首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Recently, a typical semi-automatic recycling line is proved to be a feasible method for resource recovery of raw material of waste CRTs. However, there are no relevant studies about health risk assessment of the particles and heavy metals diffused from this physical recycling process for CRTs. In this study, TSP, PM10 and heavy metals (Cr, Ni, Cu, Zn, Cd and Pb) in the ambience of the workshop have been evaluated. The mean concentrations of TSP and PM10 in the workshop were 481.5 and 316.9 μg/m3, respectively. Meanwhile, it can be seen that Zn (8.1 and 7.9 μg/m3, respectively) was the most enriched metal in TSP and PM10, followed by Pb (3.2 and 3.0 μg/m3, respectively). Health risk assessment showed that the total hazard index was 3.29, exceeding the danger threshold. The health risk of different metals was Cr > Cd > Ni. In short, the research results show that mechanical–physical process for e-waste recycling do exist the pollutant mission. So the effective measures should be taken to reduce the harm of pollutants on the workers’ health.  相似文献   

2.
气化炉渣的重金属浸出特性及化学形态分析   总被引:2,自引:0,他引:2       下载免费PDF全文
分别采用硫酸硝酸法、水平振荡法和醋酸缓冲溶液法制取气化炉渣的浸出液,考察了不同提取方式对浸出液中重金属质量浓度的影响。采用改进BCR连续提取法对气化炉渣中的重金属Cr,Zn,Cu,Pb,Ni,As,Cd的化学形态进行了分析。实验结果表明:煤气化工艺中的气化炉渣属第Ⅰ类一般工业固体废物;在3种提取方式中,醋酸缓冲溶液法的重金属浸出种类最多,且浸出量最大;Cd和Cr对环境具有较高的潜在危害性,Cu次之,Zn,Pb,Ni,As主要以残渣态形式存在,对环境的直接危害性较低。  相似文献   

3.
In Finland, the new limit values for heavy metals in fertilizers used in agriculture and in forestry came into force in March 2007, and for materials used as earth construction agents, in June 2006. From the utilization point of view, it was notable that the total heavy metal concentrations (Cd, Cu, Pb, Cr, Mo, Zn, As, Ni, Ba, and Hg) in fly ash from a coal-fired power plant were lower than those limit values. The concentrations of the easily soluble elements Ca, Mg, Na, P, and Zn in the fly ash were between 3.5 and 35 times higher than those found in the coarse mineral soils of Finland. Fly ash is a potential agent for soil remediation and for improving soil fertility. If inorganic materials and by-products are utilized in earthworks, the content of harmful compounds must be low and the harmful components must be tightly bound to the matrix. Therefore, a five-stage sequential extraction procedure was used to evaluate the extractability of different elements in fly ash into the following fractions: (1) the water-soluble fraction, (2) the exchangeable fraction (CH3COOH), (3) the easily reduced fraction (NH2OH-HCl), (4) the oxidizable fraction (H2O2 + CH3COONH4), and (5) the residual fraction (HF + HNO3 + HCl).  相似文献   

4.
Sorption capacities were evaluated for the dissolved stormwater (SW) pollutants onto two tree mulches and jute fiber. SW spiked with predetermined concentrations of copper (Cu), cadmium (Cd), hexavalent chromium (Cr +6), lead (Pb), zinc (Zn), and benzo[a]pyrene (B[a]P), naphthalene (NP), fluoranthene (FA), 1,3‐dichlorobenzene (DCB), and butylbenzylphthalate (BBP) were used in this study. Each medium removed close to 100 percent of all the pollutants at the concentrations studied. Sorption capacities (μg/g) of the three organic media were in the order of jute > hardwood mulch > softwood mulch, and on a mole basis, both the heavy metals and the toxic organics were sorbed by the three media in an identical sequence: Cr +6 > Cu, Zn > Cd > Pb; and NP > DCB > FA > B[a]P > BBP. Sorption capacities of the hardwood wood mulch and jute fiber for the pollutants were correlated with distinctive physical properties of the pollutants. © 2005 Wiley Periodicals, Inc.  相似文献   

