首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
钛基锡锑电极电催化氧化处理硝基苯废水   总被引:1,自引:0,他引:1  
采用钛基锡锑(Sn-Sb/Ti)电极作为氧化阳极,不锈钢为阴极,电催化氧化降解废水中硝基苯。实验结果表明,处理硝基苯废水的最佳条件为:电流密度25 mA/cm~2;Na_2SO_4作为电解质,加入量15g/L;极板间距2 cm;溶液初始pH 6。在此最佳条件下,硝基苯去除率大于95%,TOC去除率大于80%,表明Sn-Sb/Ti阳极能有效去除废水中有机污染物。  相似文献   

2.
采用掺硼金刚石(BDD)电极电化学氧化法降解模拟焦化废水中的喹啉,并通过GC-MS技术分析了喹啉的降解机理及途径。实验结果表明:在常温、初始喹啉质量浓度为50.0 mg/L、电解质Na2SO4浓度为0.05 mol/L、模拟废水pH为7、电解时间为2.5 h、电流密度为30 mA/cm2、极板总面积与模拟废水体积的比为160 cm2/cm3的条件下,喹啉降解率接近100%;TOC由初始时的29.43 mg/L降至5.76 mg/L,TOC去除率达80%;COD由初始时的95.25 mg/L降至20.65 mg/L,COD去除率达78%;在降解过程中,首先在喹啉苯环的5位和8位发生羟基化反应,然后苯环发生断裂,形成带有吡啶环的中间产物及羧酸类产物,最后氮杂环开环,生成二氧化碳和水。  相似文献   

3.
采用电解法产生活性氯,降解废水中的有机物。考察了活性氯产生量的影响因素,并对Ti/RuO2-IrO2-TiO2电极电解实际含氯废水的处理效果进行了研究。实验结果表明:通过增加Cl-浓度和电流密度、减少SO42-浓度和极板间距、降低电解温度的方法能够提高活性氯产生量,从而提高电极降解有机物的效果;对于Cl-浓度为0.005 mol/L、COD为49 mg/L的废水,使用Ti/RuO2-IrO2-TiO2电极,在极板间距为0.5 cm、电解温度为20 ℃、电流密度为20 mA/cm2、初始pH为8.0的条件下电解处理60 min,废水BOD5/COD值由0.04提高到0.25,COD降至24 mg/L,达到DB 11/307—2013《水污染综合排放标准》中排入地表水体污染物B类排放限值(COD≤30 mg/L)的要求。  相似文献   

4.
电解法处理采油废水的研究   总被引:1,自引:0,他引:1  
以提高电解处理工艺的效率、降低处理成本、易于实现工业化为目标,筛选出适合处理采油废水的高效电极材料,考察了电解法处理采油废水的各种影响因素,确定实验室电解氧化法处理采油废水的适宜条件.研究结果表明:以析氯阳极 铁阴极作为试验电极材料,在电流密度为15 mA/cm2,电解时间为80min,水板比约0.10 cm2/cm3,弱碱性,极板间距为10mm的条件下对采油废水进行电解处理,COD去除率可达到73.0%,NH3-N去除率可达到98.5%.  相似文献   

5.
利用刷涂法制备了Ti/SnO2-RuO2电极,并通过SEM、XRD等测试手段对其进行形貌及结构表征。利用该电极为阳极处理黑索金(RDX)废水,考察了电解质种类、电解质质量浓度、废水pH、电流密度以及电解时间等对RDX电催化氧化效果的影响。实验结果表明,当处理100 mL质量浓度为50 mg/L的RDX废水时,以Na2SO4为电解质、Na2SO4质量浓度为5.0 g/L、废水pH为7、电流密度为15 mA/cm2、电解时间为300 min的条件下,RDX去除率达到82.55%,COD去除率达到55.41%。  相似文献   

6.
三维电极电Fenton氧化法处理染料废水   总被引:1,自引:0,他引:1       下载免费PDF全文
采用三维电极电Fenton氧化法处理实际染料废水,探究了染料废水处理效果的影响因素。实验结果表明:以钌铱镀层钛电极为阳极、不锈钢板为阴极、粉末活性炭为颗粒电极,在粉末活性炭投加量为2.0 g/L、电流密度为0.5 mA/mm2、极板间距为3 cm、pH为2.0、硫酸亚铁投加量为0.50 g/L的最优工艺条件下,反应2 h后COD、TOC、氨氮、色度的去除率达到最大,分别为62.80%、41.15%、42.48%和95.00%;粉末活性炭作为颗粒电极可使染料废水COD去除率提高18个百分点;重复使用10次的处理效果与第2次基本持平。  相似文献   

