首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于WRF-Chem模拟的玉溪市大气环境容量精细估算   总被引:2,自引:0,他引:2  
云南高原的清洁大气环境及其潜在变化是一个值得深入研究的大气环境问题.本文选择云南高原重要工业城市—玉溪作为研究区域,基于中尺度空气质量模式WRF-Chem,开展玉溪市的大气环境容量模拟估算.同时,以2015年冬、春、夏、秋季主要大气污染物模拟为基础,采用以我国环境空气质量标准(GB3095—2012)为约束目标的WRF-Chem模拟迭代大气环境容量算法,设置3 km的精细分辨率,计算得到2015年玉溪市一次PM_(10)、一次PM_(2.5)、SO_2、NO_x和CO的大气环境容量分别为1.284×10~4、0.854×10~4、1.917×10~4、1.796×10~4和51.556×10~4t·a~(-1).最后,研究了整个玉溪市区域和城区大气环境容量的季节变化特征,结果发现,各污染物冬季大气环境容量最小,除PM_(2.5)外的污染物均在春季大气环境容量最大.玉溪市城区剩余容量占全市的比例均在40%左右,反映了工业发展和城市化带来的大气环境的城乡差异及可能的环境变化效应.  相似文献   

2.
当前在区域环境或生态规划编制中对经济发展与环境保护的相互关系、对环境容量和环境承载力等诸多问题缺乏深入研究,导致规划文本的科学性不足。武汉市"经济-能源-大气环境"的系统动力学模型能同步测算以GDP-PM_(2.5)达标为约束的大气环境容量与经济、能源结构的发展趋势,满足多目标规划的要求,相比其他模型与方法,具有简明的优点。  相似文献   

3.
以GDP-PM2.5达标为约束的东莞大气环境容量及承载力研究   总被引:1,自引:0,他引:1  
东莞市计划到2017年PM_(2.5)年均浓度达到国家二级标准(35μg·m~(-3)),GDP年均增长率至少不低于7%.面对复合型为特征的PM_(2.5)大气污染,传统的环境容量和承载力计算方法具有局限性.因此,本文基于经济、气象、能源、环境等关键信息,利用系统动力学(SD)建立了GDPPM_(2.5)宏观动态统计模型.考虑到PM_(2.5)年均浓度等统计值本身就是污染物不断生成又不断扩散、沉降达到动态平衡的综合结果.因此,SD模型可不从理化角度去模拟复杂的大气传输和扩散过程,而是通过引入各污染物的比例系数μ,构建转化率η,建立GDP、PM_(2.5)年均浓度、五大污染物(VOCs、SO2、NOx、NH3、一次PM_(2.5))排放量等变量之间的逻辑联系,为分析和预测工作奠定基础.同时,本文梳理了大气环境压力、承载力和容量的定义,强调了三者之间的相互作用、密不可分的动态关系,建设性地提出了度量承载力的11项指标(5个显性、6个隐性).最后,利用模型模拟预测了"综合治理"模式下2012—2020年间以GDP-PM_(2.5)达标为约束的五大污染物的大气环境压力、容量和承载力.结果表明,预计PM_(2.5)浓度达标约在2017年上半年,对应的SO_2、NO_x、VOCs、NH_3、一次PM_(2.5)容量分别为84987、138849、100875、7751、17402 t;承载力隐性部分各项阈值分别为GDP总量7074亿元、新增绿色GDP 737亿元、煤炭2120万t(以标煤计)、石油552万t(以标煤计)、天然气663万t(以标煤计)、新能源630万t(以标煤计);承载力显性部分各阈值(相对于2012年5年累积减排量)分别为SO264271 t、NOx128831 t、VOCs 108337 t、NH34070 t、一次PM_(2.5)35863 t.本研究为东莞市大气减排提供了具体目标和参考数值.  相似文献   

4.
中国的灰霾十分严重,如何有效地控制某一地区的PM_(2.5)浓度,同时保证GDP的中高速增长,需要建立GDP-PM_(2.5)的量化关系模型,做好宏观预测。充分利用城市大气污染物、气象、经济的多年统计数据,以及该地PM_(2.5)源解析、源清单和大气边界层信息,从中确定2种重要的辅助变量,一是单位GDP某种大气污染物排放量,二是各污染物形成PM_(2.5)的转化率,它们把GDP、PM_(2.5)和污染物排放量联系起来。再运用系统动力学(SD)建立GDP和PM_(2.5)动态关系模型。文章以东莞为例,预测了"确保经济、确保环境、源头治理、全面治理"这4种模式下污染物减排措施对GDP和PM_(2.5)的影响,并提出定量的减排建议。预测结果显示,"全面治理"的发展模式较为合理,既能保证经济的可持续发展,又能实现东莞PM_(2.5)减排目标。  相似文献   