5.
This study characterized the organic matter and heavy metals in the leachate from two typical municipal solid waste (MSW) sanitary landfills in China, the recently established (3-year-old) Liulitun landfill and the mature (11-year-old) Beishenshu landfill, using a size fractionation procedure. The organic matter of all raw and treated leachate samples primarily existed in a truly-dissolved fraction with an apparent molecular weight (AMW) of <1 kDa, and its percentage decreased with an increase in overall AMW. The leachate from the newer landfill had a higher percentage of truly-dissolved organic matter. After anaerobic treatment, this leachate had a similar size fraction of organic matter to that seen for the raw leachate of the mature landfill. Biochemical processes had different removal efficiencies for various types of AMW organic matter, and the concentration of moderate AMW organic matter appeared to increase throughout these processes. Most of the heavy metals existed in a colloidal fraction (AMW >1 kDa and particle size <0.45 μm). The behaviors of different species of heavy metals had large variations. The size fractions of heavy metal species were significantly affected by treatment processes and landfill age, except for Zn. The concentration ratio of heavy metals to organic matter was maximal in the colloidal fraction and showed an inverse change to that seen for organic matter concentration changes caused by biochemical processes. Consequently, the pollution levels of heavy metals were substantially increased by treatment processes, although their concentrations decreased.  相似文献   

6.
In this study, an anaerobic sequencing batch reactor (ASBR) was operated with leachate from Brady Road Municipal Landfill in Winnipeg, Manitoba, Canada. Leachate was collected twice from the same cell at the landfill, during the first and 70th day of the study, and then fed into the ASBR. The ASBR was seeded at the start-up with biosolids from the anaerobic digester from Winnipeg’s North End Water Pollution Control Center (NEWPCC). Due to the higher COD and VFA removal rates measured with the second batch of leachate, an increase of approximately 0.3 pH units was observed during each cycle (from pH 7.2 to 7.5). In addition, CO2 was produced between cycles at constant temperature where a fraction of the CO2 became dissolved, shifting the CO2/bicarbonate/carbonate equilibrium. Concurrent with the increase in pH and carbonate, an accumulation of fixed suspend solids (FSS) was observed within the ASBR, indicating a buildup of inorganic material over time. From it, Ca2+ and Mg2+ were measured within the reactor on day 140, indicating that most of the dissolved Ca2+ was removed within cycles. There is precedence from past researches of clogging in leachate-collection systems (Rowe et al., 2004) that changes in pH and carbonate content combined with high concentrations of metals such as Ca2+ and Mg2+ result in carbonate mineral precipitants. A parallel study investigated this observation, indicating that leachate with high concentration of Ca2+ under CO2 saturation conditions can precipitate out CaCO3 at the pH values obtained between digestion cycles. These studies presented show that methanogenesis of leachate impacts the removal of organic (COD, VFA) as well as inorganic (FSS, Ca2+) clog constituents from the leachate, that otherwise will accumulate inside of the recirculation pipe in bioreactor landfills. In addition, a robust methanogenesis of leachate was achieved, averaging rates of 0.35 L CH4 produced/g COD removed which is similar to the theoretical removal of 0.4 L CH4/g COD. Therefore, using methanogenesis of leachate prior to recirculation in bioreactor landfills will help to (1) control clog formation within leachate pipes and (2) produce an important additional source of energy on-site.  相似文献   

7.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.  相似文献   

9.
The concentrations of heavy metals Pb, Cd, Cu, Zn and Hg, benzo[a]pyrene and oil products (C15–C28) in bulk (wet and dry) atmospheric deposition in Vilnius city in 2005–2006 were analysed. The highest flux to the ground surface of the city residential area, reaching 1,680 mg m?2 year?1, was determined for oil products, which in atmospheric bulk deposition was estimated to be mainly in the form of solid sediments. Among heavy metals, the highest flux was determined for Zn (113.5 mg m?2 year?1), while the lowest flux was determined for Hg (0.06 mg m?2 year?1). The flux of investigated pollutants ranges from a few times, or for some pollutants, up to one order of magnitude higher at the urban sampling site in comparison to residential or background sites. Some hundred tons of oil products, approximately 52 tons of zinc and a considerably lower amount of mercury, benzo[a]pyrene and cadmium deposit yearly to the ground and water surface of Vilnius city. Metallic constructions related to transport and buildings, automobile exhausts, spills of fuel and lubricants are suggested to be the factors which result in the accumulation of high amounts of heavy metals, oil products and other pollutants on the ground surface of the city.  相似文献   

