首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blowout is one of the most serious accidents in the offshore oil and gas industry. Accident records show that most of the offshore blowouts have occurred in the drilling phase. Efficient measures to prevent, mitigate, and control offshore drilling blowouts are important for the entire offshore oil and gas industry. This article proposes a new barrier-based accident model for drilling blowouts. The model is based on the three-level well control theory, and primary and secondary well control barriers and an extra well monitoring barrier are established between the reservoir and the blowout event. The three barriers are illustrated in a graphical model that is similar to the well-known Swiss cheese model. Five additional barriers are established to mitigate and control the blowout accident, and event tree analysis is used to analyze the possible consequence chains. Based on statistical data and literature reviews, failures of each barrier are presented. These failures can be used as guidance for offshore drilling operators to become aware of the vulnerabilities of the safety barrier system, and to assess the risk related to these barriers. The Macondo accident is used as a case study to show how the new model can be used to understand the development of the events leading to the accident. The model can also be used as an aid to prevent future blowouts or to stop the escalation of events.  相似文献   

2.
This paper takes the safety in emergency processes as the starting point, from the perspective of scenario deduction, to study the consequences of fire accidents for oil-gas storage and transportation. Through the statistical analysis of actual accident cases, 19 frequently occurring basic scenarios in emergency processes are summarized. The scenario evolution paths of fire accidents for oil-gas storage and transportation are given by analyzing the evolution law of the accident development. Fuzzy numbers are introduced to express experts' qualitative judgment on accident scenarios. The empirical probabilities of scenario nodes are obtained by defuzzification calculation, and the state probability of each scenario node is calculated by using the dynamic Bayesian network joint probability formula. Under the comprehensive consideration about the probability statistics of actual accident cases, the critical scenario nodes on the evolution path and their final scenario probabilities are jointly determined to realize the optimization of the scenario evolution path. By constructing the correlation between the optimized scenario evolution path and the accident consequences, an accident consequence prediction model is established. The occurrence probability of accident consequences is calculated by the defuzzification method and dynamic Bayesian network. The accuracy of the consequence prediction model is verified by the July 16 Dalian's Xingang Harbor oil pipeline explosion accident. The research results provide scientific basis for helping decision makers to make the effective emergency measures that are most conducive to the rapid elimination of accidents and reducing the severity of accident consequences.  相似文献   

3.
以某陆上原油长输管道为例,设定了陆上原油长输管道泄漏爆炸事故情景背景信息及演化过程,从预防、准备、预警、响应、恢复等阶段,梳理分析了事故情景应对全过程的任务及职责主体;针对各项任务从计划预案、人员队伍、装备物资、培训演练、运行机制等方面开展了情景应对能力评估;并针对存在的差距和不足,从企业和政府2个层面提出了针对此类情景的应急能力提升对策建议。该研究可为相关政府及企业加强油气长输管道事故应急准备能力建设提供参考。  相似文献   

4.
Organic hydride hydrogen refueling stations have been remarked as stations that can employ a practicable method based on the organic chemical hydride system involving methylcyclohexane (MCH) for the transport of hydrogen. This station has advantages in that the storage and transportation of MCH does not require a large amount of energy compared to compressed and liquefied hydrogen, and the system can use existing infrastructure. This type of station involves some hazardous materials, and thus, scenario identifications and risk assessments have been performed by researchers. However, the sample of studies available have employed a conceptual design model, and they did not identify concrete scenarios triggered by internal factors. Therefore, the purpose of this study is to identify accidental scenarios caused by internal factors that can affect an organic hydride hydrogen refueling station. In this study, we used Hazard and Operability study (HAZOP) and examined safety measures for the scenarios. As a result of the HAZOP, 105 accidental scenarios were identified and classified into the two following groups; (i) the scenarios assumed that the substances were ignited after they were released to the atmosphere, and (ii) the scenarios assumed that the substances were ignited in the process before they were released. Significant scenarios in group (i) were MCH or toluene pool fires, hydrogen jet fires, vapor gas explosions, or flash fires. The significant scenarios classified in (ii) were newly identified in this study. The scenarios include the explosion of the explosive mixture formed by the gaseous phase of toluene and oxygen from the vent line connected to the tank due to the static electric charge in the tank. For each scenario, safety measures to prevent the progression of the accident scenario were examined with reference to the current laws and regulations in Japan.  相似文献   

