首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4–12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11–0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (K S ?=?5.25?×?10?4 cm/s). The soil containing 47 % silt, 11 % clay, and 1.54 % organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R 2?=?0.977, RMSE?=?1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42–49 %. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion point was reached within 12 days of elapsed time. This clearly demonstrated poor attenuation capacity of the soil to retard migration of phenol to the groundwater from the surface outfall site. Suitable liner, based on these data, may be designed to inhibit subsurface transport of phenol and thereby to protect precious groundwater from contamination.  相似文献   

2.
Agrichemical runoff from farmland may adversely impact coastal water quality. Two models, the Agricultural Policy/Environmental eXtender (APEX) and the Riparian Ecosystem Management Model (REMM), were used to evaluate the movement of the herbicide atrazine to the Jobos Bay National Estuarine Research Reserve from adjacent fields. The reserve is located on Puerto Rico’s southeast coast. Edge-of-field atrazine outputs simulated with the APEX were routed through a grass-forest buffer using the REMM. Atrazine DT50 (half-life) values measured in both field and buffer soils indicated that accelerated degradation conditions had developed in the field soil due to repeated atrazine application. APEX simulations examined both the measured field and buffer soil atrazine DT50 and the model’s default value. The use of the measured field soil atrazine degradation rate in the APEX resulted in 33 % lower atrazine transport from the field. REMM simulations indicated that the buffer system had the potential to reduce dissolved atrazine transport in surface runoff by 77 % during non-tropical storm events by increasing infiltration, slowing transport, and increasing time for pesticide degradation. During a large runoff event due to a tropical storm that occurred close to the time of an atrazine application, the REMM simulated only a 37 % reduction in atrazine transport. The results indicate that large storm events soon after herbicide application likely dominate herbicide transport to coastal waters in the region. These results agree with water quality measurements in the reserve. This study demonstrated the sensitivity of these models to variations in DT50 values in evaluating atrazine fate and transport in the region and emphasizes that the use of measured DT50 values can improve model accuracy.  相似文献   

3.
The use of sewage-contaminated municipal water for irrigation of crops is an old practice in many big cities of Pakistan. Since the wastewater is rich in nutrients, it increases crops yield substantially but at the cost of food quality. The objective of this study was to investigate sewage water irrigation as a source of accumulation of heavy metals in soil and its subsequent transfer to crops and underground water. Sewage water, soil, groundwater, and crop samples were collected from selected areas around Peshawar city and analyzed for heavy metals concentration by atomic absorption spectroscopic method. Analysis of data revealed a considerable impact of the irrigation practices in the peri-urban Peshawar. Statistical analysis of the data showed a positive correlation between heavy metals concentration and soil carbon contents on the one hand and cation exchange capacity on the other. A strongly negative correlation was observed between metal contents and soil pH. The vertical movement of heavy metals from contaminated soil has polluted crops and underground water. The results indicated higher concentration of toxic metals in soil accumulated due to long-term sewage-contaminated water irrigation and their subsequent transfer to our food chain. The practice, if continued un-noticed may pose a threat of phytotoxicity to the local population.  相似文献   

4.
Pesticide residue analysis of soil,water, and grain of IPM basmati rice   总被引:1,自引:0,他引:1  
The main aim of the present investigations was to compare the pesticide load in integrated pest management (IPM) with non-IPM crops of rice fields. The harvest samples of Basmati rice grain, soil, and irrigation water, from IPM and non-IPM field trials, at villages in northern India, were analyzed using multi-pesticide residue method. The field experiments were conducted for three consecutive years (2008–2011) for the successful validation of the modules, synthesized for Basmati rice, at these locations. Residues of tricyclazole, propiconazole, hexconazole, lambda cyhalothrin, pretilachlor chlorpyrifos, DDVP, carbendazim, and imidacloprid were analyzed from two locations, Dudhli village of Dehradun, Uttrakhand and Saboli and Aterna village of Sonepat, Haryana. The pesticide residues were observed below detectable limit (BDL) (<0.001–0.05 μg/g) in all 24 samples of rice grains and soil under IPM and non-IPM trials. Residues were below detection level (<0.001–0.05 μg/L) in irrigation water samples (2008–09). Residues of tricyclazole and carbendazim, analyzed from same locations, revealed pesticide residues as BDL (<0.001–0.05 μg/g) in all 40 samples of Basmati rice grains and soil. It was also observed as BDL (<0.001–0.05 μg/L) for 12 water samples (2009–2010). The residues of tricyclazole, propioconazole, chlorpyrifos, hexaconazole, pretilachlor, and λ-cyhalothrin were also found as BDL (<0.001–0.05 μg/g) in 40 samples of Basmati rice grains and soil and 12 water samples (<0.001–0.05 μg/L) (2010–2011).  相似文献   