5.
为评价城市空气质量,以徐州市为例,分别运用层次分析法和主成分分析法对大气监测数据进行了对比研究。层次分析表明:研究期间徐州市大气环境质量为一级时的权重为0.450 2,为二级时的权重为0.549 8,表明该市空气质量等级为二级;主要大气污染物的权重排序为PM_(2.5)PM_(10)NO_2SO_2,说明首要大气污染物为PM_(2.5),表明徐州市大气污染表现为颗粒物污染。主成分分析表明:在特征值大于1的基础上,选取前两种污染物的总方差累计贡献率为78.804%的主成分作为综合性指标来反映徐州市大气环境质量;第一主成分的方差累计贡献率为59.562%,表明该市大气环境质量的主要影响因素依次为PM_(2.5)、PM_(10)、SO_2、NO_2、CO,其中PM_(2.5)是首要大气污染物。层次分析和主成分分析结果均与《徐州市环境状况公报》发布的该市大气中首要污染物为细颗粒物(PM_(2.5))的结论相吻合,表明上述两种方法均可作为城市大气环境质量评价的方法。  相似文献   

6.
本文对吉林省火电厂大气污染物中PM_(2.5)成分和PM_(2.5)对大气环境污染贡献进行了分析。燃煤电厂是我国PM_(2.5)的重要来源之一,开展对燃煤电厂PM_(2.5)排放特性的研究对改善我国大气环境质量有着重要意义。  相似文献   

7.
为准确掌握垫江县城区大气环境中细颗粒的污染状况,选择2016年9月1日—2017年2月28日大气自动观测站的数据研究分析,结果表明:垫江县城区大气环境中PM_(10)和PM_(2.5)的平均质量浓度分别为79mg/m~3和68mg/m~3,PM_(10)的月平均质量浓度均大于PM_(2.5),PM_(2.5)占PM_(10)的比例在84.6%~90.0%。多元分析结果可以看出,大气环境中的PM_(10)和PM_(2.5)具有相类似来源,气象条件对垫江县城区大气颗粒物污染影响较大。HYSPLIT轨迹模型分析表明,秋冬季节大气重污染时段,垫江县城区大气环境中颗粒物来源受到西南和西北气团影响较大。  相似文献   

8.
2014年10月太原市一次空气重污染过程分析   总被引:1,自引:0,他引:1  
采用数值模拟(CAMx)与污染物、气象观测资料相结合的方式,对太原市及周边区域2014年10月6—12日一次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析.结果表明:2014年10月8—10日太原ρ(PM_(2.5))日均值平均为175μg·m~(-3),太原城区约1460km~2的国土面积处于重度污染(ρ(PM_(2.5))150μg·m~(-3))之下,而京津冀约20×104km2的国土面积达到重度污染水平;区域稳定的气象条件是形成重污染的主要原因,重污染过程中大气层结稳定,逆温明显(2.14℃/100m)、风速小(1.91 m·s~(-1))、湿度大(68.13%)、负变压(-0.74 h Pa)、正变温(0.92℃).模拟结果显示,8—10日重污染期间区域输送对太原PM_(2.5)的贡献率在17%~24%之间,太原市PM_(2.5)浓度以本地贡献为主;估算的2014年太原城区PM_(2.5)排放量是其大气环境容量的1.4倍,重污染期间大气环境容量的大幅降低又加剧了空气污染的程度.  相似文献   

9.
根据前人对大气环境容量和环境承载力计算的对比分析,计算2012年镇江市的大气环境容量和大气环境承载力指数,通过对该市的气象条件和地理位置的分析,选取SO_2、NO_x和PM_(10)这3种主要大气污染物,并分析其环境承载状况。结果表明:句容市、丹阳市、杨中市处于高承载的状态,临界超载、严重超载和超载的3个区分别是润州区、京口区和镇江新区,针对这3个区提出相应改进措施。  相似文献   