5.
The chemical process industries are characterized by the use, processing, and storage of large amounts of dangerous chemical substances and/or energy. Among different missions of chemical plants there are two very important ones, which: 1. provide a safe work environment, 2. fully protect the environment. These important missions can be achieved only by design of adequate safeguards for identified process hazards. Layer of Protection Analysis (LOPA) can successfully answer this question. This technique is a simplified process of quantitative risk assessment, using the order of magnitude categories for initiating cause frequency, consequence severity, and the likelihood of failure of independent protection layers to analyze and assess the risk of particular accident scenarios. LOPA requires application of qualitative hazard evaluation methods to identify accident scenarios, including initiating causes and appropriate safeguards. This can be well fulfilled, e.g., by HAZOP Studies or What-If Analysis. However, those techniques require extensive experience, efforts by teams of experts as well as significant time commitments, especially for complex chemical process units. In order to simplify that process, this paper presents another strategy that is a combination of an expert system for accident scenario identification with subsequent application of LOPA. The concept is called ExSys-LOPA, which employs, prepared in advance, values from engineering databases for identification of loss events specific to the selected target process and subsequently a accident scenario barrier model developed as an input for LOPA. Such consistent rules for the identification of accident scenarios to be analyzed can facilitate and expedite the analysis and thereby incorporate many more scenarios and analyze those for adequacy of the safeguards. An associated computer program is under development. The proposed technique supports and extends the Layer of Protection Analysis application, especially for safety assurance assessment of risk-based determination for the process industries. A case study concerning HF alkylation plant illustrates the proposed method.  相似文献   

6.
事故场景的鉴别是复杂装备系统安全风险分析的基础,其完备性直接影响风险评估的有效性,因为任何事故场景的遗漏即意味着设计上可能存在潜在的事故隐患。提出从鉴别系统危险出发。建立危险与其原因(关联引发事件)、事件与系统要素以及系统各要素之间的映射关系,通过对这些关系的运算来获取事故场景的新方法并给出其形式化表述,以期在理论上确保事故场景鉴别的完备性。  相似文献   

7.
Gas detection system is a critical layer of protection in process safety. Leak scenario probability and detector reliability are two key factors in the optimization of gas detector placement. However, they are easily neglected in previous studies, which may lead to an inaccurate evaluation of the optimization solutions. In this study, a stochastic programming (SP) optimization method is proposed considering these two factors. In order to quantitatively represent the probability of leak scenarios, a complete accident scenario set (CASS) is built combining leak sources and wind fields. Then, the computational fluid dynamics (CFD) method is adopted for consequence modeling of gas dispersion. The Markov model is developed to predict the detector reliability. With the objective of minimal cumulative detection time (MCDT), the SP formulation considering scenario probability and detector reliability (MCDT-SPR) is proposed. By introducing the particle swarm optimization (PSO) algorithm, the optimization formulations can be solved. A case study is investigated on a diesel hydrogenation refining unit. Results validate this approach is promising to improve the detection efficiency. This method is more practical and matching with the actual industrial environment, where the leak scenarios and the detector reliability can change dynamically in real process setting.  相似文献   

8.
突发环境事件不确定性高、演化过程复杂,给企业及政府的应急工作带来很大的困难,故如何提高应急决策的质量,是相关应急工作的重点之一。为了增强以往经验的可用性,利用本体模型进行案例的存储,根据情景构成要素提取方法对情景进行多维的空间表达,在此基础上优化情景匹配算法,实现基于情景的应急决策。最后,通过突发环境事件实例应用,验证该方法能够快速建立实例与本体模型之间的关系,提高知识的可用性和共享性,实现情景的多维表达,进而满足“情景-应对”的应急决策要求。  相似文献   

9.
Many major hazard installations (MHIs) are located in chemical industry zones and escalation effect may be triggered when the fire or explosion occurs on a MHI. To investigate the mechanism of the accident escalation, a systematic quantitative assessment methodology is proposed by the considering the feature and uncertainty of the escalation scenario. The main accident energy carriers of the escalation are heat radiation, overpressure of blast and fragments. The escalation probability, joint influence of the three energy carriers and risk characterization of the accident scenarios are carried out. By the new methodology, the escalation scenario in chemical industry zones can be analyzed and the risk escalation morphology is demonstrated by the simulation software. The visualized risk cloud figure gives a supplementary way to prevent the escalation scenario in chemical industry zones planning.  相似文献   

