首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil‐gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert‐butyl ether concentrations have decreased in groundwater. Interpolations of free‐phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on‐site, even in a noncontaminated control area. All four Populus clones survived well at the site. © 2014 Wiley Periodicals, Inc.*  相似文献   

2.
The possibility of using phytoremediation with weed plant species in Thailand to remove chromium (Cr) from soil was investigated. Six plant species, Cynodon dactylon, Pluchea indica, Phyllanthus reticulatus, Echinochloa colonum, Vetiveria nemoralis, and Amaranthus viridis, were chosen for their abilities to accumulate total chromium (TCr) at tanning industry sites. These plant species were studied in pots at a nursery. Cynodon dactylon and Pluchea indica provided highest TCr accumulation capacities of 152.1 and 151.8 mg/kg of plant on a dry weight basis, respectively, at a pulse hexavalent Cr [Cr(VI)] input of 100 mg Cr(VI)/kg soil. Most of the Cr uptake occurred within 30 days after the input. The TCr accumulation by Pluchea indica was observed in roots, stems, and leaves at 27%, 38%, and 35% of the TCr mass uptake, respectively, whereas 51%, 49% and 0% of the TCr mass uptake accumulated in roots, stems, and leaves of Cynodon dactylon, respectively. The results on Cr accumulation and translocation in plant tissues suggest that Cr was removed mainly via phytoaccumulation and Pluchea indica is more suitable than Cynodon dactylon for the phytoremediation of Cr contaminated soil.  相似文献   

3.
An experiment was performed on six species of trees to determine the feasibility of remediating groundwater contaminated with an agricultural herbicide, bentazon, at a site in southern Louisiana. Fate studies on bentazon support that it is translocated to the plant leaves where it is degraded by photolysis to lower-order derivative compounds within short periods of time. Both transpiration observations and dosing tests suggest that the most favorable phreatophyte and tolerant specie of tree to bentazon exposure was the black willow (Salix nigra).  相似文献   

4.
Chelate‐assisted metal uptake by plants has only recently been discovered in the remediation industry. The simultaneous accumulation of lead, arsenic, copper, and cadmium in plants after application of chelating agents to soil is a promising technology enhancement for phytoremediation. One of the most powerful and commonly used chelating agents is ethylene diamine tetra acetic acid (EDTA), which forms complexes with many of the metal contaminants within the natural environment. This study was conducted to determine the efficiency of an emergent wetland plant species Typha sp. and floating wetland macrophytes such as Pistia sp., Azolla sp., Lemna sp., Salvinia sp., and Eichhornia sp. in phytoremediation of various heavy metals with addition of a chelating agent such as EDTA. EDTA addition to the treatment systems increased the uptake of heavy metals by plants, which was much pronounced with lead and copper. However, the pattern of uptake by plants was similar as that of heavy metals without EDTA amendments. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
A lysimeter study was performed to monitor effects of elevated ozone on juvenile trees of Fagus sylvatica L. as well as on the plant–soil system. During a fumigation period over almost three growing seasons, parameters related to plant growth, phenological development and physiology as well as soil functions were studied. The data analyses identified elevated ozone to delay leaf phenology at early and to accelerate it at late developmental stages, to reduce growth, some leaf nutrients (Ca, K) as well as some soluble phenolics (hydroxycinnamic acid derivatives, total flavonol glycosides). No or very weak ozone effects were found in mobile carbon pools of leaves (starch, sucrose), and other phenolic compounds (flavans). Altered gene expression related to stress and carbon cycling corresponded well with findings from leaf phenology and chemical composition analyses indicating earlier senescence and oxidative stress in leaves under elevated ozone. Conversely in the soil system, no effects of ozone were detected on soil enzyme activities, rates of litter degradation and lysimeter water balances. Despite the fact that the three reported years 2003–2005 were climatically very contrasting including a hot and dry as well as an extremely wet summer, and also mild as well as cold winters, the influence of ozone on a number of plant parameters is remarkably consistent, further underlining the phytotoxic potential of elevated tropospheric ozone levels.  相似文献   

6.
In this study, six selected plants (Acacia mangium, A. auriculiformis, Leucaena leucocepphala, bamboo, Pennisetum purpureum, and Vetiveria zizanioides) were cultivated in a mine tailing storage facility in a gold mine area. P. purpureum, a monocot species, provided the highest phytoremediation efficiency. Therefore, it is a potentially appropriate plant for site remediation. It is interesting that P. purpureum is perennial, meaning it can be easily planted and requires less effort and input for care with the ability to flourish year round. Thus, this study recommends using P. purpureum for phytoremediation of heavy metals and cyanide in gold mine areas.  相似文献   

