首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.
《Ecological modelling》2005,188(1):30-40
Although the ecological risks of toxic chemicals are usually assessed on the basis of individual responses, such as survival, reproduction or growth, ecotoxicologists are now attempting to assess the impact of environmental pollution on the dynamics of naturally exposed populations. The main issue is how to infer the likely impact on the population of the toxic effects observed at the individual level. Dynamic energy budget in toxicology (DEBtox) is the most user-friendly software currently available to analyze the experimental data obtained in toxicity tests performed on individuals. Because toxic effects are diverse and because the sensitivity of individuals varies considerably depending on life-cycle stage, Leslie models offer a convenient way of predicting toxicant effects on population dynamics.In the present study, we first show how parameter inputs, estimated from individual data using DEBtox, can be coupled using a Leslie matrix population model. Then, using experimental data obtained with Chironomus riparius, we show how the effects of a pesticide (methiocarb) on the population growth rate of a laboratory population can be estimated. Lastly, we perform a complex sensitivity analysis to pinpoint critical age classes within the population for the purposes of the field management of populations.  相似文献   

2.
Baltic sprat (Sprattus sprattus balticus S.) is a key species in the pelagic ecosystem of the Baltic Sea. Most stocks of small pelagic species are characterized by natural, fishery-independent fluctuations, which make it difficult to predict stock development. Baltic sprat recruitment is highly variable, which can partly be related to climate-driven variability in hydrographic conditions. Results from experimental studies and field observations demonstrate that a number of important life history traits of sprat are affected by temperature, especially the survival and growth of early life stages. Projected climate-driven warming may impact important processes affecting various life stages of sprat, from survival and development during the egg and larval phases to the reproductive output of adults. This study presents a stage-based matrix model approach to simulate sprat population dynamics in relation to different climate change scenarios. Data obtained from experimental studies and field observations were used to estimate and incorporate stage-specific growth and survival rates into the model. Model-based estimates of population growth rate were affected most by changes in the transition probability of the feeding larval stage at all temperatures (+0, +2, +4, +6?°C). The maximum increase in population growth rate was expected when ambient temperature was elevated by 4?°C. Coupling our stage-based model and more complex, biophysical individual-based models may reveal the processes driving these expected climate-driven changes in Baltic Sea sprat population dynamics.  相似文献   

3.
The cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is one of the most serious crop pests in northern China, calling for accurate prediction of pest outbreaks and strategies for pest control. A computer model is developed to simulate the population dynamics of H. armigera over a wide area in northern China. The area considered covers 12 provinces where serious outbreaks of H. armigera have been observed. In this model, pest development is driven by local ambient temperature, and adults migrate long distances between regions and select preferred hosts for oviposition within a region. Six types of host including cotton, wheat, corn, peanut, soybean and a single category composed of all other minor hosts are considered in this model. Survival rates of eggs and larvae are based on life-table data, and simulated as a function of host type, host phenology and temperature. The incidence of diapause depends on temperature and photoperiod experienced during the larval stage. Survival rate of non-diapause pupae is a nonlinear function of rainfall, and overwinter survival rate is a nonlinear function of temperature. Insecticide is applied when population density exceeds the economic threshold on a host crop within a region. Comparisons of model output with light-trap data indicate that our model reflects the pest population dynamics over a wide area, and could potentially be used for testing novel pest control strategies in northern China.  相似文献   

