首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

The direct conversion of natural products to useful engineering materials is desirable from both economic and environmental considerations. We describe the synthesis and properties of 100?% oil-based epoxy resins generated from three epoxidized oils. The catalyst, tris(pentafluorophenyl)borane (B(C6F5)3) in toluene, allowed for controlled cationic polymerization at a very low concentration. Epoxidized oils (derived from triolein, soybean, and linseed oil) had varying epoxy content, rendering resins of different cross-link density. The polymerization was carried out at room temperature followed by post-curing at elevated temperature to speed up conversion. Epoxy resins were amorphous transparent glasses below glass transitions and hard rubbers above. Despite their high cross-link density, these materials show relatively low Tg’s reflecting the aliphatic nature of fatty acids and the presence of plasticizing “dangling” chains. The structure of the triglyceride starting oils influenced the properties of the resulting materials: the more regular structure of triolein compared to the very heterogeneous structures of soybean and linseed oils seemed to have enhanced some properties of the polymer networks. These epoxy polymers are potentially useful as encapsulating and potting compounds for electronic applications.

  相似文献   

2.
Dialdehyde starch (DAS) and zein, a hydrophobic corn protein, were investigated to produce biodegradable plastics with improved water resistance and mechanical properties. In the study, dialdehyde starch and zein ratio, plasticizers, and degree of starch oxidation were examined. Increased molding temperature and level of starch oxidation decreased water absorption of the plastic. Tensile strength and Young's modulus increased with starch oxidation. The biodegradation of starting materials and ground plastic specimens was studied in aerobic soil reactors maintained at 25°C for 180 days. Biodegradation of corn starch, zein, and dialdehyde starch for 180 days produced CO2 equivalent to 64, 63, and 10% of theoretical carbon, respectively. Specimens of molded DAS and zein (3 : 1) plastic showed accelerated CO2 evolution compared to DAS and other raw materials alone. By 180 days, specimens made with starch of low oxidation (1 and 5% oxidized) demonstrated a 60% biodegradation, and specimens with highly oxidized starch (90% oxidized) achieved 37% biodegradation.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.Journal Paper J-15927 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Project No. 3258.  相似文献   

3.
A variety of novel polymeric materials ranging from elastomers to tough, rigid plastics have been prepared by the cationic copolymerization of regular soybean oil, low-saturation soybean oil, or conjugated low-saturation soybean oil with various alkene commonomers. Using appropriate compositions and reaction conditions, 70–100% of the soybean oil is covalently incorporated into the cross-linked polymer networks, contributing significantly to cross-linking during copolymerization. The resulting thermosets exhibit thermophysical and mechanical properties that are competitive with those of their petroleum-based counterparts. In addition, good damping and shape memory properties have been obtained by controlling the degree of cross-linking and the rigidity of the polymer backbone. New materials with similar characteristics have also been produced from other biological oils, including tung, and fish oils using the same technique. The new, more valuable properties of these bioplastics suggest numerous promising applications of these novel polymeric materials.  相似文献   

4.
The structural and mechanical properties of extruded high-amylose and normal cornstarch were studied as a function of time and humidity to determine the suitability of high-amylose cornstarch for use in biodegradable plastic materials. After extrusion at 170°C and 20–30% moisture, high-amylose starch was mostly amorphous, with small amounts of V- and A-type crystal structures. Tensile strengths for the extruded high-amylose starch ribbons were rather stable with time (65, 50, and 35 MPa at 20, 50, and 80% RH) and were higher than those for normal cornstarch (25, 40, and 15 MPa after 84 days at 20, 50, and 80% RH). Elongations at break declined gradually with time for high-amylose starch (6, 11, and 11% after 84 days at 20, 50, and 80% RH), while rapid declines were seen for normal cornstarch at higher humidities (3, 9, and 3% after 84 days at 20, 50, and 80% RH). Differential scanning calorimetry revealed that normal cornstarch aged at a high humidity had much larger sub-T g endotherms than high-amylose cornstarch. These endotherms reflect decreases in enthalpy and free volume which occur in amorphous polymers due to structural relaxation. It appears, therefore, that plastic materials prepared from gelatinized or melted high-amylose cornstarch should have greater strength and flexibility and slower physical aging than those prepared from gelatinized normal cornstarch.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