10.
为研究海底原油与天然气单相泄漏扩散规律的差异性,合理制定应急响应策略,减小事故损失,针对海底管道失效所致的原油与天然气泄漏问题,基于计算流体动力学CFD方法,建立海底油气管道泄漏事故后果预测与评估模型,对特定事故场景下的海底原油与天然气泄漏扩散过程进行模拟与分析,从泄漏扩散过程、工况因素影响、泄漏后果及应对策略4个方面对比原油与天然气的泄漏扩散特性。结果表明:相同工况下,海底原油与天然气在泄漏速率、扩散时间、扩散形态及水平最大扩散距离方面存在显著差别;与天然气相比,原油泄漏扩散行为对工况因素具有更高的敏感性;原油泄漏会引发严重的环境灾害,天然气泄漏则会影响海上结构物的稳定性及引发火灾爆炸事故,据此需合理制定具有针对性的应对策略。  相似文献   

11.
The main objective of this paper is to present and discuss a set of scenarios that may lead to hydrocarbon releases on offshore oil and gas production platforms. Each release scenario is described by an initiating event (i.e., a deviation), the barrier functions introduced to prevent the initiating event from developing into a release, and how the barrier functions are implemented in terms of barrier systems. Both technical and human/operational safety barriers are considered. The initiating events are divided into five main categories: (1) human and operational errors, (2) technical failures, (3) process upsets, (4) external events or loads, and (5) latent failures from design. The release scenarios may be used as basis for analyses of: (a) the performance of safety barriers introduced to prevent hydrocarbon releases on specific platforms, (b) the platform specific hydrocarbon release frequencies in future quantitative risk analyses, (c) the effect on the total hydrocarbon release frequency of the safety barriers and risk reducing measures (or risk increasing changes).  相似文献   

12.
A systemic accident model considers accidents as emergent phenomena from variability and interactions in a complex system. Air traffic risk assessments have predominantly been done by sequential and epidemiological accident models. In this paper we demonstrate that Monte Carlo simulation of safety relevant air traffic scenarios is a viable approach for systemic accident assessment. The Monte Carlo simulations are based on dynamic multi-agent models, which represent the distributed and dynamic interactions of various human operators and technical systems in a safety relevant scenario. The approach is illustrated for a particular runway incursion scenario, which addresses an aircraft taxiing towards the crossing of an active runway while its crew has inappropriate situation awareness. An assessment of the risk of a collision between the aircraft taxiing with an aircraft taking-off is presented, which is based on dedicated Monte Carlo simulations in combination with a validation approach of the simulation results. The assessment particularly focuses on the effectiveness of a runway incursion alert system that warns an air traffic controller, in reducing the safety risk for good and reduced visibility conditions.  相似文献   

13.
Combustion or explosion accident resulting from accidental hydrocarbon release poses a severe threat to the offshore platform's operational safety. Much attention has been paid to the risk of an accident occurring over a long period, while the real-time risk that escalates from a primary accident to a serious one was ignored. In this study, a real-time risk assessment model is presented for risk analysis of release accidents, which may escalate into a combustion or explosion. The proposed model takes advantage of Fault Tree-Event Tree (FT-ET) to describe the accident scenario, and Bayesian network (BN) to obtain the initial probability of each consequence and describe the dependencies among safety barriers. Besides, Computational Fluid Dynamics (CFD) is applied to handle the relationship between gas dispersion and time-dependent risk. Ignition probability model that considering potential ignition sources, gas cloud, and time series are also integrated into this framework to explain the likelihood of accident evolution. A case of release accidents on a production platform is used to test the availability and effectiveness of the proposed methodology, which can be adopted for facilities layout optimization and ignition sources control.  相似文献   

14.
为揭示石油炼化装置事故风险动态特性和事故情景演变路径,在对石化装置进行风险因素分析的基础上构建石化装置火灾事故故障树,基于贝叶斯网络非常规突发事故的演变过程,构建情景演变下的动态贝叶斯网络模型,在综合考虑应急措施的基础上,利用MATLAB软件和联合概率公式计算出各种事故场景的状态概率.以丙烯精馏装置火灾事故为例,结果表...  相似文献   

15.
This paper highlights major steps in the procedure for evaluating the consequences of accidents involving dangerous substances, especially during the storage, and loading/unloading activities. The procedure relies on identifying accident scenarios that could be encountered at particular plants, followed by a modelling of these scenarios by means of available modelling systems. Finally, the resultant outcomes are identified, together with their effects on both people and property. The resources needed to perform this procedure are discussed, in order to clarify the roles of plant operators, external experts and other institutions when evaluating any accident consequences. Four examples, all relevant in industrial practice, are given in order to illustrate the procedure: the releasing of liquified petroleum gas, flammable organic solvents, toxic chlorine, and oil fuels. The results of these studies may be used for a quick order-of-magnitude estimation of accidents consequences.  相似文献   