4.
Rydgren K  Økland RH  Picó FX  de Kroon H 《Ecology》2007,88(9):2320-2329
Bryophytes have increased in abundance in northern regions, and climate changes have been proposed to account for this change. However, changes in the population dynamics of microtine rodents may also contribute to changes in bryophyte abundance. New evidence indicates a tendency for microtine rodent population oscillations to change from periodicity of 3-5 years to become irregular or acyclic. The impact on ecosystem functioning is potentially great. We study the impact of variation in microtine rodent population characteristics, such as cycle length and amplitude, on the population dynamics of the boreal, clonal moss Hylocomium splendens. We use experimental and observational demographic data to construct 127 scenarios representing all combinations of disturbance type (gap formation and/or clipping), period (cyclic with 4, 6, 12, or 24 years between rodent peaks; or acyclic with constant or stochastically varying annual disturbance severity) and disturbance severity (fraction of individuals affected by disturbance in each year relative to the maximum disturbance carried out in the field experiment; seven levels). Population data collected in the field during 13 years were used as a baseline scenario. By subjecting all scenarios to stochastic matrix modeling, we demonstrate considerable impact of microtine rodent on the population dynamics of H. splendens, most notably when rodent populations fluctuate with short periods and high peak disturbance severities. Under the same average disturbance severity, H. splendens population growth rates are highest in acyclic scenarios and are progressively reduced with increasing peak disturbance severities (i.e., with increasing period). Stochastic elasticity analyses show that in less variable environments mature segment survival contributes more to the population growth rate, while in more variable environments the regeneration pathway (branching of older parts of the plant) plays a stronger role, inevitably leading to lower population fitness. Our results support the hypothesis that breakdown of cyclic rodent population dynamics accentuates increase in the abundance of H. splendens and other large bryophytes in boreal forests in Norway, observed empirically in recent years and primarily ascribed to climatic change.  相似文献   

5.
One of the mechanisms by which honeybees regulate division of labour among their colony members is age polyethism. Here the younger bees perform in-hive tasks such as heating and the older ones carry out tasks outside the hive such as foraging. Recently it has been shown that the higher developmental temperatures of the brood, which occur in the centre of the brood nest, reduce the age at which individuals start to forage once they are adult. It is unknown whether this effect has an impact on the survival of the colony. The aim of this paper is to study the consequences of the temperature gradient on the colony survival in a model on the basis of empirical data.We created a deterministic simulation of a honeybee colony (Apis mellifera) which we tuned to our empirical data. In the model in-hive bees regulate the temperature of the brood nest by their heating activities. These temperatures determine the age of first foraging in the newly emerging bees and thus the number of in-hive bees present in the colony. The results of the model show that variation in the onset of foraging due to the different developmental temperatures has little impact on the population dynamics and on the absolute number of bees heating the nest unless we increase this effect by several times to unrealistic values, where individuals start foraging up to 10 days earlier or later. Rather than on variation in the onset of foraging due to the temperature gradient it appears that the survival of the colony depends on a minimal number of bees available for heating at the beginning of the simulation.  相似文献   

6.
The global ocean and atmosphere are warming. There is increasing evidence suggesting that, in addition to other environmental factors, climate change is affecting species distributions and local population dynamics. Additionally, as a consequence of the growing levels of atmospheric carbon dioxide (CO2), the oceans are taking up increasing amounts of this CO2, causing ocean pH to decrease (ocean acidification). The relative impacts of ocean acidification on population dynamics have yet to be investigated, despite many studies indicating that there will be at least a sublethal impact on many marine organisms, particularly key calcifying organisms. Using empirical data, we forced a barnacle (Semibalanus balanoides) population model to investigate the relative influence of sea surface temperature (SST) and ocean acidification on a population nearing the southern limit of its geographic distribution. Hindcast models were compared to observational data from Cellar Beach (southwestern United Kingdom). Results indicate that a declining pH trend (-0.0017 unit/yr), indicative of ocean acidification over the past 50 years, does not cause an observable impact on the population abundance relative to changes caused by fluctuations in temperature. Below the critical temperature (here T(crit) = 13.1 degrees C), pH has a more significant affect on population dynamics at this southern range edge. However, above this value, SST has the overriding influence. At lower SST, a decrease in pH (according to the National Bureau of Standards, pHNBs) from 8.2 to 7.8 can significantly decrease the population abundance. The lethal impacts of ocean acidification observed in experiments on early life stages reduce cumulative survival by approximately 25%, which again will significantly alter the population level at this southern limit. Furthermore, forecast predictions from this model suggest that combined acidification and warming cause this local population to die out 10 years earlier than would occur if there was only global warming and no concomitant decrease in pH.  相似文献   