7.
The phytoremediation of trinitrotoluene (TNT), nitroglycerine (NG) and pentaerytritoltetranitrate (PETN) using in vitrocultures of Rheum palmatum, Saponaria officinalisand Populus simonii were studied. All above mentioned explosives were degradated to less toxic products and finally probably bound to the cell wall or further involved in the metabolism. The formation of trinitrobenzene (TNB) during degradation of TNT which is a product of alternative degradation pathway was found too.  相似文献   

8.
Phytoremediation is a new technology that uses specially selected metal-accumulating plants as an attractive and economical method to clean up soils contaminated with heavy metals and radionuclides. The integration of specially selected metal-accumulating crop plants (Brassica juncea (L) Czern.) with innovative soil amendments allows plants to achieve high biomass and metal accumulation rates. In a recent study conducted at a lead-contaminated site in Trenton, New Jersey, the soil was treated with phytoremediation using successive crops of B. juncea combined with soil amendments. Through phytoremediation, the average surface soil lead concentration was reduced by 13 percent. In addition, the target soil concentration of 400 mg/kg was achieved in approximately 72 percent of the treated area in one cropping season.  相似文献   

9.
Plant transpiration is a critical process that affects the water balance in phytoremediation plots. The desired effect is to remove contaminated water from the soils through the plant metabolism. Thus, the transpiration rate can be a major component in modeling the groundwater flow and solute transport for a phytoremediation project and ultimately can determine the time expected to achieve remedial goals. Two phytoremediation plots of black willows (Salix nigra) were planted during October 1996 over separate,shallow groundwater plumes at a site in southeastern Louisiana. Concentrations of less than 10 mg/l of the herbicide bentazon were present in the shallow groundwater. Field experiments were developed and performed during the 1998 and 1999 growing seasons to measure sap flow as an indicator of plant transpiration. The tree‐trunk heat balance method was used to measure sap flow. Sap flow was indexed to the cross‐sectional area of the stem, and the sum of the available stem area for each plot was used to calculate the monthly water use in each plot. Daily water use in the plots averaged between 6 to 13 l/day/m2 during the periods tested in 1998 and 1999. By applying growth‐rate observations with the daily water use, annual water use at tree plot maturity was estimated to be 3.6×106 l/year in Plot 1 and 11.39×106 l/year in Plot 2. Application of these data will allow groundwater modeling to be performed to measure the effectiveness of phytoremediation and to predict closure of remediation at the test site. © 2001 John Wiley & Sons, Inc.  相似文献   

10.
This study was carried out to explore the possibility of making cement-bonded composite building products using eucalypt (Eucalyptus camaldulensis) and poplar (Populus deltoides). The experimental design consisted of three treatments—mixture of fibrous materials, cement and calcium chloride (CaCl2) contents. Some physical properties, vis. water absorption (WA) and thickness swelling (TS), were investigated. The ratio of woodwool : cement was 40:60 and 60:40 by weight. Results showed that, water uptake increased with increasing woodwool content. In addition, boards fully made with poplar woodwools had superior properties compared to the eucalypt and mixed woodwools. The presence of eucalypt woodwools in mixture of fibrous materials typically resulted in increase in TS and WA. It is interesting to note that a dose of 5% of CaCl2 by weight of cement can enhance the effect of cement. Application of Duncan’s Multiple Range Test for the mean values of the results showed that the effects of all variables and their interactions on the mechanical properties in terms of TS and WA were highly significant.  相似文献   

11.
In a total of 189 water samples collected from Danish streams no traces of the pyrethroid esfenvalerate were detected. However, pyrethroids have previously been found in sediments in 9 out of 30 streams investigated. We found that the shredding activity of the Trichopteran Sericostoma personatum and the amphipod Gammarus pulex was significantly reduced with increased concentration of the pyrethroid lambda-cyhalohtrin adsorbed to the leaves on which they fed. Predation rate on the Plecopteran Leuctra nigra by the leech Erpobdella octoculata increased significantly with increasing concentration of lambda-cyhalothrin on the leaves on which L. nigra was fed. Our results clearly indicate that the ongoing monitoring of pesticides is likely to underestimate pyrethroid occurrence and that sediment-bound pyrethroids have a potential negative impact on ecosystem function and biotic interactions in streams.  相似文献   

