首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 132 毫秒
1.
微波-Fenton 氧化-PAFSi 絮凝法处理含油废水   总被引:1,自引:0,他引:1  
采用微波-Fenton氧化-PAFSi絮凝法处理含油废水,结果表明,200 mL水样先经微波辐射6 min,在pH=2,H2O2(30%)3.5 g/L,Fe2+ 1.3 g/L的条件下氧化4 h后,采用聚硅酸铝铁(Al:Fe:Si=10:2:1)和聚丙烯酰胺在pH=8时进行絮凝实验,处理后废水浊度、SS、COD、含油量和色度分别降低了99.46%、96.66%、91.94%、97.97%和95.00%,且经处理后废水的BOD5/COD由原水的0.04提高到0.53。实验还分析了含油废水的降解机理。  相似文献   

2.
以蒙脱石、凹凸棒石、次氯酸钙和PAC、PAM为基本材料,对焦化废水二级生化出水进行深度处理。实验结果表明:蒙脱石与凹凸棒石以4:1的比例配合使用,可明显提高焦化废水中COD和色度去除率;采用次氯酸钙作为氧化剂,可进一步提高焦化废水的脱色率和COD去除率,处理间差异达到极显著和显著水平;去除COD的最优实验条件为:粘土矿物(蒙脱石:和凹凸棒石=4:1)添加量4.0g/L、氧化剂(次氯酸钙)添加量1.0g/L、絮凝剂(聚合氯化铝:聚丙烯酰胺=15/1)添加量0.15g/L,处理后色度去除率达到97.0%,COD去除率达到69.1%;脱色的最优实验条件为:粘土矿物添加量4.0g/L、氧化剂添加量1.0g/L、絮凝剂添加量0.2g/L,处理后色度去除率达到98.5%,COD去除率达到66.4%。  相似文献   

3.
UV/Fenton法预处理橡胶促进剂生产废水   总被引:2,自引:0,他引:2  
采用UV/Fenton法对橡胶促进剂废水进行预处理。当原水COD约为3000mg/L时,COD去除率可达65%以上,并得到最佳操作条件为:H2O2投加量为8mL/L,Fe^2+投加量为0.8g/L,反应时间为30rain,pH=5;同时得到Fenton试剂处理该废水的最佳条件为:H2O2投加量为10mL/L,Fe^2+投加量为0.966g/L,反应时间为30min,pH=5;单独UV作用的最佳工艺条件为:反应时间为20min,pH=5;并就3种处理方法进行了比较,发现UV对Fenton试剂处理橡胶促进剂废水具有一定促进作用。反应前后的紫外光谱说明,经UV/Fenton或Fenton反应后原水中的苯胺、硝基苯等物质已得到了彻底的氧化分解。  相似文献   

4.
加热酸化-Fenton氧化处理乳化液废水   总被引:1,自引:0,他引:1  
采用加热酸化-Fenton氧化处理乳化液废水,在加酸量为1.0mL98%H2SO4/100mL乳化液、加热温度95℃、加热时间1h条件下,初始COD〉20万mg/L,浊度〉8000NTU的乳化液COD降低到46592mg/L,浊度降低到20NTU,加热和酸化的联合过程达到了良好的破乳效果;破乳后的出水在ρ(Fe2+)/ρ(H2O2)=1:30、ρ(H2O2)和(COD)=1.4、pH=4的条件下进行Fenton氧化,处理后的出水COD可降到18600mg/L,去除率达61.4%,其B/C可由破乳后的0.11提高到0.43,废水的可生化性大大提高,为后续处理创造了可能。  相似文献   

5.
张衍  郑炜  刘锐  李伟  李荧  陈吕军 《环境工程学报》2012,6(12):4355-4360
对化学合成橡胶碱洗废水进行了有机组分和可生化性分析,废水主要含有氯甲烷、六甲苯、异丁醇、甲醇等污染物质,生化降解实验中废水TOC可在6d内从60.9mg/L下降至0.0mg/L,可生化降解性好,适于生化处理。选择混凝.生物接触氧化组合工艺对废水进行处理,采用优化条件(pH=8、PAC=40mg/L、PAM=8mg/L)进行混凝,碱洗废水COD去除率为9.95%~72.94%(平均31.51%);混凝后的碱洗废水与冲洗废水1:5混合进行接触氧化处理,在HRT为36h的情况下,COD去除率为65.6%-72.6%(平均70.4%),出水COD为134~331mg/L,满足企业废水排放市政管网的要求;同时,实验发现COD去除率与COD容积负荷存在指数函数变化关系。  相似文献   