5.
Biobased polyurethanes from soybean oil–derived polyols and polymeric diphenylmethane diisocyanate (pMDI) are prepared and their thermomechanical properties are studied and evaluated. The cross-linked biobased polyurethanes being prepared from soy phosphate ester polyols with hydroxyl contents ranging from 122 to 145 mg KOH/g and pMDI within 5 min of reaction time at 150°C in absence of any catalyst show cross-linking densities ranging from 1.8 × 103 to 3.0 × 103 M/m3, whereas glass transition temperatures vary from approximately 69 to 82°C. The loss factor (tan ) curves show single peaks for all these biobased polyurethanes, thus indicating a single-phase system. The storage moduli (G) at 30°C range from 4 × 108 to 1.3 × 109 Pa. Upon postcure at 150°C, the thermomechanical properties can be optimized. Cross-link densities are improved significantly for hydroxyl content of 139 and 145 mg KOH/g at curing time of 24 h. Similarly, glass transition temperature (Tg) and storage moduli around and after Tg are increased. Meanwhile, tan intensities decrease as result of restricted chain mobility. Longer exposure time (24 h) induces thermal degradation, as evidenced by thermogravimetric analysis (TGA). The dynamic mechanical (DMA) analysis shows that postcure at 100°C for times exceeding 24 h also leads to improved properties. However, cross-linking densities are lower compared to postcure carried out at 150°C.  相似文献   

6.
A soypolyol based on epoxidized soybean oil (ESO) was prepared in the presence of HBF4 and diethanolamine (DEA) was used as ring opener. A series of polyurethane rigid foam were prepared by mixing polyol with TDI using an isocyanate index of 1.1. The polyol used in this paper were a mixture of soypolyol and a commercial PL-5601 polyester polyol and the mass fraction of PL-5601 was in the range of 0–60%. The thermal properties of the resins were characterized by DSC and TG. The results showed that these rigid foams possess high thermal stability. There were two glass transition temperature of each foam and Tg1 was increasing with the increasing of OH value. The compression strength of the foam was also recorded, and the effect of mass ratio of soypolyol and PL-5601 polyester polyol on the compression strength was discussed.  相似文献   

7.
A new biodegradable synthetic polyesteramid (PEA) was characterized by means of thermogravimetry (TG) differential scanning calorimetry (DSC) and dynamic rheological measurements. Two glass transition ranges at about –33 and 38°C and a melting enthalpy of 33 J/g were measured, indicating that PEA is an immiscible blend of two components with a small crystalline part. The material was spun in a high-speed spinning process within the range of 2,000–6,000 M/min and an underpressure spunbonding process within the range of 3,600–7,700 M/min. The textile physical properties of the fibers were 100 MPa tenacity at an elongation at break of 30%, and an E-modulus of 0.5 GPa. The mass per unit area of the spunbonded nonwovens ranged from 70–159 g/M 2. The strength of the spunbonded nonwovens was 28–51 N and 42–74 N in machine and cross direction, respectively. The air permeability of the nonwovens decreased at high air velocities and more fineness of the filaments from 1240–380 l/M 2 s.  相似文献   

8.
Soil respiration is a large C flux which is of primary importance in determining C sequestration. Here we ask how it is altered by atmospheric CO2 concentration and N additions. Swards of Lolium perenne L. were grown in a Eutric cambisol under controlled conditions with and without the addition of 200 kg NO 3 –N ha–1, at either 350 ppm or 700 ppm CO2, for 3 months. Soil respiration and net canopy photosynthesis were both increased by added N and elevated CO2, but soil respiration increased proportionately less than fixation by photosynthesis. Thus, both elevated CO2 and N appeared to increase potential C sequestration, although adding N at elevated CO2 reduced the C sequestered as a proportion of that fixed relative to elevated CO2 alone. Across all treatments below-ground respiratory C losses were predicted by root biomass, but not by soil solution C and N concentrations. Specific root-dependent respiration was increased by elevated CO2, such that belowg-round respiration per unit biomass and per unit plant N was increased.  相似文献   