7.
A simulation model was developed to investigate the relative effects of temperature, oxygen concentration, substrate content and competition by autochthonous microbial community on the oscillatory behaviour and survival of Escherichia coli O157:H7 in manure and manure-amended soil. The overall decline in E. coli O157:H7 was primarily determined by competition with autochthonous copiotrophic bacteria simulated by an inter-specific competition term according to Lotka-Volterra. Oscillations of bacterial populations were attained by the relationships between relative growth and death rates with readily available substrate content. The model contains a logistic and exponential relation of relative growth and death rates, respectively, of E. coli O157:H7 and copiotrophic bacteria with temperature, resulting in optimum curves for net growth rates similar to the curves reported in the literature. The model has been both calibrated and validated on experimental data. The model was used to perform sensitivity analysis and to evaluate different manure and soil management scenarios in terms of survival of E. coli O157:H7. The relative effects of changes in temperature on simulated survival time of E. coli O157:H7 were more pronounced than changes in oxygen condition. Testing manure storage scenarios with realistic data revealed that manure stored in a heap that was turned every week resulted in almost 70% reduction of E. coli O157:H7 survival compared to unturned manure. At the surface of a heap with unturned manure, simulated survival time was the longest (2.4 times longer than inside the same heap). The simulation model provides a new approach to investigating dynamic changes of invasive microorganisms in natural substrates such as manure or manure-amended soil.  相似文献   

8.
Two types of demographic analyses, perturbation analysis and uncertainty analysis, can be conducted to gain insights about matrix population models and guide population management. Perturbation analysis studies how the perturbation of demographic parameters (survival, growth, and reproduction parameters) may affect the population projection, while uncertainty analysis evaluates how much uncertainty there is in population dynamic predictions and where the uncertainty comes from. Previously, both perturbation analysis and uncertainty analysis were conducted on the long-term population growth rate. However, the population may not reach its equilibrium state, especially when there is management by harvesting or hunting. Recently, there has been an increased interest in short-term transient dynamics, which can differ from asymptotic long-term dynamics. There are currently techniques to conduct perturbation analyses of short-term transient dynamics, but no techniques have been proposed for uncertainty analysis of such dynamics. In this study, we introduced an uncertainty analysis technique, the general Fourier Amplitude Sensitivity Test (FAST), to study uncertainties in transient population dynamics. The general FAST is able to identify the amount of uncertainty in transient dynamics and contributions by different demographic parameters. We applied the general FAST to a mountain goat (Oreamnos americanus) matrix population model to give a clear illustration of how uncertainty analysis can be conducted for transient dynamics arising from matrix population models.  相似文献   

9.
In population modeling, a considerable level of complexity is often required to provide trustworthy results, comparable with field observations. By assuring sufficient detail at the individual level while preserving the potential to explore the consequences at higher levels, individual-based modeling may thus provide a useful tool to investigate dynamics at different levels of organization. Still, population dynamics resulting from such models are often at odds with observations from the field. This may be partly caused by a lack of focus on the individual dynamics under conditions of food stress and starvation. I developed a physiologically structured, individual-based simulation model to investigate life history of Daphnia and its effect on population dynamics in response to the productivity of the system. In verifying model behavior with available literature data on life history and physiology, I paid special attention to the dynamics of food intake and the verification of individual level results under conditions of food limitation and starvation. I show that the maximum filtering rates under low food levels used in the current model are much closer to measured filtering rates than the ones used in other models. Being consistent with results on physiology and life history from experiments at a wide range of food availability (including starvation), the model generates low amplitude or high amplitude population density cycles depending on the productivity of the system, as observed in field and experimental populations of Daphnia and with the minimum population densities being one to two orders of magnitude lower in the high amplitude than in the low amplitude cycles. To generate results which are not only qualitatively but also quantitatively comparable to experimental and field observations, however, a crowding effect on the filtering response has to be incorporated in the model.  相似文献   