10.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

11.
近年来,京津冀地区采取了大量污染减排措施进行大气污染治理,如何客观评估减排效果是目前大气环境领域的研究难点.为准确评估大气污染过程的减排效果,本文利用北京地区常规气象资料、国控站PM_(2.5)浓度资料,遴选了北京地区2018年3月11—14日和2013年3月14—17日两次空气污染过程,计算了大气容量系数、静稳指数,并利用KNN数据挖掘算法和WRF-Chem模式,对比分析了有无减排条件下的PM_(2.5)日均浓度.结果表明:两次空气污染过程的天气形势和局地气象条件较相似,就大气热力和动力的垂直结构来看,2018年空气污染过程比2013年空气污染过程的大气稳定性更强、边界层高度更低、环境容量更小,但PM_(2.5)峰值浓度却显著下降,平均浓度明显降低,PM_(2.5)小时浓度的增长趋势相对平缓,重污染持续时间缩短.KNN数据挖掘算法减排评估结果显示,该方法能够较好地预测PM_(2.5)日均浓度的变化趋势,2018年3月11—14日,在减排和不减排情景下PM_(2.5)日均值分别为171和229μg·m~(-3),减排使得污染过程PM_(2.5)平均浓度下降了25.3%.数值模拟结果与KNN数据分析结论吻合,进一步验证了减排措施的有效性.综合看来,2018年空气污染过程中PM_(2.5)浓度相比历史相似气象条件下的污染过程显著降低,这是长期大力度减排效果的体现.  相似文献   

12.
为详细了解秀山县城区大气质量状况,选择2016年9月—2017年1月大气观测数据进行分析研究,结果表明:研究时段内PM_(10)、PM_(2.5)、SO_2、NO_2和O_3大气污染物浓度均满足《GB3095-2012环境空气质量标准》中二级标准要求,随着月份变化,PM_(10)、PM_(2.5)和O_3呈先降低再升高的趋势,NO_2呈逐渐增加趋势,SO_2变化趋势相对平缓。大气污染物NO_2与PM_(10)和PM_(2.5)呈显著性相关,聚类分析结果表明PM_(10)、PM_(2.5)对大气环境质量影响较大。气象参数与大气污染物均呈明显相关性,表明气象条件对污染物的扩散起着重要作用。  相似文献   

13.
利用中流量空气颗粒物采样器在武汉市青山区进行连续采样,分析了2013年冬季大气PM_(2.5)的质量浓度,并采用ICP-AES方法研究了样品中19种金属元素的组成和特征。结果表明,PM_(2.5)质量浓度为47~353μg/m~3,参照《环境空气质量标准》(GB 3095-2012)中的二级标准,其中88.6%的样品质量浓度超标;富集因子分析结果表明Ca、Cu、Pb、Zn、Cd、Ni、Mn、Ti、V、As和Hg在PM_(2.5)中明显富集,主要来自人类活动;运用正定矩阵因子分解法(PMF)对PM_(2.5)来源进行了解析,结果表明交通源,工业源,路面扬尘,燃煤源和建筑源是武汉市青山区冬季PM_(2.5)的主要来源。  相似文献   

14.
基于区域传输矩阵和PM2.5达标约束的大气容量计算方法   总被引:1,自引:0,他引:1  
大气环境容量是环保规划中的重要参考指标.为满足PM_(2.5)的达标,在传统的容量计算方法基础上,筛选不利气象年份,结合CAMx-PSAT模式计算的区域传输结果,优化广东省各城市的大气环境容量分配,并综合分析各城市超载情况,模拟容量情景下的PM_(2.5)浓度.结果表明,在全省各地市PM_(2.5)≤35μg·m-3的约束下,广东省SO2容量约为68万t;NOx约为135万t;NH3约为46万t;PM_(2.5)约为51万t.2014年广东省SO2排放超出容量10%,NOx超出12%,NH3超出9%,一次PM_(2.5)超出20%.污染物种超载数量较多的城市有广州、佛山、中山、清远.当实现容量情景时,全省PM_(2.5)年均浓度约在30μg·m-3,各城市年均值都达到国家空气质量二级标准.  相似文献   

15.
《环境科学与技术》2021,44(6):143-152
文章利用2015-2018年杭州市地面PM_(2.5)质量浓度资料、ERA5再分析资料和地面观测资料,在使用PCT分型法对杭州市冬季天气形势进行客观分型基础上,通过修正A值法计算得出了杭州市冬季不同天气形势下大气环境容量的变化特征。结果表明:2015-2018年杭州市冬季PM_(2.5)质量浓度持续偏高,空气污染最为显著。通过客观分型得出影响该地区冬季主要天气形势共分6种,分别为高压控制、高压底部控制均压场、L型高压控制、高压前部控制均压场、低压控制、低压前部控制均压场。其中,在高压控制、高压底部控制均压场、L型高压控制、低压控制时,其逐日大气环境容量相对较小,依次为5.66、5.88、7.95、0.52 t/d,易发生空气污染;在低压前部控制均压场和高压前部控制均压场时,大气环境容量较大,依次为15.26、13.14 t/d,不易发生空气污染。因此,得出的不同天气形势下大气环境容量的变化特征对于杭州市冬季大气污染排放管控政策的制定能够起到一定的指导作用。  相似文献   