9.
Six film samples of low-density polypropylene (LDPE)/linear LDPE (LLDPE)/high-density polypropylene (HDPE) with varying ratios of LDPE (20–45 ... wt%) and LLDPE (25–50 wt%) having a fixed amount of HDPE at 30 wt% were prepared by blown film extrusion technique. The samples were aged at four different temperatures, 55°, 70°, 85°, and 100°C, for four different time periods in the interval of between 150 hours and up to 600 hours. The change in the structure of various constituents and the formation of various oxygenated (peroxy and hydroperoxy) and unsaturated groups during thermo-oxidative degradation was discussed by infrared spectroscopy. The visiosity-average molecular weight was found to have decreased slowly in the initial aging hours and temperatures, whereas it decreased by 10% with its previous value tensile strength that is, 100°C when aged for 600 hours. The tensile strength of the sample first increased by 67% at 55°C and 89% at 70°C up to 450 hours, whereas the values increased by 52.5% at 85°C and 33.9% at 100°C when aged for 150 hours and then decreased. The percentage elongation at break increased by 2.7% at 55°C and 10.7% at 70°C for 150 and 300 hours of aging, respectively, whereas the percentage decreased when aged at 85°C and 100°C for up to 600 hours of aging. The values of gel content (percent) increased and initial degradation temperature decreased with aging time and temperature.  相似文献   

10.
A respirometric system was used to analyze the biodegradation of high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films in soil under laboratory conditions. The respirometric system consisted of air-conditioning pretraps, a soil reactor, and a carbon dioxide (CO2) posttrap. A 200-g homogeneous soil mixture of all-purpose potting soil : manure soil : sand [1 : 1 : 1 (w/w)] and 1.5 g of PLA plastic films in 1 × 1-cm2 squares was added to each bottle. The respirometers were placed in a 28, 40, or 55°C water bath for 182 days. Treatments (three replicates) included native corn starch (positive control), polyethylene (Glad Cling Wrap; negative control), and three PLA films: Ca-I (Cargill Dow Polymers LLC, monolayer), GII (Cargill Dow Polymers LLC, Generation II), and Ch-I (Chronopol; monolayer). The degree of polymer mineralization was indicated by the cumulative CO2 liberated from each respirometer. The initial average mineralization rate and total percentage mineralized of the PLA plastic films at 28, 40, and 55°C was 24.3, 41.5, and 76.9 mg/day with a 27, 45, and 70% carbon loss, respectively. No decrease in soil pH was observed after 182 days of mineralization. Hence, increase in soil temperature drastically enhanced the biodegradation of PLA plastic films in soil under laboratory conditions (P < 0.0001).  相似文献   

11.
Amylopectin, as a potato starch based polymer, with a molecular weight of six million gram/mol was characterized using the Inverse Gas Chromatography Method (IGC). DSC method was also used to measure the glass and melting temperatures. Both DSC and IGC agreed well on a Tg of 105°C and Tm of 160–166°C. Nineteen solutes (solvents) were injected onto a chromatographic column containing amylopectin. These solutes revealed the interaction of alkanes with AP, and the wettability and water intake of AP. Alkanes showed exothermic values of interaction parameters which were increased as the temperature increased and as the number of carbons in the alkane series decreased. Retention diagrams of these solutes in a temperature range of 80–200°C revealed two zones, crystalline and amorphous. Tg and Tm were measured using these zones which complimented the DSC values. The two zones were used to calculate the degree of crystallinity below the melting temperature which ranged from 85% at 104°C to 0% at 161°C. The dispersive component of the surface energy of amylopectin was measured using alkanes which ranged from 25.35 mJ/m2 at 80°C to 8.47 mJ/m2 at 200°C. This is attributed to the weak crystalline surface of AP at 80°C and when the surface melted at 160°C the surface energy decreased due to the thermal expansion of the surface.  相似文献   

12.
Carbon Molecular Sieving Membranes Derived from Lignin-Based Materials   总被引:1,自引:0,他引:1  
Carbon molecular sieving membranes were prepared by pyrolysis of lignocresol derived from lignin by the phase-separation method. Lignocresol membranes formed by a dip process on a porous -alumina tubing were carbonized at 400–800°C under nitrogen atmosphere. The thickness of the membrane formed on the outer surface of the substrate was about 400 nm judging from SEM observation. Gas-evolving behavior of lignocresol was measured using thermogravimetry-mass spectrometry (TG-MS). The gaseous products evolved from lignocresol included a number of fragments with higher molecular weights; whereas those from phenolic resin are mainly due to phenol and methylphenol. These evolved pyrolysis fragments effectively contribute to micropore formation of carbonized lignocresol membranes. Gas permeation rates through the membrane decreased in the order of increasing kinetic molecular diameter of the penetrant gas, and the membrane behaved like a molecular sieve. The permeation properties were dependent on heating conditions, and a pyrolysis temperature of 600°C gave the best membrane performance. Gas selectivities of the membrane prepared at 600°C were 50, 8, 290, and 87 for CO2/N2, O2/N2, H2/CH4, and CO2/CH4 at 35°C, respectively.  相似文献   

