高效利用是A~2/O-BCO工艺在低C/N条件下实现深度脱氮除磷的重要原因.此外,通过进水C/N与曝气量、硝化液回流比、厌/缺氧反应时间等相关性的分析,提出了系统的优化运行策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号