16.
武汉市城市化进程与大气污染关系探究   总被引:1,自引:1,他引:0  
通过借鉴国内外城市化与环境污染相关性的研究成果,分别选取12个指标代表武汉市城市化进程,5个指标代表大气环境水平,以武汉市1997~2013年各级指标数据为基础数据,量化计算其综合指数,建立城市化进程和大气污染两者的相关模型,以此来分析武汉市城市化进程与大气污染的相互关系。研究表明:武汉市1997~2013年城市化进程平稳快速发展,大致呈现直线增长趋势;武汉市大气污染综合指数波动明显,大致呈倒"N"型曲线方式,说明其污染出现反复,其中可吸入颗粒物PM_(10)和PM_(2.5)严重超标,超标率为100%,成为主要污染物;通过计算城市化综合指数和大气污染综合指数构建两者关系模型,分析发现,武汉市城市化进程与大气污染关系的拟合不符合环境库兹涅茨倒"U"型曲线,而呈现出环境库兹涅茨倒"U"型曲线的特殊格式—倒"N"型曲线关系,由此揭示出武汉市城市化进程的大气污染效应。通过对武汉市近10年城市化进程与大气污染相关性的探究,最后给出降低城市可吸入颗粒物的相关对策。  相似文献   

17.
以上海市餐饮企业为例,研究了餐饮企业PM_(2.5)排放特征以及排放测算方法.按照单位灶头、单位时间、单位就餐人次这3种计算基准,获得了不同类型餐饮企业PM_(2.5)的排放因子,并在此基础上结合2014年上海市餐饮企业活动水平测算了PM_(2.5)的排放清单.结果表明,餐饮企业排放PM_(2.5)的浓度范围0.1~1.8 mg·m~(-3),甚至超过国家饮食业标准中关于油烟1mg·m~(-3)的排放限值;PM_(2.5)中OC质量贡献超过50%,OC/EC比值的变化范围为58.8~752.3,平均值为128.4,可作为餐饮排放的示踪特征.企业规模是影响餐饮企业PM_(2.5)排放因子的重要因素.按照灶头活动、餐饮作业时间以及就餐人次这3种方法计算得出的餐饮企业PM_(2.5)排放因子均表明,大型、中型企业明显高于小型和微型企业(食堂、快餐).基于上述3种排放因子,计算2014年上海PM_(2.5)排放量相对一致,表明本研究获得基于3种活动水平的排放因子比较可靠,未来可应用于其他城市餐饮企业排放清单的核算.  相似文献   

18.
利用2014—2016年绍兴市16个监测点位监测数据和代表年份2015年环统数据,分析了绍兴市大气环境现状、大气污染物变化特征和空间分布特征,重点对中心城区主要空气污染物浓度年、季和月变化特征进行分析,结果表明:绍兴市中心城区环境空气中SO_2、NO_2、CO、PM_(10)和PM_(2.5)质量浓度呈现"秋冬较高,春季次之,夏季较低"的季节变化特征,O_3质量浓度则正好相反。利用CAMX模型,对绍兴市主要大气污染物浓度进行模拟和结果校验,结果表明:绍兴市通过减排SO_2、NO_X和VOCS,全市SO_2、NO_2、PM_(2.5)、PM_(10)、O_3等污染物浓度将得到一定改善,PM_(2.5)则需协同削减至少18%的烟粉尘才能满足达标要求。推荐以烟粉尘为主其他污染物为辅的PM_(2.5)协同削减方案。建议从环境准入、强化减排、行业整治、协同削减、联防联控监管等方面进行污染控制。  相似文献   

19.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

20.
利用卫星遥感MODIS数据研究区域大气PM_(2.5)浓度分布是环境管理的有效方法。获取美国国家航空航天局MODIS L1B1KM数据,采用暗目标法反演阜新市大气气溶胶厚度AOD数据;提取阜新市5个大气监测站点位2014年3月至5月、2015年3月至4月期间PM_(2.5)浓度数据进行相关性分析,建立PM_(2.5)浓度-AOD之间的线性、一元二次、对数函数、幂函数及指数函数5种相关性模型;引用湿度影响因子建立大气PM_(2.5)浓度订正模型,采用PM_(2.5)浓度订正模型、Peterson模型分别订正PM_(2.5)浓度及AOD标高,应用阜新市环保局5个监测点位2014年6~12月、2015年5~12月期间PM_(2.5)的月平均浓度进行模型检验。对比分析订正后的5种相关性模型拟合优度,检验结果表明:订正方法提高了PM_(2.5)浓度-AOD相关性;线性相关性模型R2为0.633 6,相对误差为12.41%,相对其他4种模型相对误差较小。利用阜新市大气AOD预测PM_(2.5)浓度具有良好环境指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号