13.
Polyurethane networks from soybean oil have a number of valuable properties, which are determined by their chemical composition and cross-linking density. Changing the molar ratio of reacting groups can vary the latter. In this work we have varied the NCO/OH molar ratio (isocyanate index) from 1.05 to 0.40 in a soy polyol/MDI system, and tested physical and mechanical properties. The degree of swelling in toluene increased from 52–206% by decreasing isocyanate index from 1.05–0.4. The sol fractions and network densities determined from swelling in toluene were compared with ones obtained using the network formation theory based on branching processes. The comparison of experimental sol fractions and network densities with those predicted by theory of network formation suggest that 5–10% of bonds are lost in cycles and that high entanglement contributions increase the network densities. Polymers prepared with NCO/OH ratios from 1.05–0.8 were glassy while the others were rubbery, and that was reflected in their properties. Glass transition temperature (DSC) of the networks decreased from 64–7°C, tensile strength from 47–0.3 MPa, and elongation at break increased from 7–232%. The activation energy of the glass transition, determined from dielectric spectra, varied from 222–156 kJ/mol as the molar ratio of NCO to OH groups decreased from 1.05–0.4.  相似文献   

14.
Information pertaining to biodegradability of renewable polymeric material is critical for the design and development of single-use biodegradable consumer products. The rate and extent of biodegradation of corn fiber, corn zein, cornstarch, distillers grain, and corn gluten meal were evaluated in compost environments under variable temperature, pH, and moisture conditions. Generally, composts with higher temperature (40°C), neutral pH (7.0), and 50%–60% moisture appeared to be ideal for corn coproduct biodegradation, particularly for corn gluten meal and corn zein. Low moisture conditions slowed biodegradation considerably, but degradation rates improved when moisture content increased up to 60%. Thereafter, increased moisture particularly slowed the degradation of corn gluten meal and corn zein, whereas cornstarch degradation remained unaffected. At low pH (4.0) and high pH (11.0) the rate of degradation of most coproducts was slowed somewhat. Cornstarch degradation was slower at pH 7.0, but degradation improved with increased temperatures. Increase in compost temperature from 25 to 40°C (in 5°C increments) also improved biodegradation of corn fiber and distillers grain. Addition of 1% urea to compost as a nitrogen source decreased the extent of biodegradation nearly 40% for corn gluten meal and corn zein, and 20% for cornstarch samples. Treatment of compost with 0.02% azide inhibited biodegradation of all coproducts, suggesting that the presence of metabolically active microbial cells is required for effective degradation of biobased materials in a compost environment.  相似文献   

15.
Polymers formed from peroxidase-based free-radical polymerization reactions were characterized for rates of mineralization against lignin and humic acid controls. Degradation studies were carried out in soil systems over 202 days and cumulative net CO2 was determined. Whereas mineralization of the humic acid and alkali lignin controls totaled ca. 20% at the end of the test exposure, there was essentially no net mineralization of the hydrolytic lignin control. Mineralization of the test samples totaled 5% for poly(p-ethylphenol) and 11% for poly(m-cresol). At the same time, mineralization of the poly(p-phenyl phenol) totaled 64%. Conversely, the readily biodegradable polymers cellulose and PHB reached values of 91 to 97% in less than 60 days. Our data suggest that the mineralization kinetics of the enzymatically derived polyaromatics mimic those of the naturally occurring heteropolymers.  相似文献   

16.
In this work, a major fatty acid from coconut oil was used as starting material in preparing biodegradable polymers. Thus, polyesters and polyamides from varying proportions of monomers, hydroxy- and amino- derivatives of lauric acid were synthesized. Initially, the derivatives were prepared by regioselective chlorination of lauric acid, in the presence of ferrous ions in strong acid medium. Subsequent hydroxylation and amination procedures yielded the hydroxy- and amino- derivatives of lauric acid. These monomers were polymerized in a reaction tube by simple polycondensation method at 220–230 °C for 6–8 h without catalyst. Molecular weight determination using –COOH by end group titration and gel permeation chromatography (GPC) gave an average molar mass of 3,000–5,000 g mol−1 with n = 15–25 monomer units. Thermal properties such as glass transition (Tg) and decomposition (Td) temperatures were obtained using differential scanning calorimetry (DSC). The same processes of synthesis and determinations above were applied to coconut fatty acids, derived from saponification of coconut oil, and resulted to very similar conclusions. A quick biodegradation assay against fungus Aspergillus niger UPCC 4219 showed that the polymers prepared are more biodegradable than conventional plastics such as polypropylene, poly(ethyleneterepthalate) and poly(tetrafluoroethylene) but not as biodegradable as cellulosic (newsprint) paper.  相似文献   

