首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 953 毫秒
1.
对UV/Cl高级氧化工艺降解水中广谱抗菌剂三氯生(TCS)进行研究,对比单一UV、单一Cl和UV/Cl工艺对TCS的去除效果.考察UV光强、余氯初始浓度、溶液pH值和氨氮浓度等因素对反应的影响,探究TCS在UV/Cl工艺中的降解机理,评估其生态风险.结果表明,与单一UV、单一Cl相比,TCS在UV/Cl工艺中降解效果较好,反应符合准一级反应动力学,降解速率常数随UV光强、余氯初始浓度增大而增大,随NH4+-N浓度的增加而减小.基于HRMS Q-TOF解析出17种中间产物,提出了降解反应路径.发光细菌毒性分析和ECOSAR预测均表明,TCS在UV/Cl工艺中产生毒性较高的中间产物,随着反应的进行,产生了毒性较低的中间产物,生态环境风险得以减少.  相似文献   

2.
药用活性化合物(PhACs)在氯消毒过程中生成消毒副产物的问题引起了广泛关注.以典型PhACs物质萘普生(NAP)为研究对象,考察各因素对游离氯与NAP反应的影响,探究NAP氯化机制并进行风险评估.结果表明,NAP氯化反应遵循一级反应动力学,NAP在氯化过程中的降解率和反应速率常数随着NAP初始浓度和氨根离子投加量的增加而降低,随着游离氯初始浓度的增加而增大,酸性条件下更有利于NAP的氯化反应.基于HPLC-MS/MS分析鉴定出5种含氯降解中间产物,并提出氯化NAP反应机制.ESCOAR风险预测和发光菌毒性分析表明氯化NAP过程中生成了毒性更高的中间产物,对饮用水安全可能构成潜在威胁.  相似文献   

3.
纳米四氧化三铁对2,4-D的脱氯降解   总被引:8,自引:4,他引:4  
方国东  司友斌 《环境科学》2010,31(6):1499-1505
采用纳米四氧化三铁(Fe3O4)降解水溶液中的2,4-二氯苯氧乙酸(2,4-D),考察了2,4-D初始浓度、纳米Fe3O4投加量、溶液pH和温度等因素对2,4-D降解率的影响.结果表明,纳米Fe3O4对2,4-D有显著的降解效果,初始浓度为10 mg/L的2,4-D, 48 h内降解率可达48%.纳米Fe3O4对2,4-D的降解是一个还原脱氯过程,反应体系中氯离子浓度随2,4-D浓度降低而升高.LC/MS分析表明,2,4-D降解的主要产物是苯酚,其他中间产物是2,4-二氯苯酚(2,4-DCP)、4-氯苯酚(4-CP)和2-氯苯酚(2-CP).溶液中2,4-D的降解符合准一级反应动力学,产物4-CP、2,4-DCP和苯酚的反应速率常数K分别为0.0043、0.0026和0.0032 h -1.环境条件对降解效率有显著影响,2,4-D初始浓度在0~10 mg/L、纳米Fe3O4投加量0~300 mg/L的范围内,2,4-D降解率随初始浓度和纳米Fe3O4投加量的增加而增大;pH对2,4-D的脱氯降解有显著影响,在pH为3.0时,纳米Fe3O4对2,4-D的还原脱氯效果最好;温度升高,可以提高脱氯反应速率.  相似文献   

4.
等离子喷涂法制备了钛基亚氧化钛电极(Ti/Ti_4O_7),以该电极为阳极,研究了电化学氧化法对水中美托洛尔的去除效果.考察了电流密度(5~25 mA·cm~(-2))、极板间距(5~25 mm)和初始浓度(3~50 mg·L~(-1))对美托洛尔电化学降解效率的影响;分析美托洛尔电化学降解过程中溶液总有机碳(TOC)和毒性的变化,鉴别反应中间产物并计算其毒性.研究表明:Ti/Ti_4O_7阳极电化学降解美托洛尔反应符合一级反应动力学规律(R20.95),降解效率随电流密度的增大而增大,随极板间距和初始浓度的增大而减小;TOC去除率在反应40 min后可达56.5%;反应过程中产生了质合比为266、250、223和207的中间产物,造成美托洛尔溶液的生物毒性在电化学反应过程中先升高后下降.  相似文献   