7.
采用溶胶-凝胶法制备泡沫镍负载TiO2电极,并用场发射扫描电子显微镜和XRD仪对其表面形貌、颗粒大小和晶体结构进行表征.以紫外灯为光源,负载TiO2的泡沫镍电极为阳极,Pt电极为阴极,建立光电催化体系,对废水中的农药敌百虫进行降解.当采用浓度0.02 mol/L的NaCl溶液为电解质溶液、初始废水pH为6.0、电流密度为2.5 mA/cm2、降解时间为120 min时进行光电催化反应,模拟敌百虫废水COD的去除率达到81.8%.  相似文献   

8.
采用聚丙烯腈基石墨毡电极,以NaCl为电解质,在恒流电解的条件下,对质量浓度为1 000 mg/L、COD=3 672 mg/L的模拟邻甲酚废水进行预处理。研究了电解时间、初始废水pH、NaCl加入量、电流密度对邻甲酚去除率的影响,考察了废水的COD变化,并探讨了反应机理。实验结果表明:石墨毡电极具有较好的导电性、吸附性,对邻甲酚具有较好的电化学氧化性能;常温常压下,初始废水pH为6~7、电流密度为90 A/m2、向300 mL废水中加入0.5 g NaCl时,经4 h电解,邻甲酚的去除率达到97.1%,COD的去除率达到47.3%;处理后废水的BOD5/COD由0.04提高至0.33,可不经稀释直接进行生物处理。  相似文献   

9.
采用水热合成—高温碳化—涂饰的方法制备了介孔碳修饰石墨电极,并将其用于模拟硝基苯废水的电化学处理,考察了废水pH、电流密度、电解质投加量对处理效果的影响。表征结果显示,修饰电极表面具有丰富的介孔结构,因而比石墨电极具有更高的硝基苯去除率和苯胺生成量。实验结果表明,在废水pH为7.0、电流密度为15 mA/cm~2、电解质硫酸钠投加量为1.775 g/L的条件下处理初始硝基苯质量浓度为100 mg/L的模拟废水,电解3.0 h时的硝基苯去除率高达99.6%,苯胺生成量最高达45.54 mg/L。  相似文献   

10.
以钛涂钌电极为阳极、自制蒽醌修饰石墨毡电极为阴极,对头孢合成废水(COD=25 000~30 000 mg/L、ρ(NH3-N)=850~1 300 mg/L、色度为2 300~2 680度)进行了电化学氧化预处理,优化了电解条件,并对电化学体系的动力学和稳定性进行了分析。实验结果表明:蒽醌的存在可改善电化学氧化降解效果;在电解时间50 min、电流密度0.14 A/cm2、Na2SO4浓度0.1 mol/L、极板间距2 cm、初始废水p H 7.0的条件下,废水的COD、色度、NH3-N的去除率分别可达45.3%,66.9%,33.6%;BOD5/COD由处理前的0.27增至0.40,可生化性得到改善;COD、色度、NH3-N的电化学氧化降解过程均近似符合一级动力学方程;且该电化学体系的应用稳定性良好。  相似文献   

11.
赵大传  杨厚玲 《化工环保》1996,16(6):346-350
对焦化厂蒸氨废水中的有机物进行了GC/MS分析,发现酚类,吲哚,喹啉和硫醇是主要污染物成分。对旨在降低蒸氨废水硫化物含量的各种处理方法进行了比较。采用CWZ-01吸附剂的吸附法能使废水中硫化物降至30mg/L以下。  相似文献   

12.
电催化氧化法处理阴离子表面活性剂废水   总被引:5,自引:0,他引:5  
采用自制电化学反应器对阴离了表面活性剂废水的电催化氧化处理进行了研究,考察了阳极材料、电解电压、电解时间、电极间距离、废水pH、废水电导率等对阴离子表面活性剂电解去除效果的影响,确定了最佳的处理条件。在电解电压为8V、电解时间为30~40min、电极间距离为2cm、废水pH为8~10、废水电导率为0.620ms/cm的条件下,阴离子表面活性剂的电解处理去除率可达96%以上。  相似文献   