6.
三维电极-好氧生物法联合处理酸性染料废水模拟研究   总被引:1,自引:0,他引:1  
采用电解-好氧生物法联合处理酸性大红G模拟废水,三维电解反应器填料为活性炭与玻璃珠混合物,平板电极材料为石墨,通过正交实验确定的最佳实验条件为:电解时间150min,活性炭/玻璃珠体积比为2:1,槽电压20V、pH为5、Na2SO4投加量1.5g/L,进水初始浓度2000mg/L。此时COD去除率及色度去除率分别可达49.78%和81.45%,废水BOD,/COD由0.12提高到0.42。电解后的废水采用生物接触氧化法处理12h后,出水COD为48mg/L,色度120倍,达到综合污水排放二级标准。  相似文献   

7.
混凝-Fenton试剂氧化工艺处理机械厂洗涤废水   总被引:2,自引:0,他引:2  
对某厂机械洗涤废水,采用混凝-Fenton试剂进行处理。结果表明,用聚铝(w(PAC)=5%)对废水进行絮凝沉淀,PAC最佳投加量为1.5 mL/L(废水),絮凝后的COD去除率为29.6%;芬顿试剂最佳操作条件为:n(H2O2)∶n(Fe2+)=5∶1,m(H2O2)∶m(COD)=2.5∶1,废水pH=5,温度为30℃,反应时间为2 h,经氧化后,COD的去除率为78.5%;经过混凝沉淀-芬顿氧化处理,COD的总去除率为84.9%,去除效果良好。  相似文献   

8.
混凝-Fenton氧化-Fe0还原预处理高浓度硝基苯生产废水   总被引:1,自引:1,他引:0  
采用混凝-Fenton氧化-Fe0还原工艺预处理高浓度硝基苯废水,考察各反应阶段硝基苯去除效果及影响因素。研究表明,聚铁混凝性能优于聚铝;初始COD为17 350 mg/L、硝基苯浓度为10 050 mg/L的废水,在pH=4,聚铁投加浓度3 300 mg/L时,COD和硝基苯去除率分别为63%和62%;混凝沉降后的上清液用Fenton试剂氧化,可在较宽pH(3~6)范围内降解硝基苯,当H2O2(30%)浓度为6 000 mg/L,Fe2+浓度为168 mg/L时,氧化效率最高;聚铁混凝-Fenton氧化后的出水用Fe0还原,最佳还原条件为:pH=3,Fe0浓度1 500 mg/L。原水经聚铁混凝-Fenton氧化-Fe0还原后,COD和硝基苯总去除率分别达90%和98%,总药剂成本约12.4元/t。处理后废水硝基苯浓度为168 mg/L,适宜进行后续的厌氧-好氧生物处理。  相似文献   

9.
电絮凝—催化氧化法去除染料工业废水COD的研究   总被引:11,自引:0,他引:11  
我们对电絮凝-催化氧化法处理染料工业废水COD进行了研究。实验结果表明,此方法对废水的COD具有良好的去除效果,并确定了相应的处理条件:电解电压4V,电解时间1.5h,H2O2为0.6%,MO(含75%以上的TiO2)为2.5g/L。平均COD去除率达到77.5%。电絮凝-催化氧化法具有能耗低、操作简便等特点,为进一步深化处理奠定了基础。  相似文献   