5.
研究了photo-Fenton反应对非甾体抗炎药双氯芬酸的降解和矿化.同时,探讨了H2O2、Fe2+初始浓度、pH值等因素对photo-Fenton反应的影响,确定了最佳操作条件,并进行了各种氧化法的比较.结果表明,对于UV/H2O2/Fe2+反应系统下双氯芬酸的降解,其降解速率受到反应条件的强烈影响.双氯芬酸初始浓度为20mg·L-1时,适宜操作条件是pH值为5,初始FeSO4浓度为5mg·L-1,初始H2O2浓度为200mg·L-1.在最佳条件下,各种氧化法的降解能力趋势为UV/Fenton>UV/H2O2>Fenton>UV.由于反应中有中间产物的生成,双氯芬酸的矿化过程要长于降解过程,其生物毒性也是随着反应的进行先增大而后减小.  相似文献   

6.
发光二极管(light emitting diode,LED)作为新型紫外线光源,其与活性氯联用的LED-紫外线/氯高级氧化技术可协同高效降解抗惊厥药微量污染物苯妥英钠(phenytoin sodium,PHT)。LED-紫外线剂量为0. 82 J/cm~2时,LED-紫外线/氯高级氧化对水中的PHT去除率到62%,远高于单独氯化和单独LED-紫外线处理的加和。降解动力学研究发现:LED-紫外线/氯高级氧化降解PHT符合准一级反应动力学。280 nm LED作为光源的LED-紫外线/氯相比310 nm LED-紫外线/氯有更好的PHT去除效果。与LED-紫外线/H_2O_2和LED-紫外线/过硫酸盐相比,氧化剂(氯、H_2O_2和过硫酸盐)浓度为0. 282 mmol/L时,LED-紫外线/氯高级氧化降解PHT的准一级反应动力学常数(0. 096 min~(-1))远高于LED-紫外线/H_2O_2和LED-紫外线/过硫酸盐,分别是其3. 7倍和3. 0倍。优化氯投加量发现,LED-紫外线/氯高级氧化在较低氯投加量(10 mg/L)条件下即可高效降解PHT。对PHT毒性变化研究发现,氯化作用降解PHT过程中,可生成具有急性毒性的中间产物,且持续累积。LED-紫外线/氯高级氧化降解PHT在较低紫外线剂量(0. 08 J/cm~2)下生成了具有急性毒性的中间产物,随着紫外线剂量增加至0. 41 J/cm~2,毒性中间产物被有效去除。  相似文献   

7.
活化PS(过硫酸盐)氧化工艺对于降解水中新兴微污染物具有潜在应用价值.为研究活化PS体系对BPs(二苯甲酮类)有机防晒剂的降解性能,以BP4(二苯甲酮-4)为研究对象,采用UV/PS(紫外活化过硫酸盐)工艺降解BP4,比较单一UV、单一PS和UV/PS 3种工艺对BP4的去除效果,考察各因素对UV/PS工艺去除BP4动力学的影响,同时探究BP4降解机理并进行风险评价.结果表明:BP4降解过程符合准一级反应动力学模型;最佳PS投加量为1.0 mmol/L,反应30 min后BP4去除率可达94%,增加PS投加量或降低初始c(BP4)均可促进BP4降解,无机阴离子(HCO3-和Cl-)对BP4降解均有抑制作用,酸性条件有利于BP4降解;基于HPLC-MS/MS鉴定出8种中间产物,并提出降解路径,费氏弧菌毒性试验和ECOSAR v1.10软件预测表明,UV/PS工艺降解BP4过程中生成的中间产物比母物质毒性更高.研究显示,UV/PS工艺可有效去除BP4,但其中间产物可能会造成潜在的生态风险,后续需进一步深入研究.   相似文献   