12.
To obtain basic information for evaluating critical levels of O3 under different nitrogen loads for protecting Japanese beech forests, two-year-old seedlings of Fagus crenata Blume were grown in potted andisol supplied with N as NH4NO3 solution at 0, 20 or 50 kg ha−1 year−1 and exposed to charcoal-filtered air or O3 at 1.0, 1.5 and 2.0 times the ambient concentration from 16 April to 22 September 2004. The O3 induced significant reductions in the whole-plant dry mass, net photosynthetic rate at 380 μmol mol−1 CO2 (A 380), carboxylation efficiency (CE) and concentrations of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and total soluble protein (TSP) in the leaves. The concentrations of Rubisco and TSP were negatively correlated with the concentration of leaf acidic amino acid, suggesting that O3 enhanced the degradation of protein such as Rubisco. The N supply to the soil did not significantly change the whole-plant dry mass and A 380, whereas it significantly increased the CE and concentrations of Rubisco and total amino acid. No significant interactive effects of O3 and N supply to the soil were detected on the growth, photosynthetic parameters and concentrations of protein and amino acid in the leaves. In conclusion, N supply to the soil at ≤50 kg ha−1 year−1 does not significantly change the sensitivity to O3 of growth and net photosynthesis of Fagus crenata seedlings.  相似文献   

13.
Indigenous microorganisms, enriched and isolated from refinery waste sludge, were observed to possess a broad range of metabolic activities for mixtures of several classes of substrates of petroleum hydrocarbons, such as monoaromatic and polycyclic aromatic hydrocarbons (PAHs) and n- and branched alkanes. Three of the best-growing bacterial isolates selectively enriched with these compounds were identified by 16S rDNA sequencing as belonging to the genera Enterobacter and Ochrobactrum. Two of them, Enterobacter sp. strain EK3.1 and Ochrobactrum sp. strain EK6 utilise a hydrocarbon mixture of the branched alkane 2,6,10,14-tetramethylpentadecane and the PAHs acenaphthylene and acenaphthene. Enterobacter sp. strain EK4 can grow with a mixture of 2,6,10,14-tetramethylpentadecane, toluene, acenaphthylene and acenaphthene as carbon sources. Nucleic acid fingerprint analysis, by terminal restriction fragment length polymorphism (T-RFLP) of the PCR-amplified 16S rRNA genes, of the autochthonous bacterial community in contaminated soil samples showed complex and different community structures under different treatments of refinery waste sludge in landfarm areas. The characteristic peaks of the T-RFLP profiles of the individual, isolated degrading bacteria Enterobacter spp. and Ochrobactrum sp. were detected in the T-RFLP fingerprint of the bacterial community of the four months old treated landfarm soil, suggesting the enrichment of bacteria belonging to the same operational taxonomic units, as well as their importance in degrading activity.  相似文献   

14.
Air pollution has become an actual problem in Balikesir because of rapid urbanisation and increasing of the polluting sources. Air pollutionproblems occur under the unfavorable meteorological conditions which increase in frequency of occurrence in winter due to use of low quality lignite coals for heating. The `Protection of Air Quality' in Turkey dated 1986 is based on the human health criteria. But the critical limit values are lethal for the forest trees as far as SO2 is concerned. The field observations showed that leaves of the trees have yellow spots indicating acid burns in Balikesir. This study aims at determining the relationships between the SO2 concentrationsin the air under selected climatic conditions, and the effects of air pollution on forest trees in Balikesir. Samples of leaves were collected from the City Parks in Balikesir, Deirmenboaz forested area located 10 km far fromBalikesiron the Balikesir-Bursa highway, and from the forestation areas near the Balikesir-Edremit highway. Sulfur contents of the leaves were very high especially in the city (2650–5300 g m-3).Samples from other areas had values lower than this range but above the usual values (850–3612 g m-3). The diameter increments of the trees were found to be lower and these results clearly showed the adverse impacts. Negative correlations were found between these sulfur concentrations and the daily mean temperatures and wind speeds. Positive correlation was seen between these concentrations and pressures, humidities. Emission sources must be controlled in order to safeguard the forests which protects the soil, facilitate water production, assimilate carbon dioxide in air and produce oxygen. It must be considered that the problems are not only regional but have a global identity.  相似文献   