10.
二氧化氯催化氧化处理难降解废水技术的研究   总被引:22,自引:0,他引:22  
研究了二氧化氯化学氧化体系和二氧化氯催化氧化体系。实验结果表明:单用二氧化氯化学氧化处理COD为3500mg/L的酸性大红染料配制废水时,最佳反应pH值为6—8,氧化剂经济用量为1000mgClO2/L废水,反应时间为60min,COD去除率可达50%左右,氧化指数(COD削减量:ClO2投加量)=2.3。当二氧化氯与自制催化剂所组成的催化氧化体系用于对酸性大红染料配制废水的处理时,最佳反应pH值为2左右,氧化剂经济用量为800mgClO2/L废水,反应时间为45—60min,COD去除率可达80%以上,氧化指数=3.5,去除每kg COD氧化剂费用为3.7元人民币,并且废水的可生化性有很大的提高,效果明显优于二氧化氯化学氧化。经济技术评估表明,二氧化氯催化氧化法是一种新型高效的处理难降解废水的技术,有着广阔的应用前景。  相似文献   

11.
以旋转填充床(RPB)作为反应装置,研究了Fenton工艺与Fenton+O3工艺处理模拟阿莫西林废水的效果,考察了FeSO4·7H2O的投加量、温度、旋转床转速、液体流量及pH对C0D去除率的影响。实验表明,Fenton+O3工艺的COD脱除率及BOD5/COD相对于Fenton工艺分别提升26.7%和140%。该工艺在pH为3、温度为25℃、液体流量30L/h、气体流量2.5L/h、转速800r/min、H2O2的投加量为1mmol/L及Fe2+投加量为0.4mm01/L的条件下,100mg/L的模拟阿莫西林废水中COD的去除率达到57.9%,BOD5/COD从0增加到0.36,满足后续生化处理要求。  相似文献   

12.
研究了Fe/C微电解和Fenton氧化处理印刷电路板废水的最佳条件和联合工艺的处理效果。结果表明,Fe/C微电解最佳工艺条件为:pH=2,Fe/C质量比为2∶1,投加药剂量为30 g/L,停留时间为30 min;Fenton氧化最佳工艺条件为:pH=3,H2O2投加量为6 mL/L,停留时间为2 h。将2种方法联用并进行中试实验,结果表明,对原水的COD去除率可达80%,而且Fenton反应可利用微电解产生的Fe2+,节约成本,运行稳定,效果良好。  相似文献   

13.
在无隔膜电解槽中,采用SPR(Ru—Ir—TiO2)为阳极,石墨为阴极,考察了Fe(Ⅱ)EDTA/H2O2电催化降解甲基橙(methylorange)模拟废水的影响,发现EDTA很大程度上促进了类电Fenton试剂对甲基橙模拟废水的降解。实验研究表明,在外加电压为5.0V,EDTA:Fe2+=2:1(摩尔比,Fe2+=40mmol/L),H202=48mmot/L,电解质Na2SO4=40mmol/L,废水pH值为(6.5±0.1)的条件下,降解260mg/L的甲基橙模拟废水90min,EDTA的加入可以使甲基橙模拟废水的脱色率由29.5%上升到78.4%,COD由571.429mg/L降至80mg/L,COD的降解率为86%,EDTA在此过程中既是催化剂又是反应物,可有效避免EDTA带来二次环境污染的可能性。  相似文献   

14.
采用4种廉价的生物质材料(水葫芦、柚子皮、木屑、核桃壳)用于餐饮废水的预处理。通过静态烧杯实验,研究了各生物质材料预处理废水的效果及最佳处理条件。结果表明,生物质材料对废水中COD的去除率均在45%以上,油脂吸附量为4~16mg/g,最优吸附材料为水葫芦,COD去除率达65%,油脂吸附量为16mg/g;水葫芦和柚子皮的最佳处理条件为:粒径〈0.2mm,投加量为20g/L,废水pH为4,处理时间为2h,温度为20℃;木屑和核桃壳的最佳实验条件为:粒径〈0.2mm,投加量为28g/L,pH为2,处理时间为2.5h,温度为20℃。生物质对餐饮废水的预处理,为废水中大量有机物和废弃油脂的去除提供了新思路和途径。  相似文献   