8.
耐低温菌JH-9降解苯胺的动力学研究   总被引:1,自引:0,他引:1  
研究耐低温菌JH-9在低温(10 ℃)条件下对不同初始ρ(苯胺)的生物降解情况,并采用反应动力学方程(Monod方程和Haldane方程)拟合其降解过程. 结果表明,菌株JH-9在低温下可降解苯胺,当菌体初始质量浓度一定时,苯胺降解率及平均降解速率主要与初始ρ(苯胺)有关. 初始ρ(苯胺)较低时(<550 mg/L),其在120 h内可完全降解,且平均降解速率随着初始ρ(苯胺)的增加而升高,菌体降解过程中没有出现苯胺毒性抑制作用,遵循Monod方程;当初始ρ(苯胺)较高时(>550 mg/L),苯胺降解率及降解速率均有所下降,由于初始ρ(苯胺)过高对菌体产生了抑制作用,其降解过程以基质抑制型的Haldane方程为主.   相似文献   

9.
异养硝化菌株Acinetobactor sp.JQ1004能够在初始氨氮浓度为0~2000mg/L范围内进行生长和氮源代谢,菌株在初始氨氮浓度为2500mg/L条件下被完全抑制,无法生长.当菌株在温度为30℃,pH7.5,转速为160r/min,初始氨氮浓度分别为100,300,500,700,1000,1500,2000,2500mg/L条件下培养时,菌株的最大比生长速率分别为0.251,0.308,0.286,0.243,0.197,0.115,0.088h-1,相应的最大比氨氮降解速率分别为1.335,1.906,1.859,1.759,1.562,1.286,0.965g/(gDCW·d).在高浓度氨氮和游离氨的抑制作用下,菌株的比生长速率及对氨氮的比降解速率随初始氨氮浓度的增加呈先增加后降低的趋势.3种基质抑制动力学模型(Haldane,Yano,Aiba模型)均能够很好地模拟菌株随初始氨氮浓度的生长变化规律,对应地相关系数分别为0.9944,0.9983和0.9929.由Haldane模型可知,菌株在不同初始氨氮浓度(游离氨)条件下的最大氨氮比降解速率μmax为2.604h-1,基质亲和系数Ks为22.57mg/L,基质抑制系数Ki为1445.31mg/L.其中由Ki值远大于自养菌(硝化细菌及厌氧氨氧化菌等)的值,这表明异养硝化菌株Acinetobactor sp.JQ1004比自养菌具有更强的抗抑制能力.另外,菌株在游离氨浓度为5.436mg/L时,比生长速率达到最大值0.583h-1.以上研究结果表明,菌株JQ1004在处理高氨氮废水中具有潜在的应用前景.  相似文献   

10.
采用高效液相色谱对电化学氧化除氨氮过程,不同电流密度,Cl-浓度及初始pH值的·OH进行定量检测和分析,同时,对不同初始pH值和电流密度下,电化学氧化除氨氮的中间产物进行了定量分析,结果表明:·OH产生量与电流密度成正比,当有Cl-存在,且在碱性条件下会抑制·OH的产生;初始pH值为偏碱性时,NO2-和氯胺的产量均有所增加.建议电化学氧化脱氨氮过程,尽量保持溶液pH值在中性或酸性条件下;电流密度对氨氮电化学氧化过程中各中间产物的量有着较大影响,在电流密度为10mA/cm2时,活性物质产量最高,且有害中间产物产量最低.  相似文献   