10.
The solubility and potential mobility of heavy metals (Cd, Cu,Hg, Pb and Zn) in two urban soils were studied by sequential andleaching extractions (rainwater). Compared to rural (arable) soils on similar parent material, the urban soils were highlycontaminated with Hg and Pb and to a lesser extent also with Cd,Cu and Zn. Metal concentrations in rainwater leachates were related to sequential extractions and metal levels reported fromStockholm groundwater. Cadmium and Zn in the soils were mainly recovered in easily extractable fractions, whereas Cu and Pb were complex bound. Concentrations of Pb in the residual fractionwere between two- and eightfold those in arable soils, indicatingthat the sequential extraction scheme did not reflect the solidphases affected by anthropogenic inputs. Cadmium and Zn conc. inthe rainwater leachates were within the range detected in Stockholm groundwater, while Cu and Pb conc. were higher, whichsuggests that Cu and Pb released from the surface soil were immobilised in deeper soil layers. In a soil highly contaminatedwith Hg, the Hg conc. in the leachate was above the median concentration, but still 50 times lower than the max concentration found in groundwater, indicating the possibilityof other sources. In conclusion, it proved difficult to quantitatively predict the mobility of metals in soils by sequential extractions.  相似文献   

11.
With the increase in the number of municipal solid waste incineration (MSWI) plants constructed in China recently, great attention has been paid to the heavy metal leaching toxicity of MSWI residues. In this study, the effects of various parameters, including extractant, leaching time, liquid-to-solid ratio, leachate pH, and heavy metal content, on the release properties of Cd, Cr, Cu, Ni, Pb, and Zn from MSWI bottom ash were investigated. Partial least-squares analysis was employed to highlight the interrelationships between the factors and response variables. Both experimental research and geochemical modeling using Visual MINTEQ software were conducted to study the pH-dependent leaching behavior of these metals in fresh and weathered bottom ash, considering precipitation/dissolution and surface complexation reactions (adsorption by hydrous ferric oxide and amorphous aluminum oxide/hydroxide). The results showed that leachate pH was the predominant factor influencing heavy metal leachability. The leaching of Cu, Pb, and Zn was mainly controlled by precipitation/dissolution reactions, whereas surface complexation had some effect on the leaching of Cr, Cd, and Ni for certain pH ranges. The modeling results aggreed well with the experimental results. Part of this work was presented at the Fourth International Conference on Combustion, Incineration/Pyrolysis and Emission Control (i-CIPEC)  相似文献   

12.
The use of soluble PO43− as a heavy metal chemical stabilization agent was evaluated for a dust generated from melting or vitrification of municipal solid waste combustion residues. Vitrification dusts contain high concentrations of volatile elements such as Cl, Na, K, S, Pb, and Zn. These elements are present in the dusts largely as simple salts (e.g. PbCl2, ZnSO4) which are highly leachable. At an experimental dose of 0.4 moles of soluble PO43− per kg of residue, the pH-dependent leaching (pH 5,7,9) showed that the treatment was able to reduce equilibrium concentrations by factors of 3 to 100 for many metals; particularly Cd, Cu, Pb and Zn. Bulk and surface spectroscopies showed that the insoluble reaction products are tertiary metal phosphate [e.g. Zn3(PO4)2] and apatite [e.g. Pb5(PO4)3Cl] family minerals. Geochemical thermodynamic equilibrium modeling showed that apatite family and tertiary metal phosphate phases act as controlling solids for the equilibrium concentrations of Ca2+, Zn2+, Pb2+, Cu2+, and Cd2+ in the leachates during pH-dependent leaching. Both end members and ideal solid solutions were seen to be controlling solids. Soluble phosphate effectively converted soluble metal salts into insoluble metal phosphate phases despite the relatively low doses and dry mixing conditions that were used. Soluble phosphate is an effective stabilization agent for divalent heavy metals in melting dusts where leachable metals are present in high concentrations.  相似文献   

13.
This study investigates the characteristic of heavy metals (Pb, Zn, Cu, Cd, Cr, Ni and As) in biochar derived from sewage sludge at different pyrolysis temperatures (300, 400, 500, 600 and 700 °C). The heavy metal concentrations, chemical speciation distribution, leaching toxicity, and bio-available contents were investigated using ICP-OES after microwave digestion, a sequential extraction procedure recommended by the Community Bureau of Reference (BCR), an improved nitric acid–sulphuric acid method, and diethylenetriamine pentaacetic acid (DTPA) extraction method, respectively. The results showed that a great percentage of the heavy metals remained in biochar, the concentrations of heavy metals in biochar (except Cd in B7) were higher than that in sludge, and the enrichment of the heavy metals in biochar enhanced with the pyrolysis temperature. Although the effect of pyrolysis temperature on the chemical speciation distribution, the leaching toxicity and the bio-available contents of heavy metals in biochar was inconsistent, the potential risk of biochar on soil and groundwater contamination was lower than sewage sludge.  相似文献   

