首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To protect the ecosystem of barren mountains, massive Cupressus funebris plantations were allowed in hilly areas of the central Sichuan Basin in the late 1980s. In recent years, Cupressus funebris plantations have faced problems such as biodiversity decline and soil erosion. To study the effects of different forest densities on understory species diversity and soil anti-scourability of Cupressus funebris plantations in Yunding Mountain, a typical sampling method was used to investigate the five different forest densities (1 100, 950, 800, 650, and 500 trees/hm2) and to analyze the correlation between the species diversity index, soil anti-scourability, and root index. In total, 176 species from 128 genera and 69 families were recorded in this area. The number of species in the herb layer was higher than that in the shrub layer. The species diversity index of the shrub layer first increased and then decreased with the decrease in stand density; and the species richness index D and Shannon–Wiener diversity index H showed peak values at a density of 650 trees/hm2. The species richness index D, Shannon–Wiener diversity index H, and Simpson dominance index H’ in the herb layer showed a bimodal trend of increasing, then decreasing, increasing again, and finally decreasing with the decrease in stand density; and the peak values were found at the densities of 650 and 950 trees/hm2. When soil anti-scourability decreased with stand density, it showed a trend of increasing and then decreasing, reaching a peak at a density of 650 trees/hm2. The positive correlation between the species richness index and soil anti-scourability was evident. Thus, 650 trees/hm2 is relatively more conducive to the stability of species diversity and soil anti-scourability in cypress plantations. © 2022 Authors. All rights reserved.  相似文献   

2.
Riparian zone vegetation is an important part of the riparian ecosystem and plays an important role in the riparian zone functioning. Herbs, which are one of the main types of riparian vegetation, are extremely sensitive to environmental changes and human activities and have become a hot spot of riparian vegetation research. In this study, the herbaceous communities of four representative rivers (Xiaoyi, Baohe, Fuhe, and Baigouyin River) entering Baiyangdian Lake in China were researched. The herbaceous species in their riparian zones were systematically investigated using the sample plot method. The Shannon-Wiener diversity (H’), Pielou evenness (J), and Patrick richness (R) indices were estimated to examine the species composition and diversity of the herb communities, following which redundancy analysis (RDA) was conducted. The relationship between species diversity, distribution patterns of herbaceous plant communities, and soil environmental factors in the riparian zone of the four rivers is discussed. (1) Eighty-three species of herbaceous plants belonging to 66 genera and 27 families in the riparian zone entering Baiyangdian Lake. Most herbaceous plants, including Poaceae, Compositae, and Chenopodiaceae, were weeds or associated plants. Riparian vegetation was greatly affected by human disturbance. (2) All the three estimated indices of the Xiaoyi, Baigouyin, and Fuhe rivers were better than those of the Baohe River. (3) The vegetation coverage and species diversity of riparian herbaceous communities were positively correlated with soil organic matter and water content but negatively correlated with pH, total nitrogen, and total phosphorus. Therefore, these communities are conducive to the restoration of vegetation and the stability of biodiversity in the riparian core area to reduce the disturbance of human activities and increase humidity. © 2022 Science Press. All rights reserved.  相似文献   

3.
An annual quarterly survey of six stations in Yantian Port, Shenzhen, China was conducted from January 2020 to October 2020 to investigate the spatial and temporal distribution of dinoflagellate cysts in the surface sediment of Yantian Port. In total, 36 species representing five groups and two uncertain taxa were identified. The dominant species were Scrippsiella trochoidea, Alexandrium spp., Gymnodinium catenatum, Cochlodinium spp., and Lingulodinium polyedrum. The seasonal difference was not obvious in terms of temporal distribution. The number of species ranged from 32 to 36, and the abundance varied from 297 to 996 cysts/g. The annual average values of the diversity index, richness index, and evenness index were 3.65, 1.55, and 0.93, respectively. The annual number and abundance of heterotrophic species were higher than those of autotrophic species. The number and abundance of species at stations near the dock zone were lower than those near the adjacent area. Notably, six toxic dinoflagellate cysts were found in the surface sediment of Yantian Port, indicating a potential outbreak risk for their vegetative cells in the local coastal area. This study provides a picture of the “Seed Bank” of dinoflagellates near Yantian Port, Shenzhen, and provides a reference value for predicting the occurrence of algal blooms. © 2022 Science Press. All rights reserved.  相似文献   