11.
以环状膜生物反应器BAR模拟实际输水管道,研究了预氯化对管壁生物膜净水效能的影响及其性能恢复过程.结果表明:冲击性加氯后生物膜中异养菌数量迅速降低,几乎检测不出氨氧化细菌,然而,短时的冲击利于生物膜更新,增加了细菌生长潜能,恢复运行240h及144h之后预氯化生物膜中异养菌和氨氧化细菌数量均高于对照组.氯冲击明显降低了生物膜对氨氮的去除效果,余氯为0.5,1.5,3.0mg/L的BAR对氨氮去除率由对照组的79.01%分别降到32.10%、14.46%和9.88%,并出现了显著的亚硝酸盐氮积累,恢复运行120h和216h,管道生物膜即可恢复对氨氮和亚硝酸盐氮的去除效果.余氯量达到1.5mg/L时造成出水总磷浓度升高,恢复运行264h之后4台BAR对总磷的去除率均达到20%以上.氯对生物膜的氧化作用使得出水高锰酸盐指数升高,运行192h之后生物膜净水效果恢复.  相似文献   

12.
Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L, free chlorine dosage from 0.30 to 1.31 mg/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-1,2-dihydro- 1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.  相似文献   

13.
针对饮用水中氨氮超标对环境造成的污染问题,采用紫外/氯组合工艺对饮用水中氨氮进行降解研究.结果表明,紫外/氯高级氧化工艺可以有效去除水中氨氮.一方面,自由氯和氨氮之间发生取代反应将氨氮转化为氯胺,254 nm紫外光可有效裂解N—Cl键,一氯胺在254 nm处的摩尔吸光系数为354 L·mol~(-1)·cm~(-1),量子产率为0.68 mol·E~(-1);另一方面,自由氯光解产生的自由基可直接氧化氨氮.随着紫外辐照剂量的增加,氨氮和总溶解性氮(TN)的浓度逐渐减少,当紫外辐照剂量达到1000 mJ·cm~(-2)时,氨氮(起始浓度2 mg·L~(-1))和TN的去除率分别为53%和35%,相比单独氯化条件下分别提高了20%和15%.随着Cl_2/N的增加,氨氮和TN的浓度逐渐减小,当Cl_2/N≥1.6时,紫外/氯组合工艺对氨氮的去除率接近100%,当Cl_2/N1.6时,紫外/氯工艺对TN的去除率相比单独氯化工艺提高了30%左右.此外,氨氮去除率随pH升高而增加,而TN去除率随pH升高而降低.本研究结果可为紫外/氯组合工艺在水厂中的实际应用提供有效的理论和技术支持.  相似文献   

14.
研究了氨氮存在下次氯酸钠处理苯酚模拟废水的氧化特性,探讨了苯酚在氨氮体系中的反应途径。实验结果表明:在含氨氮的苯酚废水中加入次氯酸钠,氨氮将与苯酚发生竞争反应。折点加氯曲线表现为当氯与氨氮质量比由5.35上升到27.67时,氨氮去除率的变化趋势滞后;而余氯量则不断减小,没有折点出现。随着氨氮浓度增加,苯酚的氧化降解受到抑制:一方面,苯酚的去除率不断下降;另一方面,体系中检测到一系列氯酚中间产物,其生成量和种类先增加后减少。HPLC分析结果显示体系中生成的氯酚中间产物至少有2种(2-氯酚和4-氯酚),至多有5种(2-氯酚、4-氯酚、2,6-二氯酚、2,4-二氯酚和2,4,6-三氯酚)。其中,2-氯酚和4-氯酚是导致三卤甲烷产生的最有效前体物质,而2,6-二氯酚、2,4-二氯酚和2,4,6-三氯酚则是生成卤乙酸的高活性物质。实验结果对次氯酸钠处理含氨氮的难生化或有毒有机废水具有一定的参考价值。  相似文献   