10.
A Habitat-Based Metapopulation Model of the California Gnatcatcher   总被引:5,自引:0,他引:5  
We present an analysis of the metapopulation dynamics of the federally threatened coastal California Gnatcatcher (Polioptila c. californica) for an approximately 850 km2 region of Orange County, California. We developed and validated a habitat suitability model for this species using data on topography, vegetation, and locations of gnatcatcher pair observations. Using this habitat model, we calculated the spatial structure of the metapopulation, including size and location of habitat patches and the distances among them. We used data based on field studies to estimate parameters such as survival, fecundity, dispersal, and catastrophes, and combined these parameters with the spatial structure to build a stage-structured, stochastic, spatially-explicit metapopulation model. The model predicted a fast decline and high risk of population extinction with most combinations of parameters. Results were most sensitive to density-dependent effects, the probability of weather-related catastrophes, adult survival, and adult fecundity. Based on data used in the model, the greatest difference in results was given when the simulation's time horizon was only a few decades, suggesting that modeling based on longer or shorter time horizons may underestimate the effects of alternative management actions.  相似文献   

11.
One of the challenges to quantifying the costs and benefits of symbiosis is that symbionts can influence different components of host fitness. To improve understanding of the ecology of inherited symbionts, we developed general theory for a perennial host-hereditary symbiont interaction, in which symbionts can have independent and potentially opposing effects on host regeneration and survival. The model showed that negative effects on one component of fitness may be outweighed by positive effects on another, leading to a net positive impact of symbiosis on population growth. Model predictions depended on the availability of suitable patches, which influenced the relative contributions of survival vs. regeneration to host fitness. We then used experimental symbiont removal to quantify effects of a hereditary, fungal endophyte on a grass host. Endophyte presence strongly reduced host survival but increased regeneration. Application of the model revealed that negative effects on plant survival were overwhelmed by beneficial effects on regeneration, resulting in stable endophyte persistence at 100% frequency, consistent with field observations. Our work demonstrates the utility of a demographic perspective for predicting the dynamics of symbioses and supports the hypothesis that symbionts function as mutualists when host and symbiont fitness are coupled through vertical transmission.  相似文献   

12.
Amphibian populations have been declining worldwide for the last three decades. Determining the risk of extinction is one of the major goals of amphibian conservation, yet few quantitative models have been developed for amphibian populations. Like most rare or threatened populations, there is a paucity of life history data available for most amphibian populations. Data on the critical juvenile life stage are particularly lacking. Pattern oriented modeling (POM) has been used successfully to estimate life history parameters indirectly when critical data lacking, but has not been applied to amphibian populations. We describe a spatially explicit, individual-based, stochastic simulation model developed to project population dynamics of pond-breeding amphibian populations. We parameterized the model with life history and habitat data collected for the endangered Houston toad (Bufohoustonensis), a species for which there is a high degree of uncertainty for juvenile and adult male survival. During model evaluation, we focused on explicitly reducing this uncertainty, evaluating 16 different versions of the model that represented the range of parametric uncertainty for juvenile and adult male survival. Following POM protocol, we compared simulation results to four population-level patterns observed in the field: population size, adult sex ratio, proportion of toads returning to their natal pond, and mean maximum distance moved. Based on these comparisons, we rejected 11 of the 16 model versions. Results of the remaining versions confirmed that population persistence depends heavily on juvenile survival, and further suggested that probability of juvenile survival is likely between 0.0075 and 0.015 (previous estimates ranged from 0.003 to 0.02), and that annual male survival is near 0.15 (previous estimates ranged up to 0.43).  相似文献   