4.
To evaluate bacterial community variation in the mushroom shiro of Suillus granulatus during fruiting, we collected soil samples from the mushroom shiro in the pine (Pinus tabuliformis) forest of mountainous area in Beijing from May to November and evaluated the bacterial community using polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE). Total soil DNA was extracted using a commercial soil DNA isolation kit. PCR amplification and DGGE were performed using bacterial universal primers 338F and 518R. The specific bands were excised from the gel and sequenced. The results revealed that soil bacterial community maintained considerably high level and changed seasonally with the mushroom fruiting. In total, 53 bands of DGGE profiles were sequenced and divided into 5 phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria and 22 genera (Acidobacterium, Aminobacter, et al). Species from Proteobacteria and Acidobacteria were the dominant bacterial groups sharing considerably high relative abundance, while class a-Proteobacteria was the most abundant group. The variation of the relative abundance of γ-Proteobacteria species was consistent with the mushroom fruiting season. The relative abundance of Acidobacteria species obviously increased before mushroom flush (in July). The fruiting of S. granulatus and the relative abundance of γ-Proteobacteria were correlated with each other. The present study provided a basis for conservation and domestication of mushroom S. granulatus.  相似文献   

5.
To investigate the bacterial community structure features of soak solutions used to preserve bamboo slips that were excavated from Han dynasty tomb located in Laoguanshan of Chengdu and to reveal the diversity of bacteria in these soak solutions, PCR-DGGE was employed. Subsequently, the major DGGE bands were excised and sequenced to analyze the phylogeny of bacteria. The richness (S), Shannon-Wiener index (H), and Simpson index (D) of deionized water (0#) without the soaked bamboo slips were higher than those of the other samples. Among the bamboo slip soak solution samples, there were significant differences in these indicators; the bacterial genetic diversity of sample 121# was the highest and that of sample 1# was the lowest. Principal Component Analysis (PCA) showed that there were comparatively large differences among the samples, and the similarity between sample 1# and others was the lowest. Based on the sequence analysis, the major community of bacteria in soak solution were belonged to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, including Cupriavidus, Aquabacterium, Comamonas, Albidiferax, Hyphomicrobiaceae, Azospirillum, Nevskia, Streptococcus, Staphylococcus, Sediminibacterium, and Propionibacterium, among which Cupriavidus of the β-Proteobacteria class was detected in all samples. The bacterial community structure of the soak solutions that were collected from different bamboo slips was quite complex and significantly different. The analysis of the main bacterial community revealed the potential bacteria species that may trigger the damage in bamboo slips; the result provided a reference to prevent waterlogged bamboo slips from microbial diseases in the future. © 2018 Science Press. All rights reserved.  相似文献   