5.
The integrated pest management (IPM) modules of pesticide schedule on Basmati rice were validated at field experiments conducted in Northern India for consecutive 3 years (2005–2008). The pesticide residues were found below the detectable limit (<0.01–0.001 mg/kg) in soil and irrigation water samples of Kaithal region. In Dehra Dun region of Uttrakhand, the residues of carbendazim in rice grains and soil were detected below <0.01 mg/kg level. In second year experiments (2006–2007), only four non-IPM soil samples indicated the presence of chlorpyrifos and endosulfan in the range of ND <0.001 to 0.07 mg/kg, out of 45 samples analyzed. Carbendazim applied as seed treatment at Dehradun and Kaithal field trials was found below detectable limit in both IPM and non-IPM rice grains (<0.01 mg/kg) and irrigation water (0.01 μl/ml). Chlorpyrifos was detected in five water samples from Kaithal and one from Pant Nagar in the range of 0.003–0.006 μl/L, α- and β-isomer of endosulfan in the range of 0.005–0.03, and 0.005–0.02 μl/ml, respectively, in one sample from Pant Nagar and two from Kaithal, out of a total of 22 samples. In the region of Uttrakhand and Uttar Pradesh during 2007–2008, four non-IPM samples of soil indicated trace levels of endosulfan, out of 16 samples analyzed. The residues were detected below detection limit for carbendazim (<0.01 mg/kg) in soil samples of Dehradun IPM fields and for endosulfan and carbendazim (0.001–0.01 μl/L) in water samples each from IPM and non-IPM fields of Uttar Pradesh. The results of 3-year trials of IPM module indicated basmati rice as safe and economical with pesticide residue-free rice grains.  相似文献   

6.
Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustainability of its reuse on soil is unknown. Similarly, nothing is known of the ramifications of terminating drainage water reuse. The objective of this study is (i) to monitor the long-term impact on soil chemical properties and thereby the sustainability of drainage water reuse on a marginally productive, saline-sodic, 32.4 ha field located on the west side of California's productive San Joaquin Valley and (ii) to assess spatially what happens to soil when drainage water reuse is terminated. The monitoring and assessment were based on spatial chemical data for soil collected during 10 years of irrigation with drainage water followed by 2 years of no applied irrigation water (only rainfall). Geo-referenced measurements of apparent soil electrical conductivity (EC(a)) were used to direct the soil sampling design to characterize spatial variability of impacted soil properties. Chemical analyses of soil samples were used (i) to characterize the spatial variability of salinity, Na, B, and Mo, which were previously identified as critical to the yield and quality of Bermuda grass (Cynodon dactylon (l.) Pers.) grown for livestock consumption and (ii) to monitor their change during the 12 year study. Soil samples were taken at 0.3 m increments to a depth of 1.2 m at each of 40 sample sites on five occasions: August 1999, April 2002, November 2004, August 2009, and May 2011. Drainage water varying in salinity (1.8-16.3 dS m(-1)), SAR (5.2-52.4), Mo (80-400 μg L(-1)), and B (0.4-15.1 mg L(-1)) was applied from July 2000 to June 2009. Results indicate that salts, Na, Mo, and B were leached from the root zone causing a significant improvement in soil quality from 1999 to 2009. Salinity and SAR returned to original levels or higher in less than two years after termination of irrigation. Boron and Mo showed significant increases. Long-term sustainability of drainage water reuse was supported by the results, but once application of irrigation water was terminated, the field quickly returned to its original saline-sodic condition.  相似文献   