14.
The concentrations of heavy, trace elements and major ions measuredin the Uluda and Bursa aerosols were investigated to assess size distributions, spatial and temporal variability, sources and source regions affecting the composition of aerosols in Uluda and Bursa. A total of 81 samples were collected in two sites, one in Bursa city and another in the Uluda Mountain during two sampling campaigns. Daily samples were collected using a high volume sampler on Whatman 41 cellulose filters in Uluda, while three days interval samples were collected in Bursa using an automatic dichotomous sampler on PTFE Teflon filters. Samples were analysed for 15 trace and heavy metals (Al, Fe, Ba, Na, Mg, K, Mn, Ca, Cu), (V, Pb, Cd, Cr, Ni, Zn), and 4 major ions (SO4 2-, NO3 -, Cl-), (NH4 +) using ICP-AES, GFAAS, HPLC and UV/VIS Spectrophotometer,respectively. In general, concentrations of the metals measured inUluda aerosols were lower than those in Bursa. The concentrations of crustal elements were higher in summer than winter, while anthropogenic elements had higher concentrations in winter than summer. Most of the mass of crustal elements was concentrated in the coarse mode while the mass of the heavy metals was concentrated in the fine mode. Factor analysis revealed four factors with sources including crustal, industrial and combustion. Back trajectory calculations were used to determine long range contributions. These calculations showed that contributions were mostly from European countries, former Soviet Union countries, Black Sea and North Africa.  相似文献   

15.
Concentrations and Pools of Heavy Metals in Urban Soils in Stockholm,Sweden   总被引:8,自引:0,他引:8  
The concentrations of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb andZn) and arsenic (As) were surveyed and the metal pools estimatedin soils in Stockholm Municipality. The sampling sites were distributed all over the entire municipality with a higher sampling density in the city centre. Soils were sampled to a maximum depth of 25 to 60 cm. Soil texture, total-C content, electrical conductivity and pH were analysed. Heavy metal concentrations were determined after wet digestion with boiling7 M HNO3.The results showed a wide range in heavy metal concentrations, as well as in other soil properties. The city centre soils constituted a rather homogeneous group whereas outside this areano geographical zones could be distinguished. These soils were grouped based on present land use, i.e. undisturbed soils, public parks, wasteland (mainly former industrial areas), and roadside soils. The city centre and wasteland soils generally hadenhanced heavy metal concentrations to at least 30 cm depth compared to park soils outside the city centre and rural (arable)soils in the region, which were used to estimate background levels. For example, the mean Hg concentration was 0.9 (max 3.3)mg kg-1 soil at 0–5 cm and 1.0 (max 2.9) at 30 cm depth in the city centre soils, while the background level was 0,04 mg kg-1. Corresponding values for Pb were 104 (max 444) and135 (max 339) mg kg-1, at 0–5 and 30 cm, respectively, while the background level was 17 mg kg-1.The average soil pools (0–30 cm depth) of Cu, Pb and Zn were 21,38 and 58 g m-2 respectively, which for Pb was 3–4 timeshigher and for Cu and Zn 1.5–2 times higher than the backgroundlevel. The total amount of accumulated metals (down to 30 cm)in the city centre soils (4.5*10 6 m2 public gardens and green areas) was estimated at 80, 1.1, 120 and 40 t for Cu, Hg, Pb and Zn, respectively. The study showed (1) thatfrom a metal contamination point of view, more homogeneous soilgroups were obtained based on present land use than on geographicdistance to the city centre, (2) the importance of establishing a background level in order to quantify the degree of contamination, and (3) soil samples has to be taken below the surface layer (and deeper than 30 cm) in order to quantify theaccumulated metal pools in urban soils.  相似文献   