6.
To determine the characteristics of vegetation community structure and the relationship between species in the frequent watersheds of debris flow in fragile ecological environments, based on sample survey and 2 × 2 joint table techniques, we used analysis of variance test, χ2 test, Jaccard index, Pearson correlation coefficient, and Spearman's rank correlation coefficient test to study the main plant species correlations in the stable zone, instable zone, and deposit zone of the unstable slope. The analysis of variance test showed that all 45 species pairs had a significant negative correlation in the stable zone and instable zone, whereas there was no significant negative correlation in the deposit zone, which showed that the species had an independent distribution trend. The results from the different tests showed that there were 1 pair, 4 pairs, and 4 pairs from the stable zone, instable zone, and deposit zone, respectively, which had significant interspecific association under the χ2 test and the ratios of positive correlation pairs to negative correlation pairs were 0.55, 0.67, and 0.67 in the stable zone, instable zone, and deposit zone, respectively. There were 8 pairs, 5 pairs, and 5 pairs from the stable zone, instable zone, and deposit zone, respectively, which had significant interspecific association from the Pearson correlation analysis test, and the ratios of positive correlation pairs to negative correlation pairs were 0.36, 0.45, and 0.45 in the stable zone, instable zone, and deposit zone, respectively. There were 10 pairs, 6 pairs, and 9 pairs from the stable zone, instable zone, and deposit zone, respectively, which had significant interspecific association from the Spearman's rank correlation analysis test and the ratios of positive correlation pairs to negative correlation pairs were 0.5, 0.55, and 0.6 in the stable zone, instable zone, and deposit zone, respectively. The three test results showed general similarities but there were some differences. Most species pairs did not reach a significant level in the three zones and the number of negatively related species was more than the number of positively related species. In brief, this loose interspecific relationship indicates that the entire plant community was not stable, and the interspecific relationships among species are susceptible to environmental interference in the ecologically fragile areas of the debris flow basin. Therefore, rational selection and configuration of species should be applied to promote community structure development and ecological environmental improvement in vegetation restoration process areas with high-frequency debris flow. © 2018 Science Press. All rights reserved.  相似文献   

7.
Heart rot is a common soil-borne disease in the pineapple industry, but the situation can be alleviated by the application of bio-fertilizers with beneficial microbiomes. Clarifying the controlling mechanism of bio-organic fertilizer on the high incidence of heart rot is critical in monocultural pineapple cropping patterns. In our study, the soil of continuous cropping pineapple orchards was collected. Three types of carriers (rapeseed cake, peat soil, and coconut bran), biocontrol strains (Bacillus subtilis HL2 and Streptomyces strain HL3), and organic fertilizer (YJ) were composted into different bio-fertilizers (KC, KN, KY, LC, LN, and LY), which were used in pot experiments. The controlling effect of the bio-fertilizer was determined based on the response of pineapple heart rot and bacterial communities to different fertilizing methods. Our results revealed that the incidence of heart rot in bio-fertilizer KC was the lowest, which decreased by 20% and 13.3%, respectively, compared to HF (chemical fertilizer, 16-16-16) and YJ (organic fertilizer). The richness and diversity of soil bacterial communities in all biofertilized treatments (KC, KN, KY, LC, LN, and LY) were significantly higher than those in HF. However, the α-diversity indices of the bio-fertilizers (KC, KN, and KY) were higher than those of LC, LN, and LY, and the bacterial community composition was significantly different. The bacteria GP4, GP6, Bacillus, and Azohydromonas were enriched in KC, KN, and KY, while the relative abundance of Streptomyces increased significantly in LC, LN, and LY. Furthermore, Spearman correlation analysis showed that the relative abundance of these bacterial groups was significantly negatively correlated with the incidence of pineapple heart rot. In summary, the application of bio-organic fertilizers can decrease the incidence of pineapple heart rot by altering the soil bacterial community structure and stimulating beneficial soil microorganisms, which is important for reconstructing the ecological balance in continuous pineapple orchards. © 2022 Authors. All rights reserved.  相似文献   

8.
De-icing salt contamination of urban soil and greenspace has been a common issue of concern in many countries for years. In the 2009/2010 winter, Beijing experienced a contamination accident resulting from the overuse of deicing salt, reported as almost 30000 tons, which severely damaged urban vegetation alongside roadways. The methods of sampling and rating for both soil contamination and response of the plant populations were developed to rapidly assess this emergency environmental event. Results showed that the shrubs were more severely damaged than the arbors in terms of both degree and extent, as almost all of the surveyed shrubs were severely damaged from the salt contamination, while only about 1/4 of the recorded arbors were rated as "severely injured" according to the integral plant injury index. The rating of the injury level showed that the trees like Pinus bungeana, Sophora japonica, and the shrubs like Euonymus japonicus, Sabina vulgaris showed less tolerance to de-icing salt pollution. The patterns of vegetation damage demonstrated that the ever-green shrubs alongside roads and the deciduous arbors in the center of roads were most vulnerable to the salt damage.  相似文献   