15.
O3氧化工艺处理黄连素制药废水研究   总被引:1,自引:0,他引:1  
采用臭氧(O3)氧化法处理含高浓度黄连素和COD的制药废水,探讨了废水初始pH、O3投加量及初始黄连素浓度等因素对O3氧化过程的影响,确定了O3氧化技术处理黄连素制药废水的最佳操作条件。结果表明,O3能够有效分解废水中的黄连素,降低其COD浓度;黄连素浓度为700mg/L、COD为3500mg/L、pH为0.88的废水,进气O3浓度为14.05mg/(L·min),处理时间为180rain(即投加量为2529mg/L)时,黄连素和COD的降解率分别可达77.46%和41.28%,BOD,/COD比(B/C比)从0.06提高到0.34,增加了4.7倍;随着废水中初始黄连素浓度的升高,废水COD降解率逐渐降低。O3氧化法是一种有效的黄连素制药废水预处理技术,可以大大提高废水的可生化性。  相似文献   

16.
为进一步提高铁炭内电解法处理制药废水的处理效率,采用添加不同强化剂的方法考察分析强化因子的影响效果.在C加入量10g/L,铁屑30g/L,反应时间150 min,pH值7.5的条件下,以不同的盐、金属铜、双氧水作强化剂分别加入反应体系中,检测COD去除效果.实验结果表明:当每升废水中分别加入氯化铜、硫酸锰、硝酸镍、金属...  相似文献   

17.
为了综合利用废椰壳,进行了废椰壳制备活性炭并负载氧化铜处理活性艳红X-3B废水的研究。采用正交实验法,以COD和色度去除率为目标函数确定了活性炭的最佳制备工艺条件为:磷酸浓度65%(质量百分数),m(磷酸)/m(椰壳)比3∶1,活化时间2.5 h,活化温度500℃。在该活性炭上负载氧化铜处理活性艳红X-3B染料废水,其COD和色度去除率分别为83.70%和99.72%。用扫描电镜(SEM)和X衍射仪(XRD)对裸活性炭和载铜活性炭样品表面形貌和结构进行了表征和分析。通过单因素实验法确定了废水处理的最佳工艺条件为:pH值5,曝气时间4 h和催化剂用量0.55 g,在此条件下,COD和色度去除率分别为86.70%和99.75%,相应的出水指标为75 mg/L和32稀释倍数。  相似文献   

18.
以某制浆造纸厂生化出水Fenton/絮凝深度处理工艺长期运行数据为依据,系统分析了H2O2、废酸液(FeSO4含量约8%)、硫酸铝、PAM及氧化钙等处理药剂用量与水量、进水负荷和COD去除量之间的关系。结果表明,H2O2、废酸液、硫酸铝、PAM及氧化钙的单位水量平均投加量分别为0.05、2.18、0.07、0.0075和0.27 kg/m3,而去除单位COD的药剂平均消耗量分别为0.20、8.48、0.27、0.029和1.06 kg/(kg COD);H2O2、废酸液、硫酸铝和氧化钙的用量随进水负荷的增大而增加,而PAM随进水负荷的变化较小。H2O2和FeSO4的投加摩尔比(MH2O2/Fe2+)主要集中在1.0-2.0之间,其中在1.0-1.6之间的累积频率达到93%。该工艺的出水COD和SS分别为65-100 mg/L和20-30 mg/L,达到《制浆造纸工业水污染物排放标准》(GB 3544-2008)排放要求。废水深度处理成本约为1.01元/m3,其中药剂费用约0.58元/m3,占56.98%。  相似文献   

19.
研究采用H2O2/Fe^3+催化氧化处理高浓度含甲醛废水,探讨了双氧水和催化剂投加量、反应pH及反应温度等操作条件对处理效果的影响,并通过酸溶解回用失活催化剂。结果表明,较优的操作条件为:H2O2/COD(质量比)=2.2~2.6,Fe^3+/H2O2(摩尔比)=0.048~0.058,反应pH1.80~2.68,反应温度50℃,反应时间40 min;在上述操作条件下,甲醛去除率达到99%以上,COD去除率达到85%以上。失活的催化剂可通过稀酸溶解后循环使用,其效果与三价铁盐作催化剂的基本相同。采用H2O2/Fe^3+处理含甲醛废水具有比采用H2O2/Fe^2+较优的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号