16.
Permeable reactive barriers made of zero‐valent iron (ZVI PRBs) have become a prominent remediation technology in addressing groundwater contamination by chlorinated solvents. Many ZVI PRBs have been installed across the United States, some as research projects, some at the pilot scale, and many at full scale. As a passive and in situ remediation technology, ZVI PRBs have many attractive features and advantages over other approaches to groundwater remediation. Ten ZVI PRBs installed in California were evaluated for their performance. Of those ten, three are discussed in greater detail to illustrate the complexities that arise when quantifying the performance of ZVI PRBs, and to provide comment on the national debate concerning the downgradient effects of source‐zone removal or treatment on plumes of contaminated groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 ± 100 °C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl2. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 °C, 10 and 30 min and 3.4 and 4.6 m s−1. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu.In the pellet, three major reactions occur: formation of HCl and Cl2 from CaCl2; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl2 out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.  相似文献   

18.
Chemical stabilization of heavy metals in medical waste fly ash has been carried out using the following compounds: a chelating agent (Ashnite S803), a commercial acidic phosphoric acid solution (Ashnite R303) as well as basic one (Ashnite R201). In order to predict the leachability of heavy metals, Japanese Leaching Test (JLT-13) procedure was applied to the stabilized fly ash products. An ecotoxicity assessment of the stabilized fly ash products leachate and the unstabilized fly ash leachate was conducted using a battery of bioassays based on lettuce root elongation inhibition, Daphnia magna mortality and Vibrio fischeri photoinhibition. The results showed that the three stabilizing agents were able to significantly decrease (ANOVA, P < 0.05) the concentration of heavy metals in the leachates. Although the leachate from both stabilized and unstabilized fly ash were very toxic to lettuce and daphnids, the incorporation of these stabilizing agents diminished significantly (ANOVA, P < 0.05) the toxicity of the leachates towards the three tested organisms. Pearson correlation analysis was used to analyze the strength of the relationship between chemical elements concentration in the leachate and bioassays results. Most of the heavy metals in the leachate were significantly correlated (ANOVA, P < 0.05) with the toxicity values of the bioassays. However, the correlation was not found between the concentration of dissolved organic carbon (DOC) and the toxicity effect of the leachate to the tested organisms.  相似文献   

19.
Limestone has been proven effective in removing metals from water and wastewater. A literature review indicated that limestone is capable of removing heavy metals such as Cu, Zn, Cd, Pb, Ni, Cr, Fe and Mn are through a batch process or by filtration technique. The removal capability is reported at up to 90%. However, to date most of the studies have been focused on synthetic wastewater. The present study attempts to investigate the suitability of limestone to attenuate total iron (Fe) from semi aerobic leachate at Pulau Burung Landfill Site in Penang, Malaysia. Iron was found in significant quantities at the landfill site. The study also aims to establish the Fe isotherm and breakthrough time of the proposed limestone filter for post-treatment to the migrating landfill leachate before its release to the environment. The Fe isotherms were established using a batch equilibrium test, while the breakthrough characteristics were determined using continuous flow permeating through a limestone column. The latter was used in order to simulate the continuous flow of leachate that would occur in the proposed limestone filter. The limestone media used in the experiment contain more than 90% CaCO3 with particle sizes ranging from 2 to 4 mm. Four filter columns (each 150 mm in diameter and 1000 mm depth) were installed at the landfill site. Metal loadings were kept below 0.5 kg /m3 day and the experiment was run continuously for 30 days. Initial results indicated that 90% of Fe can be removed from the leachate based on retention time of 57.8 min and surface loading of 12.2 m3/m2 day. For the batch study on the Fe isotherm, the results indicated that limestone is potentially useful as an alternative leachate treatment system at a relatively low cost.  相似文献   

20.
Leachate from a landfill is collected and flowed in leachate accumulation pond, and sent to treatment facility. However, leachate in the pond can be a source of complaints from residents due to off coloration or odor, particularly near heavily populated urban areas. In this study, for the purpose of appropriate control of leachate pond, pond water and sediment were sampled in an offshore municipal solid waste disposal site 2 years after the disposal site was closed, and analyzed some parameters to estimate their properties. The pond water had high alkalinity due to the disposal of incineration residues, and EC and CODMn were also high. On the other hand, Cr, Mn, Fe, Cu, Zn, Cd, and Pb did not exceed the Japanese effluent water standards. Total sulfide was detected from all sediment samples during the sampling period, and values in the summer were slightly higher than at other times. To investigate the stabilization of targeted disposal site, the relationships among cumulative liquid/solid ratio (L/S) with pH and Cl? elution after closing the site were examined. Both parameters showed a direct relationship with cumulative L/S ratio, which can be anticipated to continue increasing in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号