9.
The aim of this study was to investigate the benthic bacterial communities in different depths of an urban river sediment accumulated with high concentrations of nutrients and metals. Vertical distributions of bacterial operational taxonomic units (OTUs) and chemical para- meters (nutrients: NH4+, NO3, dissolved organic carbon, and acid volatile sulfur; metals: Fe, Zn, and Cu) were characterized in 30 cm sediment cores. The bacterial OTUs were measured using the terminal restriction fragment length polymorphism analysis. Biodiversity indexes and multivariate statistical analyses were used to characterize the spatial distributions of microbial diversity in response to the environmental parameters. Results showed that concentrations of the nutrients and metals in this river sediment were higher than those in similar studies. Furthermore, high microbial richness and diversity appeared in the sediment. The diversity did not vary obviously in the whole sediment profile. The change of the diversity indexes and the affiliations of the OTUs showed that the top layer had different bacterial community structure from deeper layers due to the hydrological disturbance and redox change in the surface sediment. The dominant bacterial OTUs ubiquitously existed in the deeper sediment layers (5-27 cm) corresponding to the distributions of the nutrients and metals. With much higher diversity than the dominant OTUs, the minor bacterial assemblages varied with depths, which might be affected by the sedimentation process and the environmental competition pressure.  相似文献   

10.
To study the effect of flow velocity on drinking water distribution systems, bulk water quality was monitored over 28 days, biomass was measured, and 16S rDNA was sequenced on the 28th day using a water distribution simulation system. The relationship between bulk water quality and biofilm was statistically analyzed. Flow velocity of 0.5 m/s yielded the most total organic carbon (TOC) (5.26 ± 0.17 mg/L) in the bulk water, the most bulk water bacteria (lg (n+1/mL-1) = 4.79 ± 0.02), the worst bulk water quality, and the most biofilm bacteria (lg (n+1/cm-2) = 5.48 ± 0.06). A Pearson correlation analysis showed the total number of biofilm bacteria was positively correlated with conductivity (R = 0.73, P < 0.01), turbidity (R = 0.87, P < 0.001), TOC (R = 0.94, P < 0.001), and total bacteria (R = 0.92, P < 0.001), and was negatively correlated with residual chlorine (R = -0.68, P < 0.05). Biofilm diversity was high under the low (0.1 m/s) and high (2.5 m/s) flow rates, but the bacterial diversity of biofilm was the lowest at the 0.5 m/s flow rate, in which Proteobacteria dominated the biofilm community structure. These results suggest that flow velocity affects bulk water quality and biofilm population structure, and water quality and biofilm population structure are interrelated, which provides the theoretical basis for research on biofilms in drinking water distribution systems. © 2018 Science Press. All rights reserved.  相似文献   

11.
In the present study, we compared the soil physical and chemical properties, biomass of forest litter and nutrient contents in three-and-half-year plantations of E. grandis mixed with Toona ciliate, Alnus formosana, Sassafras tzumu. The results indicated that mixing T. ciliate and A. formosana with E. grandis mitigated soil acidification. In E. grandis × S. tzumu plantations, the soil bulk density decreased, but the moisture capacity and porosity increased. The mixed plantations of E. grandis × S. tzumu significantly increased the soil total C, N, P and K content, by 64.7%, 41.9%, 28.6% and 7.7%, respectively. The mixed plantations of E. grandis × A. formosana also significantly increased the soil total C, N and P content, by 15.2%, 27.9% and 47.6%, respectively. Compared with the pure plantations, the mixed plantations had significantly lower soil hydrolysis N and higher available P content. Only the E. grandis × A. formosana plantations had higher soil available K content. Compared with that in pure plantations, the biomass of branch litter and leaf litter was significantly higher in E. grandis × A. formosana plantations but significantly lower in E. grandis × A. formosana and E. grandis × A. formosana plantations; the biomass of leaf litter and total biomass of litter of E. grandis × S. tzumu were 9.8% and 9.3% respectively lower. The litter C content in three kinds of mixed forest was significantly lower and the litter N content was significantly higher than that in the pure plantations. Only the mixed plantations of E. grandis × A. formosana plantations would increase the content of litter P. The mixed plantations of E. grandis × S. tzumu would increase the content of litter K. In general, S. tzumu is the optimal tree species to mix with E. grandis, followed by A. formosana, but T. ciliate is unsuitble for mixed plantation with E. grandis.  相似文献   