13.
Enchytraeids are regarded as keystone soil organisms in forest ecosystems. Their abundance and biomass fluctuate widely. Predicting the consequences of anthropogenic disturbances requires an understanding of the mechanisms underlying enchytraeid population dynamics. Here I develop a simple model, which predicts that the type of dynamics is controlled by resource input rate. If fungal resource input is a discrete event once a year, an exponential growth phase is followed by starvation and sharp decline of enchytraeid abundance. Model simulations with three different forcing functions were compared to field data. Initial parameter values were obtained from various independent sources, and parameters were estimated by minimizing the residual sum of squares. The best fitting model with resource addition once a year explained 39% of the variation in enchytraeid biomass over an 8-year study period. Further, variation in rainfall explained 59% of the variation in R2 of the exponential phase models, which is also an index of the stability of population size-structure. The results emphasize the importance of resource limitation for enchytraeid population dynamics and support the hypothesis that the mortality during the decline phase is size-dependent.  相似文献   

14.
This study aims to provide a quantitative framework to model the dynamics of Mediterranean coniferous forests by integrating existing ecological data within a generic mathematical simulator. We developed an individual-based vegetation dynamics model, constrained on long-term field regeneration data, analyses of tree-rings and seed germination experiments. The simulator implements an asymmetric competition algorithm which is based on the location and size of each individual. Growth is parameterized through the analysis of tree-rings from more than thirty individuals of each of the three species of interest. A super-individual approach is implemented to simulate regeneration dynamics, constrained with available regeneration data across time-since-disturbance and light-availability gradients. The study concerns an insular population of an endemic to Greece Mediterranean fir (Abies cephalonica Loudon) on the island of Cephalonia (Ionian Sea) and two interacting populations of a Mediterranean pine (Pinus brutia Ten.) and a more temperate-oriented pine (Pinus nigra Arn. ssp. pallasiana) on the island of Lesbos (NE Aegean Sea), Greece. The model was validated against plot-level observations in terms of species standing biomass and regeneration vigour and adequately captured regeneration patterns and overall vegetation dynamics in both study sites. The potential effects of changing climatic patterns on the regeneration dynamics of the three species of interest were subsequently explored. With the assumption that a warmer future would probably cause changes in the duration of cold days, we tested how this change would affect the overall dynamics of the study sites, by focusing on the process of cold stratification upon seed germination. Following scenarios of a warmer future and under the current model parameterization, changes in the overall regeneration vigour controlled by a reduction in the amount of cold days, did not alter the overall dynamics in all plant populations studied. No changes were identified in the relative dominance of the interacting pine populations on Lesbos, while the observed reduction in the amount of emerging seedlings of A. cephalonica on Cephalonia did not affect biomass yield at later stages of stand development.  相似文献   

15.
《Ecological modelling》2005,181(2-3):203-213
Assessment of population dynamics is central to population dynamics and conservation. In structured populations, matrix population models based on demographic data have been widely used to assess such dynamics. Although highlighted in several studies, the influence of heterogeneity among individuals in demographic parameters and of the possible correlation among these parameters has usually been ignored, mostly because of difficulties in estimating such individual-specific parameters. In the kittiwake (Rissa tridactyla), a long-lived seabird species, differences in survival and breeding probabilities among individual birds are well documented. Several approaches have been used in the animal ecology literature to establish the association between survival and breeding rates. However, most are based on observed heterogeneity between groups of individuals, an approach that seldom accounts for individual heterogeneity. Few attempts have been made to build models permitting estimation of the correlation between vital rates. For example, survival and breeding probability of individual birds were jointly modelled using logistic random effects models by [Cam, E., Link, W.A., Cooch, E.G., Monnat, J., Danchin, E., 2002. Individual covariation in life-history traits: seeing the trees despite the forest. Am. Naturalist, 159, in press]. This is the only example in wildlife animal populations we are aware of. Here we adopt the survival analysis approaches from epidemiology. We model the survival and the breeding probability jointly using a normally distributed random effect (frailty). Conditionally on this random effect, the survival time is modelled assuming a lognormal distribution, and breeding is modelled with a logistic model. Since the deaths are observed in year-intervals, we also take into account that the data are interval censored. The joint model is estimated using classic frequentist methods and also MCMC techniques in Winbugs. The association between survival and breeding attempt is quantified using the standard deviation of the random frailty parameters. We apply our joint model on a large data set of 862 birds, that was followed from 1984 to 1995 in Brittany (France). Survival is positively correlated with breeding indicating that birds with greater inclination to breed also had higher survival.  相似文献   