13.
陈雷  贺磊  王伟  杨娇 《化工环保》2017,37(2):212-217
采用臭氧氧化-三维电极电解联用技术深度处理造纸废水,通过单因素及正交实验法确定了最优工艺条件,并探讨了反应的动力学和机理。实验结果表明:废水处理的最优工艺条件为电极间距1.5 cm、电流密度9mA/cm~2、臭氧曝气量15 mL/min、活性炭填充量22 g/L、反应时间60 min,该工艺条件下,废水的COD去除率达93.70%;臭氧氧化-三维电极电解联用技术对废水中COD的去除过程符合一级反应动力学方程;臭氧氧化和三维电极电解间存在协同效应。  相似文献   

14.
周键  王三反 《化工环保》2014,34(5):438-442
采用并联式单极性三维电极电解处理低浓度含钴废水并回收金属钴,比较了二维电极与三维电极的钴离子去除效果,探讨了填充材料、电流、填充比(填充材料与废水的质量比)、废水pH对钴离子去除效果的影响,建立了反应动力学模型,并进行了经济性分析。实验结果表明:三维电极对钴离子的去除效果远优于二维电极;在以网状Ti/RuO2为阳极、不锈钢板为阴极并作为主电极、空心钢球为第三极、极间距5 cm、电解时间60 min、电流为0.6 A、填充比为2.5、不调节废水pH的条件下处理钴离子质量浓度为112.3 mg/L的废水,钴离子去除率可达85.6%、电流效率为68.3%;去除钴离子的电化学反应符合一级反应动力学模型;该方法具有良好的环境与经济效益。  相似文献   

15.
通过掺杂少量过渡金属Sb和稀土元素Dy,利用复合电沉积—高温氧化法制备Sb-Dy-SnO2/Ti电极,并应用该电极对石化污水反渗透浓水(COD=120~260 mg/L、pH=6.5~7.5)进行电催化氧化实验。实验结果表明:在n(Sb)∶n(Sn)=0.05、n(Dy)∶ n(Sn)=0.015、焙烧温度650 ℃、焙烧时间2 h的条件下,制备的Sb-Dy-SnO2/Ti电极具有良好的导电性及电催化活性;以在上述条件下制得的Sb-Dy-SnO2/Ti电极为工作电极,在进水COD 220 mg/L、电流密度15 mA/cm2、废水pH 7.2、反应时间90 min的条件下,出水COD为47 mg/L,COD去除率为79.1%,达到DB 21/1627—2008《辽宁省污水综合排放标准》中的废水排放要求(COD≤50 mg/L)。  相似文献   

16.
采用臭氧氧化法处理页岩气钻井废水经混凝沉淀后的出水(COD=759.63 mg/L),重点研究了废水中有机污染物的去除机理与反应动力学。实验结果表明:在废水pH为11.2、臭氧通入量为8 mg/min、反应时间为50 min的最佳工艺条件下,废水的COD去除率为42.51%;羟基自由基抑制剂CO_3~(2-)、HCO_3~-和叔丁醇的引入抑制了废水COD的臭氧氧化去除,尤其是叔丁醇的加入使COD去除率显著下降,说明废水中有机物的臭氧氧化去除过程遵循羟基自由基机理;臭氧氧化法对钻井废水中有机物的氧化去除过程符合表观二级反应动力学规律。  相似文献   

17.
采用酸析—撞击流旋转填料床( IS-RPB)强化Fenton试剂氧化法预处理二硝基甲苯(DNT)生产废水.最佳工艺条件为:酸析工段废水pH 1.0,IS-RPB转速1 500 r/min,FeSO4加入量0.06 mol/L,H2O2加入量0.45mol/L,反应温度40 ℃,反应时间4h.在该条件下处理DNT生产废水,COD去除率可达98.95%,硝基化合物去除率达98.32%,BOD5/COD为 0.65.经该方法预处理后的DNT生产废水可适用于生化法进行后续处理.  相似文献   

18.
以靛蓝为目标污染物,采用稀土元素Pr辅助的类Fenton试剂氧化法处理模拟染料废水。制备了双金属氧化物催化剂Fe2-xPrxO3,考察了催化剂中n(Pr)∶n(Fe)、催化剂加入量、初始靛蓝质量浓度、H2O2加入量、废水pH对废水脱色效果的影响。实验结果表明:Pr在很大程度上提高了类Fenton反应的效率,废水脱色率得到显著提高;在n(Pr)∶n(Fe)=1∶5、初始靛蓝质量浓度为30 mg/L、催化剂加入量为500 mg/L、H2O2加入量为40 mL/L、废水pH为3的最佳工艺条件下,反应50 min时废水脱色率达到92.78%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号