12.
To study heavy metal pollution and assess the health risk of river water in Huayuan County, Xiangxi, Hunan Province, 11 water samples were collected from the Huayuan River and Brother Rivers in August and December 2016. Heavy metal (Pb, Zn, Cr, Cu, Fe, and Ni) concentrations were determined from the samples. The health risk assessment model recommended by the U.S. Environmental Protection Agency (USEPA) was applied to assess the health risk of heavy metals in the main surface waters of Huayuan County. The results indicated that the concentrations of heavy metals (Pb, Zn, Cr, Cu, Fe, and Ni) of surface water in the research area were 2.57 × 10-3, 4.66 × 10-4, 1.65 × 10-3, 6.27 × 10-4, 0.19, and 8.50 × 10-4 mg/L, respectively. The health risk of surface waters with heavy metals was high. Therefore, the chemical carcinogenic substance (Cr) health risk index was five or six times higher than that of chemical non-carcinogens (Pb, Zn, Cu, and Ni). The average health risk indices of non-carcinogenic substances were in the order Pb > Cu > Zn > Ni. The correlation and principal component analysis of surface water showed that the six heavy metal elements were composed of three main components in the main surface waters of the county. The first principal component was comprised of Fe and Ni (33.28%), which was mainly from internal pollution. The second component was comprised of Cu and Cr (26.98%), which was primarily due to industrial waste water, rainwater leaching mineral waste produced by heavy metal mining, and smelting enterprises. The third component, resulting from geochemical pollution, was Zn (17.10%). The health risk indices triggered by heavy metal in surface waters was high. Heavy metal pollutants in the research area need to be controlled in the order Cr, Pb, Cu, Zn and Ni. © 2018 Science Press. All rights reserved.  相似文献   

13.
To study heavy metal pollution and assess the health risk of river water in Huayuan County, Xiangxi, Hunan Province, 11 water samples were collected from the Huayuan River and Brother Rivers in August and December 2016. Heavy metal (Pb, Zn, Cr, Cu, Fe, and Ni) concentrations were determined from the samples. The health risk assessment model recommended by the U.S. Environmental Protection Agency (USEPA) was applied to assess the health risk of heavy metals in the main surface waters of Huayuan County. The results indicated that the concentrations of heavy metals (Pb, Zn, Cr, Cu, Fe, and Ni) of surface water in the research area were 2.57 × 10-3, 4.66 × 10-4, 1.65 × 10-3, 6.27 × 10-4, 0.19, and 8.50 × 10-4 mg/L, respectively. The health risk of surface waters with heavy metals was high. Therefore, the chemical carcinogenic substance (Cr) health risk index was five or six times higher than that of chemical non-carcinogens (Pb, Zn, Cu, and Ni). The average health risk indices of non-carcinogenic substances were in the order Pb > Cu > Zn > Ni. The correlation and principal component analysis of surface water showed that the six heavy metal elements were composed of three main components in the main surface waters of the county. The first principal component was comprised of Fe and Ni (33.28%), which was mainly from internal pollution. The second component was comprised of Cu and Cr (26.98%), which was primarily due to industrial waste water, rainwater leaching mineral waste produced by heavy metal mining, and smelting enterprises. The third component, resulting from geochemical pollution, was Zn (17.10%). The health risk indices triggered by heavy metal in surface waters was high. Heavy metal pollutants in the research area need to be controlled in the order Cr, Pb, Cu, Zn and Ni. © 2018 Science Press. All rights reserved.  相似文献   