16.
The conservation of wildlife requires management based on quantitative evidence, and especially for large carnivores, unraveling cause‐specific mortalities and understanding their impact on population dynamics is crucial. Acquiring this knowledge is challenging because it is difficult to obtain robust long‐term data sets on endangered populations and, usually, data are collected through diverse sampling strategies. Integrated population models (IPMs) offer a way to integrate data generated through different processes. However, IPMs are female‐based models that cannot account for mate availability, and this feature limits their applicability to monogamous species only. We extended classical IPMs to a two‐sex framework that allows investigation of population dynamics and quantification of cause‐specific mortality rates in nonmonogamous species. We illustrated our approach by simultaneously modeling different types of data from a reintroduced, unhunted brown bear (Ursus arctos) population living in an area with a dense human population. In a population mainly driven by adult survival, we estimated that on average 11% of cubs and 61% of adults died from human‐related causes. Although the population is currently not at risk, adult survival and thus population dynamics are driven by anthropogenic mortality. Given the recent increase of human‐bear conflicts in the area, removal of individuals for management purposes and through poaching may increase, reversing the positive population growth rate. Our approach can be generalized to other species affected by cause‐specific mortality and will be useful to inform conservation decisions for other nonmonogamous species, such as most large carnivores, for which data are scarce and diverse and thus data integration is highly desirable.  相似文献   

17.
Cyclic population dynamics of forest insects with periods of more than two generations have been discussed in relation to a variety of extrinsic and intrinsic forces. In the present study, we employed the selection pressure of density dependent competitive interactions according to Witting's equations (Witting, 2000) as driver for a discrete spatiotemporal model of the green oak leaf roller (Tortrix viridana). The model was successfully parameterised to rebuild the cyclic population dynamics of an empirical data set of a 30-year leaf roller monitoring in Russia. Our analysis focussed on the role of herbivore mortality and host plant food quality, which have a significant effect on T. viridana population dynamics. An additional egg or larvae mortality lowers population density and can lead to selection pressures that favour individuals with higher growth rate. This increased population growth rate can not only compensate the additional mortality, but also can lead to higher average moth abundances in subsequent generations. Furthermore, we analysed the effect of inter- and intraspecific variation in host plant quality on herbivore population dynamics and the spatial distribution of abundance and defoliation patterns. We found significant effects of the qualitative composition of a trees neighbourhood on the herbivore population of the respective tree. Also, the patchy damage patterns observable in reality have been reproduced by the present model. The applicability of the model approach and the putative genetic processes underlying Witting's model are discussed.  相似文献   

18.
The survival of many species in human-dominated, fragmented landscapes depends on metapopulation dynamics, i.e., on a dynamic equilibrium of extinctions and colonizations in patches of suitable habitat. To understand and predict distributional changes, knowledge of these dynamics can be essential, and for this, metapopulation studies are preferably based on long-time-series data from many sites. Alas, such data are very scarce. An alternative is to use opportunistic data (i.e., collected without applying standardized field methods), but these data suffer from large variations in field methods and search intensity between sites and years. Dynamic site-occupancy models offer a general approach to adjust for variable survey effort. These models extend classical metapopulation models to account for imperfect detection of species and yield estimates of the probabilities of occupancy, colonization, and survival of species at sites. By accounting for detection, they fully correct for among-year variability in search effort. As an illustration, we fitted a dynamic site-occupancy model to 60 years of presence-absence data (more precisely, detection-nondetection) of the heathland butterfly Hipparchia semele in The Netherlands. Detection records were obtained from a database containing volunteer-based data from 1950-2009, and nondetection records were deduced from database records of other butterfly species. Our model revealed that metapopulation dynamics of Hipparchia had changed decades before the species' distribution began to contract. Colonization probability had already started to decline from 1950 onward, but this was counterbalanced by an increase in the survival of existing populations, the result of which was a stable distribution. Only from 1990 onward was survival not sufficient to compensate for the further decrease of colonization, and occupancy started to decline. Hence, it appears that factors acting many decades ago triggered a change in the metapopulation dynamics of this species, which ultimately led to a severe decline in occupancy that only became apparent much later. Our study emphasizes the importance of knowledge of changes in survival and colonization of species in modern landscapes over a very long time scale. It also demonstrates the power of site-occupancy modeling to obtain important population dynamics information from databases containing opportunistic sighting records.  相似文献   