7.
In semi-arid areas like the Kairouan region, salinization has become an increasing concern because of the constant irrigation with saline water and over use of groundwater resources, soils, and aquifers. In this study, a methodology has been developed to evaluate groundwater contamination risk based on the unsaturated zone hydraulic properties. Two soil profiles with different ranges of salinity, one located in the north of the plain and another one in the south of plain (each 30 m deep) and both characterized by direct recharge of the aquifer, were chosen. Simulations were conducted with Hydrus-1D code using measured precipitation data for the period 1998–2003 and calculated evapotranspiration for both chosen profiles. Four combinations of initial conditions of water content and salt concentration were used for the simulation process in order to find the best match between simulated and measured values. The success of the calibration of Hydrus-1D allowed the investigation of some scenarios in order to assess the contamination risk under different natural conditions. The aquifer risk contamination is related to the natural conditions where it increased while facing climate change and temperature increase and decreased in the presence of a clay layer. Hydrus-1D was a useful tool to predict the groundwater level and quality in the case of a direct recharge and in the absence of any information related to the soil layers except for the texture.  相似文献   

8.
Monitoring programs in the agriculturally intense San Joaquin River Valley of California have periodically found organophosphate (OP) insecticide concentrations, predominantly chlorpyrifos, diazinon and methidathion, at levels high enough to cause mortality for the aquatic invertebrate Ceriodaphnia dubia. These detections are likely the result of off-site movement from treated fields. However, the relative significance and magnitude of off-site transport pathways cannot be readily deduced from monitoring data alone. Therefore, a comprehensive modeling system has been constructed to estimate temporal and spatial pesticide source magnitudes and to follow the pesticide dissipation pathways once in surface water. The USEPA models HSPF and PRZM3 were used for the hydrology and non-point source predictions, respectively. Spray drift was accounted for using the mechanistic model AgDrift. The Orestimba Creek Watershed in the San Joaquin Valley was characterized and used as a typical watershed for this region. Representative transport pathways were ranked and quantified, and numerical implementation of best management practices (BMPs) determined which practice may have the highest likelihood for reducing pesticide loadings. Approximately 85% of the predicted chlorpyrifos mass detected between May 1, 1996, and April 30, 1997 resulted from drift, with the largest contributions coming from walnut orchards immediately adjacent to Orestimba Creek. Various simulated drift mitigation measures suggest chlorpyrifos mass loadings can be decreased by over 90% depending upon the type of mitigation chosen. Imposed drift BMPs should be effective in reducing chlorpyrifos levels found in surface waters of the San Joaquin valley if the Orestimba creek watershed is considered representative of watersheds found in this area of California.  相似文献   

9.
Vegetated ditches as a management practice in irrigated alfalfa   总被引:5,自引:0,他引:5  
The organophosphate (OP) insecticides diazinon and chlorpyrifos have been frequently detected in the San Joaquin River, California, USA. Irrigation tail waters are a significant source of OP pesticides in the watershed. This study tested several management practices for reducing offsite movement of chlorpyrifos to surface water from flood irrigated alfalfa. Management practices evaluated include (1) a constructed, vegetated irrigation tailwater return ditch and (2) increased lag time between chlorpyrifos application and start of flood irrigation. Chlorpyrifos concentrations in whole-water samples of irrigation runoff were variable and ranged from 0.22 mug/l to a maximum of 1.67 mug/l. The median concentration reduction at the end of a 200 m vegetated ditch was 38% compared to 1% in an adjacent conventional tail water ditch. Runoff data collected represented first flush runoff from sets that were irrigated between 48 and 144 h after chlorpyrifos application. There was no consistent effect of irrigation lag time on chlorpyrifos concentration in tailwater for lag times of up to 144 h. Consequently these data indicate that delayed irrigation is not an effective management practice for reducing chlorpyrifos off-site movement to surface water in California flood irrigated alfalfa.  相似文献   