14.
To provide scientific support for the rational development and utilization of thermal resources and avoid climate risks, the distribution of thermal resources in Qinghai-Tibet Plateau in the context of climate change was analyzed in this study. Based on meteorological data from 1961 to 2020 at 149 stations in Qinghai-Tibet Plateau, the changes in thermal resources over the past 50 years were analyzed using inclination rate analysis and Mann-Kendall inspection, combined with JAVA and Python programming. The results showed that: (1) the annual average temperature in Qinghai-Tibet Plateau shows an obvious warming trend, and the temperature increases greatly after the 1990s, with the climate tendency rate from 1961 to 2020 reaching 0.298 ℃/10 a. (2) The accumulated temperature and lasting days steadily above 0 ℃, 5 ℃ and 10 ℃ increased significantly, and the accumulated temperature increases were not entirely determined by the duration of the lasting days. (3) The beginning dates of accumulated temperature steadily above 0 ℃, 5 ℃, and 10 ℃ were generally advanced, while the deadlines were delayed, and the trend of early start dates was stronger than that of deadlines. In conclusion, this study shows that, in the context of global warming, thermal resources in Qinghai-Tibet Plateau have undergone substantial changes, which will play an important role in the introduction and extension of crops. © 2022 Science Press. All rights reserved.  相似文献   

15.
As low oxygen and high ultraviolet (UV) exposure might significantly affect the microbial existence in plateau, it could lead to a specialized microbial community. To determine the abundance and distribution of ammonia-oxidizing archaea (AOA) in agricultural soil of plateau, seven soil samples were collected respectively from farmlands in Tibet and Yunnan cultivating the wheat, highland-barley, and colza, which are located at altitudes of 3200-3800 m above sea level. Quantitative PCR (q-PCR) and clone library targeting on amoA gene were used to quantify the abundances of AOA and ammonia-oxidizing bacteria (AOB), and characterize the community structures of AOA in the samples. The number of AOA cells (9.34 × 10^7-2.32× 10^8 g^-1 soil) was 3.86-21.84 times greater than that of AOB cells (6.91 × 10^6-1.24 × 10^8 g^-1 soil) in most of the samples, except a soil sample cultivating highland- barley with an AOA/AOB ratio of 0.90. Based Kendall's correlation coefficient, no remarkable correlation between AOA abundance and the environmental factor was observed. Additionally, the diversities of AOA community were affected by total nitrogen and organic matter concentration in soils, suggesting that AOA was probably sensitive to several environmental factors, and could adjust its community structure to adapt to the environmental variation while maintaining its abundance.  相似文献   

16.
A series of activated carbons with high surface area were prepared from walnut shell using chemical activation with ZnCl2. In this research the carbonization stage was carried out at 500℃. The performance of the synthesized carbons evaluated in adsorption of benzene and toluene from waste gas. The influence of impregnation ratio on the characteristics of synthesized activated carbons as well as their adsorption capacity was investigated. The ratio of activation agent to walnut shell was selected in the range of 0.5-2.0 wt/wt. The synthesized activated carbons were characterized using XRD, SEM, BET and FTIR techniques. The highest activated carbon production yield was obtained at impregnation ratio of 1.5 wt/wt. The XRD analysis illustrated that peaks intensity decreased with increasing impregnation ratio showing that amorphous property of samples was increased. The SEM analysis revealed successful pore development in synthesized activated carbons obtained at high impregnation ratios. The surface area of the activated carbons increased with increasing impregnation ratio and its maximum value reached 2643 m2.g 1 at impregnation ratio of 2/1. FTIR analysis indicated that the relative amount of different acidic surface groups on synthesized carbons was a function of impregnation ratio. Experimental results for benzene and toluene adsorption showed a high potential of employing synthesized impregnated activated carbon for treatment of waste gas. Generally, the amount of VOC adsorbed on the surface was affected by physicochemical properties of synthesized activated carbons.  相似文献   