19.
The impact of anthropogenic disturbance on wildlife is increasing becoming a source of concern as the popularity of outdoor recreation rises. There is now more pressure on site managers to simultaneously ensure the continued persistence of wildlife and provide recreational opportunities. Using ‘Simulation of Disturbance Activities’, a model designed to investigate the impact of recreational disturbance on wildlife, we demonstrate how a simulation modelling approach can effectively inform such management decisions. As an example, we explored the implications of various design and management options for a proposed recreational area containing a historic breeding bird colony. By manipulating the proximity, orientation and intensity of recreation, we were able to evaluate the impact of recreational activities on the behaviour of black-crowned night-heron nestlings (Nycticorax nycticorax). Using a classification and regression tree (CART) procedure to analyse simulation output, we explored the dynamics of multiple strategies in concert. Our analysis revealed that there are inherent advantages in implementing multiple strategies as opposed to any single strategy. Nestlings were not disturbed by recreation when bird-watching facility placement (proximity and orientation) and type were considered in combination. In comparison, proximity alone only led to a <10% reduction in disturbance. Thus we demonstrate how simulation models based on customised empirical data can bridge the gap between field studies and active management, enabling users to test novel management scenarios that are otherwise logistically difficult. Furthermore, such models potentially have broad application in understanding human-wildlife interactions (e.g. exploring the implications of roads on wildlife, probability of bird strikes around airports, etc.). They therefore represent a valuable decision-making tool in the ecological design of urban infrastructures.  相似文献   

20.
Predicting population dynamics is a fundamental problem in applied ecology. Temperature is a potential driver of short-term population dynamics, and temperature data are widely available, but we generally lack validated models to predict dynamics based upon temperatures. A generalized approach involves estimating the temperatures experienced by a population, characterizing the demographic consequences of physiological responses to temperature, and testing for predicted effects on abundance. We employed this approach to test whether minimum winter temperatures are a meaningful driver of pestilence from Dendroctonus frontalis (the southern pine beetle) across the southeastern United States. A distance-weighted interpolation model provided good, spatially explicit, predictions of minimum winter air temperatures (a putative driver of beetle survival). A Newtonian heat transfer model with empirical cooling constants indicated that beetles within host trees are buffered from the lowest air temperatures by approximately 1-4 degrees C (depending on tree diameter and duration of cold bout). The life stage structure of beetles in the most northerly outbreak in recent times (New Jersey) were dominated by prepupae, which were more cold tolerant (by >3 degrees C) than other life stages. Analyses of beetle abundance data from 1987 to 2005 showed that minimum winter air temperature only explained 1.5% of the variance in interannual growth rates of beetle populations, indicating that it is but a weak driver of population dynamics in the southeastern United States as a whole. However, average population growth rate matched theoretical predictions of a process-based model of winter mortality from low temperatures; apparently our knowledge of population effects from winter temperatures is satisfactory, and may help to predict dynamics of northern populations, even while adding little to population predictions in southern forests. Recent episodes of D. frontalis outbreaks in northern forests may have been allowed by a warming trend from 1960 to 2004 of 3.3 degrees C in minimum winter air temperatures in the southeastern United States. Studies that combine climatic analyses, physiological experiments, and spatially replicated time series of population abundance can improve population predictions, contribute to a synthesis of population and physiological ecology, and aid in assessing the ecological consequences of climatic trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号