10.
In the peri-urban areas of central India, sewage water is a valuable resource for agricultural production. In this study, impact of domestic sewage water irrigation for 5 years on Vertisol with no previous history of sewage irrigation was investigated in an ongoing field experiment at Bhopal (India) under subtropical monsoon type climate. The wheat (Triticum aestivum) crop was grown during post-rainy winter season with 30 cm of irrigation (groundwater or sewage water) and four nutrient treatments (T1, 0; T2, 100%; T3, 50%; and T4, 50% of general recommended doses of NPK + FYM at 10 Mg/ha). Results showed that sewage irrigation of about 150 cm over a period of 5 years resulted significant increases in salinity as well as available fractions of N, P, K, and micronutrients, viz., Zn, Fe, and Mn in soils. Carbon and phosphorus applied through sewage water were accumulated more in subsoil layer compared to topmost plough layer. Soil microbiological activity, as indicated by soil respiration, microbial biomass C, as well as dehydrogenase enzyme activity was higher in sewage water-irrigated soils. There was also significant increase in fungal and actinomycetes as well as total coliform population in such soils. Nutrients supplied through sewage water were not able to raise the productivity of wheat to the level that obtained through fertilizers at the recommended level which indicated that additional nutrients through fertilizers are required to obtain higher productivity of wheat under sewage farming. Protein and Zn content in wheat grains were more when the crop was grown with sewage irrigation. Overall results show that except for increase in coliform population, short duration (5 years) of municipal sewage water irrigation did not have any appreciable harmful effect on soil quality as well as crop productivity; rather, it proved beneficial in improving soil fertility, wheat productivity, and produce quality.  相似文献   

11.
Pesticides are applied to agricultural fields to control unwanted pests but can volatilize and be transported downwind by wind currents to create the potential for non-target organism exposure. Volatilization rates change through the growing season due to pesticide application timing, meteorological differences, and the differential flux rates from soil and vegetation matrices. Field studies quantifying pesticide volatility are expensive and cannot capture the semi-infinite parameter combinations of soil, crop, management, and meteorological conditions encountered under regional agronomic practices. A numerical approach was used to simulate pesticide dissipation above- and belowground to augment field and laboratory experimental observations. Above- and belowground physics are coupled into a single numerical tool using the COMSOL Multiphysics® software package with the current emphasis on pesticide volatility into air from soil and vegetation and resulting near field neighboring air concentrations. Comparison of simulation results against experimental observations for an insecticide (chlorpyrifos) applied to potato and alfalfa fields shows good agreement (R2 0.68–0.98). Chlorpyrifos volatility from plant surfaces drives the overall volatility within the first several days post application. The maximum volatility flux rate simulated and observed were 0.79 and 0.66 μg m?2 s?1 for the alfalfa trial and 2.72 and 2.17 μg m?2 s?1 for the potato field, respectively. This coupled multiphysics tool [computational fluid dynamics (CFD), mass transfer coefficients, and variably saturated flow in soil] can be used to estimate volatility flux rates of pesticides when little or no prior knowledge is available and for extrapolating field study observations to different and diverse scenarios.  相似文献   

12.
In order to evaluate the impact of intensive horticulture on the water resources of the Fucino Plain, one of the most important agricultural settlements of Central Italy, the mobility and persistence in the soil of five commonly used pesticides was investigated by means of multi-lysimeter experiments. The fate of simazine, carbaryl, dicloran, linuron and procymidone was evaluated in the laboratory under experimental conditions simulating as closely as possible both pesticide application and irrigation practices required by the local crops. An efficient extraction procedure followed by chromatographic analysis, allowing the simultaneous determination of the applied chemicals, was used to monitor the pesticide residues in the soil columns as a function of time from application and depth. The experiment, carried out for about 60 days, revealed that soil contamination apparently involves only the surface layer since none of the investigated pesticides was detected at depths greater than 20-30 cm. However, the five pollutants exhibit a quite different behaviour that can be related to their physico-chemical properties.  相似文献   