16.
The recovery effectiveness for oil spills in ice conditions depends on a complex system and has not been studied in depth, especially not from a system risk control perspective. This paper aims to identify the critical aspects in the oil spill system to enable effective oil spill recovery. First, a method is developed to identify critical elements in a Bayesian Network model, based on an uncertainty-based risk perspective. The method accounts for sensitivity and the strength of evidence, which are assessed for the different Bayesian Network model features. Then, a Bayesian Network model for the mechanical oil spill recovery system is developed for the Finnish oil spill response fleet, contextualized for representative collision accident scenarios. This model combines information about representative sea ice conditions, ship-ship collisions and their associated oil outflow, the oil dispersion and spreading in the ice conditions, and the oil spill response and recovery of the fleet. Finally, the critical factors are identified by applying the proposed method to the developed oil spill response system model. The identified most critical system factors relates collision aspect: Forcing Representative Scenario, Representative Accident Location, Impact Speed, Impact Location, Impact Angle and response aspect: Response Vessel Operability.  相似文献   

17.
随机规划方法已成为解决不确定条件下高硫炼油装置气体检测报警仪布置优化问题的重要途径,而构建接近真实情况的泄漏场景集则是实现随机规划的基础。目前,有毒气体泄漏场景集构建方面的研究鲜有报道,且传统以典型泄漏场景为代表的做法未能体现真实风险。为此给出一种融合泄漏概率和风场联合分布概率的定量构建硫化氢泄漏场景集的方法,使场景集包括重要泄漏场景并运用DNV的LEAK软件和历史气象数据定量预测场景的实现概率,为实现后续的气体泄漏检测报警仪布置随机规划提供技术支持。并以某柴油加氢装置为例,定量构建其硫化氢泄漏场景集,为后续的气体检测报警仪布置优化及其它基于定量风险分析的控制决策提供支持。  相似文献   

18.
李威君 《安全》2019,40(9):41-45,6
复杂系统事故发生模式具有多样性、不确定性的特点。传统的被动式、以失效因果分析为导向的事故预防模型虽然能够较为有效地防止或者减少同类事故的发生,但无法预防未发生过的新事故,因此并不适用于事故模式多样的复杂系统的事故预防。为了更加系统、全面地降低复杂系统的事故风险,需从更加主动的、前瞻性的视角分析如何使系统保持正常的功能。根据控制系统中的功能约束原理,并以功能分解与共振分析模型(ACAT/FRAM)为建模工具,提出一种主动功能约束视域下的复杂系统事故预防模型。该模型通过将复杂系统进行功能分解与抽象,以闭环控制关系对功能进行耦合关联,得到复杂系统要素的正常功能约束结构。基于该模型的事故预防机制在于保证系统各要素以及要素间的正常功能,据此可制定面向多种事故模式的事故预防措施。  相似文献   

19.
油库是储存易燃易爆油品的专用场所,雷电是油库安全生产的重大隐患,油库防雷已成为关系到经济建设、社会发展和人民生命财产安全的重大课题。针对目前我国油库雷击事故频繁发生的问题,在对大量事故资料研究的基础上,分析了油库雷击火灾爆炸事故的原因,指出雷电产生的火花引燃油气是导致油库火灾爆炸的主要原因。并重点从安全管理学的角度,运用事故预防与控制的"3E"对策,分别从安全技术、安全管理、安全教育三个方面探讨了油库雷击事故的预防与控制措施。  相似文献   

20.
The paper describes the application of a new computer automated tool, developed by us, in the risk analysis of a typical chemical industry engaged in the manufacture of linear alkyl benzene. Using the tool—a comprehensive software package maxcred-III (MAXimum CREDible accident analysis)—nine different scenarios, one for each storage unit, have been studied. It is observed that the accident scenario for chlorine (instantaneous release followed by dispersion) leads to the largest area-under-lethal-impact, while the accident scenario for propylene (CVCE followed by fireball) forecasts the most intense damage per unit area. The accidents involving propylene, benzene, and fuel oil have a high possibility of causing domino/secondary accidents as their destructive impacts (shock waves, heat load) would envelope other storage and process units.Besides demonstrating the utilizability of maxcred-III, this study also focuses attention on the need to bestow greater effort towards risk assessment/crisis management. The authors hope that the study will highlight the severity of the risk posed by the industry and thus generate safety consciousness among plant managers. The study may also help in developing accident-prevention strategies and the installation of damage control devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号