15.
新型冠状病毒肺炎疫情期间大规模使用含氯消毒剂,其残留可能对水环境及人体健康造成影响.我国饮用水水源地质量标准并未设置余氯项目及其浓度限值,且缺乏统一的余氯现场快速分析方法标准.为公共卫生事件发生期间的水质余氯监测与评价提供参考,对国内外饮用水标准余氯限值、实验室标准分析方法、现场快速分析方法等进行汇总分析,结果表明:①不同国家和地区以及WHO(World Health Organization,世界卫生组织)在饮用水标准中分别设置了出厂水中余氯限值(范围为0.1~2.0 mg/L)、管网末梢水中余氯限值(范围为0.1~1.8 mg/L)及饮用水中余氯最大允许浓度(范围为4~5 mg/L).②比色法、容量法因其具有反应迅速且稳定、准确度及精密度较高等优点而成为国内外实验室主要标准或推荐分析方法,高效液相色谱法检出限最低,灵敏度最高,可用于余氯痕量分析.③余氯现场快速分析方法多以比色法为主,在线监测方法多为电化学方法,但缺乏统一的标准方法.研究显示,国外饮用水标准中余氯最大允许浓度为5 mg/L,WHO推荐高风险环境下的管网末梢余氯浓度最低为0.5 mg/L,建议尽快开展水质余氯现场监测方法标准化研究.   相似文献   

16.
传统给水处理厂氯消毒模型的开发与应用   总被引:1,自引:1,他引:0  
以建立给水处理过程的风险分析方法为目标,提出了适用于传统给水处理工艺的氯消毒概率机理模型.模型既考虑氯消毒过程中有机物、余氯、氨氮、溴离子之间化学反应,又考虑水厂混凝、沉淀和过滤工艺过程中的物理和生物作用.典型水厂的现场监测数据表明,该模型能够较好地模拟水厂中高锰酸盐指数、氨氮以及4种三卤甲烷的浓度概率分布.Monte Carlo模拟的结果表明,与我国城市供水水质标准相比,该水厂高锰酸盐指数和单种三卤甲烷的超标概率极低,但总三卤甲烷的超标概率略高,约为2.3%.  相似文献   

17.
Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions, particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and, simultaneously, 6.6%-32% of Br^- was oxidized to BrO3^-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.  相似文献   

18.
采用磷酸铵镁(MAP)沉淀法对高氨氮7-ACA综合废水进行了预处理试验研究,以Na2HPO4和MgCl2.6H2O作为沉淀剂,探讨了初始反应pH值、n(Mg2+):n(PO43-)/:n(NH4+)投配比及反应时间等因素对氨氮去除效果的影响。结合结晶物SEM分析,确定预处理的最佳工艺条件为:初始反应pH 9.0、n(Mg2+):n(PO43-):n(NH4+)投配比1.0:1.1:1和反应时间20 min。平行试验结果表明,在最佳工艺条件下,当进水氨氮浓度为1 020~1 190 mg/L时,处理后出水氨氮浓度为小于150.0 mg/L,氨氮去除率在85.0%以上,残磷量小于40.0 mg/L,为7-ACA综合废水的后续生化处理创造了有利条件。  相似文献   

19.
采用umu遗传毒性测试方法考察了二氧化氯和氯消毒对几种城市污水生物处理出水遗传毒性的影响,发现当二氧化氯消毒剂从0 mg/L增加到30 mg/L时,几种污水的遗传毒性均先迅速降低后趋于稳定,而当氯消毒剂从0 mg/L增加到30 mg/L时,几种污水的遗传毒性的变化规律不同.进一步研究氨氮对污水消毒过程中遗传毒性变化的影响,发现氨氮对污水二氧化氯消毒过程中遗传毒性的变化规律没有显著影响,但是对污水氯消毒过程中遗传毒性的变化规律却起着至关重要的作用.当氨氮含量较小(<10~20 mg/L)时,污水氯消毒后的遗传毒性小于消毒前;当氨氮含量较大时(>10~20 mg/L),污水氯消毒后的遗传毒性大于消毒前.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号