13.
The study area Jaipur, the capital of Rajasthan, is one of the famous metropolises in India. In order to know the suitability of groundwater for domestic and irrigation purposes in Jaipur City, groundwater samples were composed of 15 stations during post-monsoon time of the year 2007–2008 (Nov 2007 to Feb 2008) and were analyzed for physicochemical characters. The physicochemical parameters of groundwater participate a significant role in classifying and assessing water quality. A preliminary characterization, carried out using the piper diagram, shows the different hydrochemistry of the sampled groundwater. This diagram shows that most of the groundwater samples fall in the field of calcium-magnesium-chloride-sulfate type (such water has permanent hardness) of water. Data are plotted on the US Salinity Laboratory diagram, which illustrates that most of the groundwater samples fall in the field of C2S1 and C3S1, which can be used for irrigation on almost all type of soil with little danger of exchangeable sodium. Based on the analytical results, chemical indices like %Na, SAR, and RSC were calculated which show that most of the samples are good for irrigation.  相似文献   

14.
Agriculture can be a major nonpoint source (NPS) of nutrient and pesticide contamination in the environment. Available databases do not provide accurate and dynamic data on fertilizer and pesticide application, which limits the ability of complex watershed models to simulate contaminant loads into impaired water bodies. A model for estimating agricultural nutrient and pesticide input for watershed modeling has been developed. Climate, soils, and major agricultural operations are considered within the model, so that it can be adapted to any watershed or subregion within a watershed. The timing of the agricultural operations is a function of the weather data, providing realistic results at daily, monthly, or annual application rates. The model also predicts irrigation demand and biomass production, which can be used to calibrate the model. Model output can be used in any watershed model that considers agricultural land uses. Two case studies were evaluated, using grape vineyards in the Napa River and strawberry production in Newport Bay as examples. The predicted time to maturity corresponded well with actual data. Irrigation and fertilizer needs were very sensitive to weather input. Although the model can generate weather from long-term averages, the simulated results are best when at least observed precipitation and temperature are provided, to capture extreme events. The model has data for 98 crops and 126 pesticides, based on the California Department of Pesticide Regulation database. The databases are easily modifiable by the user to adapt them to local conditions. The output from AgInput is much needed for watershed modeling and for development of total maximum daily loads (TMDLs), based on realistic targets of irrigation, nutrient, and pesticide inputs. The model is available for free download at .  相似文献   

15.
污灌区重金属污染对土壤的危害   总被引:38,自引:0,他引:38  
由于土壤中重金属元素的含量对人体健康影响很大,淮阴市环境监测中心站于1993年至1997年造反某污灌区中0.667hm^2的蔬菜田及其邻近的某一地下水灌区中0.667hm^2的蔬菜田按梅花布点法分别布设8个测点,对其土壤中的总镉、总汞、总砷、总铬和总锅进行监测。结果表明,地下水藻区5年来综合污染指数变化不大,污染等级属安全级,说明该灌区没有受到重金属污染,而污灌区的综合污染指数逐年增高,1995年  相似文献   

16.
The Salt Lake Specially Protected Area is a unique ecosystem for both agricultural activities and natural life in Turkey. In the present study, an attempt was made to develop a conceptual land use strategy and methodology, taking into account ecological factors for regional development in the Salt Lake Specially Protected Area. A detailed Geographic Information System (GIS) analysis was done to create a comprehensive database including land use, land suitability, and environmental factors (soil, climate, water quality, fertilizing status, and heavy metal and pesticide pollution). The results of the land suitability survey for agricultural use showed that, while 62.6% of the study area soils were classified as best and relatively good, about 15% were classified as problematic and restricted lands, only 22.2% of the study area soils were not suitable for agricultural uses. However, this is not enough to derive maximum benefit with minimum degradation. Therefore, environmental factors and ecological conditions were combined to support this aim and to protect the ecosystem. Excessive irrigation practices, fertilizer and pesticide application, and incorrect management practices all accelerate salinization and degradation. In addition to this, it was found that a multi-layer GIS analysis made it easy to develop a framework for optimum land use and could increase the production yield preserving the environmental conditions. Finally, alternative management and crop patterns were undertaken to sustain this unique ecosystem, considering water, soil, climate, land use characteristics, and to provide guidance for planners or decision makers.  相似文献   