17.
The aim of this study was to investigate the possibilities of using a by-product (red mud) from alumina production as a catalyst for recovery of waste. The conversion of waste mineral oil (WMO) and waste mineral oil/municipal waste plastic (WMO/MWP) blends over red mud (RM), a commercial hydrocracking catalyst (silica–alumina), and a commercial hydrotreating catalyst (Ni–Mo/alumina) to fuel has been studied. The effect of the catalyst and the temperature on the product distribution (gas, liquid, and wax) and the properties of liquid products were investigated. In the case of hydrotreatment of WMO, the liquids obtained over RM at both 400° and 425°C had larger amounts of low-boiling hydrocarbons than that of thermal or catalytic treatment with hydrotreating catalyst. Gas chromatography and nuclear magnetic resonance analysis of the liquid products showed that RM had hydrogenation and cracking activity in hydrotreatment of WMO. In coprocessing of WMO with municipal waste plastics, temperature had an important effect as well as the amount of MWP in the blend and the catalyst type. The hydrocracking at 400°C produced no liquid product. In hydrocracking at 425°C, the product distribution varied with catalyst type and MWP amount. The commercial hydrocracking catalyst had more cracking ability in the conversion of WMO/MWP to liquid and gas fuel than RM. In the case of hydrocracking over RM, the largest amount of liquid having satisfactory quality was obtained only from the blend containing 20% MWP.  相似文献   

18.
Three high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films from Chronopol (Ch-I) and Cargill Dow Polymers (GII and Ca-I) were analyzed for their degradation under various temperature and relative humidity (RH) conditions. Two sets of plastic films, each containing 11 samples, were randomly hung in a temperature/humidity-controlled chamber by means of plastic-coated paper clips. The tested conditions were 28, 40, and 55°C at 50 and 100% RH, respectively, and 55°C at 10% RH. The three tested PLA films started to lose their tensile properties when their weight-average molecular weight (M w) was in the range of 50,000 to 75,000 g mol–1. The average degradation rate of Ch-I, GII, and Ca-I was 28,931, 27,361, and 63,025 M w/week, respectively. Hence, GII had a faster degradation rate than Ch-I and Ca-I under all tested conditions. The degradation rate of PLA plastics was enhanced by the increase in temperature and relative humidity. This trend was observed in all three PLA plastics (Ca-I, GII, and Ch-I). Of the three tested films, Ch-I was the first to lose its mechanical properties, whereas Ca-I demonstrated the slowest loss, with mechanical properties under all tested conditions.  相似文献   

19.
This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 °C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO2 g VS−1 day−1. Sanitization of the digestate at 65 °C for 7 days allowed a mature digestate to be obtained. At 4 g VS L−1 d−1 and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO2 at a rate lower than 25 mg CO2 g VS−1 d−1 after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO2 g VS−1 d−1. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.  相似文献   

20.
The conjugated soybean oil was synthesized through the isomerization reaction of soybean oil to transformed the structure of linoleic acid into conjugated linoleic acid structure, and Rhodium complexes (RhCl(Pph3)3) was used as catalyst. The efficiency on the conjugation of catalyst RhCl (Pph3)3, tin dichloride dehydrate (SnCl2·2H2O) and triphenylphosphine (Pph3) were evaluated. The results showed when RhCl(Pph3)3, SnCl2·2H2O and Pph3 are 9.25, 9.0 and 13.1 mg in 100 g soybean oil respectively, the highest conversion of conjugation achieved 96%. The free radical copolymerization of conjugated soybean oil with acrylonitrile (AN) and dicyclopentadiene (DCP) was studied. AIBN was used as the initiator. FT-IR and 1H-NMR results indicates that the conjugated soybean oil with AN and DCP did occur free radical copolymerization with the initiator AIBN. The product is light yellow powder. The thermal properties of the soy-based copolymer were investigated by TG and DSC. The initial degradation temperature of polymers is higher then 250 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号