15.
Measurements of nitrogen dioxide, nitrous and nitric acids as well as ozone were made using newly developed instrumentation onboard the research vessel Aegeon in the Aegean Sea between 25th–29th July 2000. Typical nitrogen dioxide concentrations observed aboard the boat were 4–6 ppb (v/v) with a broad maximum of 20–30 ppb (v/v). Ozone concentrations typically ranged between 40 and 80 ppb (v/v). Mixing ratios of both nitric and nitrous acids in the ambient air of the Aegean Sea were mainly below 50 ppt (v/v). The data also showed a number of short pollution episodes with rapid changes in the concentration of reactive nitrogen compounds [nitrogen dioxide maximum up to 164 ppb (v/v), nitric acid maximum up to 12 ppb (v/v), nitrous acid maximum up to 2.7 ppb (v/v)] and ozone [maximum up to 88 ppb (v/v)]. These episodes were correlated with pollution plumes originating from boats upwind, at short distance, from the R/V Aegeon. The measurements revealed the importance of nitrous and nitric acids for the transport of nitrogen to marine biota in busy ship lanes.  相似文献   

16.
The manufacture and improper disposal of explosives has resulted in a significant amount of land requiring remediation. The compound 2,4,6-trinitrotoluene (TNT) is the most persistent and toxic of the explosive pollutants with current treatment methods being energy intensive and costly. Bacterial enzymes such as pentaerythritol tetranitrate reductase (PETNR) from Enterobacter cloacae PB2 have been found to have activity against TNT; however, microbes often lack the biomassnecessary for remediation applications. The PETNRgene (onr1) was transformed into tobacco plants in an attempt to combine the metabolic diversity of microbes with the sequestering properties of plants. The resulting transgenic plants were shown to have enhanced tolerance to TNT during germination and as seedlings. Phytoremediation applications with these plants may provide an alternative treatment of TNT contamination.  相似文献   

17.
The aim of the project is to study heavy metals accumulation by the selected plants in both laboratory and field conditions. Within the experiments the aspen (Populus tremula × tremuloides), sunflower (Helianthus annuus) and corn (Zea mays) plants were studied. The reasons for this selection were: a fast growth of these plants, an accumulation capacity and an ability to survive in different types of soils. The study was carried out on the aspen plantlets grown in vitro. The plants were exposed to the aqueous solutions having concentrations 0.1 mM, 0.5 mM of Pb2+ or Ni2+, respectively. The accumulation capacityfor aspen, was about 70% of Pb2+ originally present in the solution. The starting concentration of Pb2+ (0.5 mM) exhibited no negative impact on the growth. Besides in vitro expositions, a pilot-scale phytoremediation experiment was carried out at the polluted industrial area (Zn – 75000 mg/kg), (Pb – 16000 mg/kg), (Cr – 590 mg/kg), (Cd – 90 mg/kg) and (Cu – 1700 mg/kg).  相似文献   

18.
Poly(L-lactide)(PLA)-degrading activities of a fungus, Tritirachium album, and two strains of actinomycetes,Lentzea waywayandensis and Amycolatopsis orientalis, were inducible by some proteins (poly-L-amino acid), peptides and amino acids. Extracellular PLA-degrading activity of the culture filtrates was detected when these strains grew in liquid basal medium containing 0.1% (w/v) of (poly-L-amino acids), peptides or amino acids as the enzyme inducer. In addition to PLA-degrading activity, succinyl-(L-alanyl-L-alanyl-L-alanine)-p-nitroanilide (Suc-(Ala)3-pNA)-degrading activity was observed, implying that the enzymes produced were protease-type. The enzyme activities produced varied between different strains and different inducers. Silk fibroin was the best inducer for A. orientalis and that elastin was the best inducer for L. waywayandensis and T. album.  相似文献   

19.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   

20.
To prepare a substrate for microbial conversion of xylose into xylitol, the culm of Sasa senanensis was hydrolyzed with dilute sulfuric acid. When the reaction temperature was fixed at 121°C, an optimum yield of xylose was obtained by treatment with 2% sulfuric acid for 1 h. An increase in the sulfuric acid concentration or a prolonged reaction time resulted in a decrease in the xylose yield. A fermentable substrate with a relatively high xylose concentration (36.7 g l−1) was obtained by hydrolysis with 2% sulfuric acid with a liquid-to-solid ratio of 5 g g−1. During hydrolysis at elevated temperatures, certain undesired byproducts were also generated, such as degradation products of solubilized sugars and lignin, which are potential inhibitors of microbial metabolism. These compounds were, however, successfully removed from the hydrolysate by treatment with activated char.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号