17.
We developed a coupled water–oil simulation model to simulate the migration and transformation of petroleum-derived contaminants in the soil of the Xifeng oil field. To do so, we used the HYDRUS-2D model, which simulates the diffusion, adsorption or desorption, and microbial degradation of petroleum-derived hydrocarbons in the soil–water system. The saturated soil hydraulic conductivity of petroleum-derived pollutants was 0.05 cm?day?1, which is about 1 to 2 % of the soil moisture permeability coefficient. Our numerical simulation results show that spilled crude oil was mainly concentrated in the surface horizons of the soil. The organic pollutant concentration tended to be highest nearest to the pollution source. The pollutant migration was generally concentrated within the top 20 to 30 cm of the soil, with the maximum concentration in the top 5 cm of the soil. With passing time, the pollutant accumulation increased and the adsorption and degradation functions reached a dynamic balance with the input rate at depths greater than 30 cm below the soil surface. The oil-derived pollutants totaled 50 to 100 mg?kg?1 under the dynamic balance condition, which occurred after 20 to 30 years. The petroleum-derived pollutant concentration in the loess soil was inversely correlated with the horizontal distance from the oil well, and the concentration decreased greatly at a distance greater than 40 m from the well.  相似文献   

18.
A model of pesticide transport through the soil profile based on clearance and fugacity paradigms is presented, and an example of its application in a GIS environment is shown. A validation of the model at the field plot scale is presented using data obtained at a crop in a semiarid irrigated agricultural basin which was treated with Lindane. The adequacy at the regional scale is tested by inspection of the model predictions and the measured concentrations of the pesticide obtained from a regional phreatimetric net. The clearance concept is used to obtain estimates of the volumes of some environmental phases. These are further used to solve the equations of thermodynamic equilibrium at equal fugacity and obtain concentration estimates. The model closely reproduces the observed percolation trends, and is consistent with the regional pattern of Lindane distribution in groundwater. An application of the model as unitary module for the simulation of non‐point pesticide sources in a raster GIS frame is shown. Its performance (run time, data needed, etc.) is comparable to that of other existing algorithms, and presents some advantages to planners and evaluators of environmental quality in that it incorporates an explicit 2‐D approach and allows the identification of polluted areas downslope with respect to those directly treated with the pesticides. Further, it can be implemented in a variety of GIS and spatial data processors.  相似文献   

19.
An empirical approach to profiling areas of ground water contamination by pesticides was devised that did not rely upon determining the level of vulnerability between land areas and that did not assume any particular pathway for ground water contamination. Climatic and soil data were obtained for 1-square mile sections of land in California where pesticide residues had been found in well water samples and the detection was attributed to legal agricultural applications. These sections were designated as known contaminated (KC) sections. Climate and soil data were also obtained for sections which lacked either well sampling data or a positive pesticide detection. These sections were designated as candidate sections. Statistical procedures were used to cluster groups of KC sections first with respect to climate characteristics and then with respect to soil characteristics. Principal components analysis (PCA) was used to construct a statistical profile of soil variables for each cluster of KC sections. A method based on the PCA was developed to compare the similarity of soil profiles derived for each KC section cluster to individual candidate sections. Since the profiling scheme was based only on data from KC sections, candidate sections that did not match any KC cluster profile could only be considered dissimilar to contaminated sections, receiving a status of not-classified. This profiling method is flexible and it can be revised to incorporate updated well sampling information.  相似文献   

20.
Enormous quantity of water is used for coal beneficiation and accordingly huge amount of effluents are being generated. In this study an attempt was made to evaluate the potential of this effluent water for irrigation. Water samples were collected from three different points (a) feeding point, (b) thickening point, and (c) outlet point of coal washery, and from Damodar River for monitoring the water quality. The samples were analyzed for various parameters and compared with prescribed standard, which revealed that the total suspended solids of thickening point and Damodar River were higher. A pot experiment with maize was conducted to study the suitability of this coal washery water for irrigation. Pots were irrigated with water from the three points of washery and Damodar River in two concentrations (100% and 50% dilution with distilled water); pure distilled water was used for control. There was 100% germination in all the treatments. The plant growth, chlorophyll content and soil quality parameters were significantly better in washery and Damodar River water treated pots. The Damodar River water and washery water from feeding and outlet point could be successfully used for irrigation. In general mixing with good quality water has shown better results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号