17.
A hydrocyclone using natural water head provided by bridge was operated for the treatment of stormwater runoff. The hydrocyclone was automatically controlled using electronic valve which is connected to a pressure meter. Normally the hydrocyclone was open during dry days, but it was closed after the capture of the first flush. The results indicated that the average pressure and the flow rate were directly affected by the rainfall intensity. The pressure head was more than 2 m when the rainfall intensity was above 5mm·h^-1. The percentage volume of underflow with high solids concentration decreased as the pressure and flow rate increased, but the percentage volume of overflow with almost no solids showed the opposite behavior. The total suspended solids (TSS) concentration ratio between the overflow and inflow (TSSover/TSSin) decreased as a function of the operational pressure, while the corresponding ratio of underflow to inflow (TSSunaer/TSSi,) increased. The TSS separation efficiency was evaluated based on a mass balance. It ranged from 25% to 99% with the pressure head ranging from 1.4 to 9.7 m, and it was proportional to pressure and flow rate. Normally, the efficiency was more than 50% when the pressure was higher than 2 m. The analysis of the water budget indicated that around 13% of the total runoff was captured by the hydrocyclone as a first flush, and this runoff was separated as underflow and overflow with the respective percentage volumes of 29% and 71%. The pollutants budget was also examined based on a mass balance. The results showed that the percentage of TSS, chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in underflow were 73%, 59%, 7.6%, and 49%, respectively. Thus, it can be concluded that the hydrocyclone worked well. It separated the first flush as solids-concentrated underflow and solids-absent overflow, and effectively reduced the runoff volume needing further treatment. Finally, four types of optional post treatment design are presented and compared.  相似文献   

18.
A novel method for the synthesis of zeolite was developed in this paper. The synthesis was carried out by hydrothermal activation after alkali fusion and coal fly ash (CFA) was used as raw material with seawater of different salinities. Seawater salinity was varied from 32 to 88 for zeolite crystallization during the hydrothermal process. The results show that seawater salinity plays an important role in zeolite synthesis with CFA during hydrothermal treatment. The products were a mixture of NaX zeolite and hydroxysodalite; seawater salinity more strongly affected the crystallization than the type and chemical composition of the zeolites. The yield of CFA transformed into zeolite gradually rose with the increase in salinity, reaching a transformation rate of 48%--62% as the salinity increased from 32 to 88, respectively. The proposed method allows for the efficient disposal of by-products; therefore, the application of seawater in zeolite synthesis presents promising economic and ecological benefits.  相似文献   

19.
The experiments were conducted to investigate the tolerance and enrichment capabilities by elucidating the physiological response and cadmium impact on iron and potassium accumulation amounts of brassica rape hairy roots under different cadmium concentrations by using liquid suspension culture method. The results showed the following. (1) The growth of hairy roots was not significantly different under low cadmium concentrations (below 100 μmol/L), whereas it was obviously inhibited under high cadmium concentrations (more than 100 μmol/L). Further, the maximum fresh weight of brassica rape hairy roots reached 4.34 g under 25 μmol/L cadmium stress after 7 days. (2) The content of ROS in brassica rape hairy roots increased with increasing concentrations of cadmium; the antioxidant enzyme activities of brassica rape hairy roots (SOD, POD, and CAT) decreased first and then increased with increasing cadmium concentrations under 1-day stress, whereas showed an opposite trend under 7-day stress. (3) PI staining and MDA content indicated that cellular damage was more serious with increasing cadmium concentrations. (4) With the increase of cadmium concentrations, cadmium content of hairy roots increased and reached maximum of 2.97 mg/g under 400 μmol/L cadmium stress after 7 days. The iron content also increased significantly with the maximal weight of 14.52 mg/g after 1-day cadmium stress, whereas no significant difference was noted under 7-day cadmium stress. The potassium content under 7-day cadmium stress was 1.6 times of that after 1-day stress (15.73 mg/g). The study showed that the physiological response of Brassica rape hairy roots was correlated with the concentration and time of cadmium stress. Moreover, cadmium stress caused metabolic disorders of iron and potassium in the hairy roots, but the hairy roots of Brassica rape had better enrichment effect on cadmium. © 2018 Science Press. All rights reserved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号