首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Techniques employed to simulate infiltration and subsurface ground-water flow were examined for a number of available watershed models. The large number of processes that these models simulate prohibits detailed analysis of subsurface flow, due to excessive computer and data requirements. Such models emphasize surface flow and include only that portion of water lost to the subsurface and the portion returned to the stream as baseflow. Problems were examined in adopting conjunctive use models, which allow the coordinated exploitation and management of both surface and ground-water resources. The application of conjunctive use models in water resources management is expected to increase dramatically over the next decade.  相似文献   

2.
ABSTRACT: The importation of water into an existing irrigated agricultural area raises many questions about farm profitability and suggests many adjustment alternatives open to farmers. In particular, how will farmers respond to a new additional water source of differing cost, availability, and quality? Mathematical programming models of representative irrigated farms in Pinal County, Arizona, were developed to project agricultural adjustments to new water from the Central Arizona Project now under construction. The techniques developed have broad application to similar water resource projects involving the conjunctive use of multiple water sources of differing qualities. Regional agricultural activities are described by defining and modeling multiple representative farms which account for economies due to size and different water sources of differing price and quality. Various management schemes can be evaluated by properly selected representative farm models.  相似文献   

3.
ABSTRACT: The unique characteristics of the hydrogeologic system of south Florida (flat topography, sandy soils, high water table, and highly developed canal system) cause significant interactions between ground water and surface water systems. Interaction processes involve infiltration, evapotranspiration (ET), runoff, and exchange of flow (seepage) between streams and aquifers. These interaction processes cannot be accurately simulated by either a surface water model or a ground water model alone because surface water models generally oversimplify ground water movement and ground water models generally oversimplify surface water movement. Estimates of the many components of flow between surface water and ground water (such as recharge and ET) made by the two types of models are often inconsistent. The inconsistencies are the result of differences in the calibration components and the model structures, and can affect the confidence level of the model application. In order to improve model results, a framework for developing a model which integrates a surface water model and a ground water model is presented. Dade County, Florida, is used as an example in developing the concepts of the integrated model. The conceptual model is based on the need to evaluate water supply management options involving the conjunctive use of surface water and groundwater, as well as the evaluation of the impacts of proposed wellfields. The mathematical structure of the integrated model is based on the South Florida Water Management Model (SFWMM) (MacVicar et al., 1984) and A Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW) (McDonald and Harbaugh, 1988).  相似文献   

4.
ABSTRACT: This paper pursues more specifically the recommendations of a recent National Research Council report recommending greater attention to research on institutions in the field of water resource management. The important challenge for the future in institutional research lies in going beyond the observation that institutions are important and in explaining instead how institutions actually affect management options and outcomes. It is possible to illuminate the relationships between institutional features and water management through comparative institutional research. This paper offers recommendations for studying water institutions in a comparative context, including methodological recommendations concerning approaches to comparative institutional research, and topics for comparative institutional research that appear especially fruitful at this time. The example of conjunctive management is used to illustrate the importance of institutional factors in water management, drawing to some extent on the authors’ recent experience with a comparative study of conjunctive management institutions.  相似文献   

5.
The conjunctive use of surface and groundwater resources is one alternative for optimal use of available water resources in arid and semiarid regions. The optimization models proposed for conjunctive water allocation are often complicated, nonlinear, and computationally intensive, especially when different stakeholders are involved that have conflicting interests. In this article, a new conflict-resolution methodology developed for the conjunctive use of surface and groundwater resources using Nondominated Sorting Genetic Algorithm II (NSGA-II) and Young Conflict-Resolution Theory (YCRT) is presented. The proposed model is applied to the Tehran aquifer in the Tehran metropolitan area of Iran. Stakeholders in the study area have conflicting interests related to water supply with acceptable quality, pumping costs, groundwater quality, and groundwater table fluctuations. In the proposed methodology, MODFLOW and MT3D groundwater quantity and quality simulation models are linked with the NSGA-II optimization model to develop Pareto fronts among the objectives. The best solutions on the Pareto fronts are then selected using YCRT. The results of the proposed model show the significance of applying an integrated conflict-resolution approach to conjunctive use of surface and groundwater resources in the study area.  相似文献   

6.
In this work on the management of water quality in a river basin by means of multiobjective programming, the programming model consists of three objectives that include simultaneously both economic and environmental factors. These objectives are the water quality of the rivers, the cost of wastewater treatment and the assimilative capacity of the rivers. In particular, this research is the first to take into account the last objective. For practical application, this paper proposes two methods of multiobjective programming, the constraint method and the step method. Furthermore, to illustrate the application of these techniques to water quality management problems, we use the basin of Tzeng-Wen River, Taiwan, as a case study. The results show that these methods work satisfactorily to improve the water quality, to ascertain the economic cost of wastewater treatment, and to allocate allowable loading in a manner of equality from non-inferior solutions. Alternatively, these methods provide important information for regulatory agencies to implement pollution control of river water.  相似文献   

7.
ABSTRACT: Genetic algorithms (GA) and simulated annealing (SA), two global search techniques, are coupled with MODFLOW, a commonly used groundwater flow simulation code, for optimal management of ground water resources under general conditions. The coupled simulation-optimization models allow for multiple management periods in which optimal pumping rates vary with time to reflect the changing flow conditions. The objective functions of the management models are of a very general nature, incorporating multiple cost terms such as the drilling cost, the installation cost, and the pumping cost. The models are first applied to two-dimensional maximum yield and minimum cost water supply problems with a single management period, and then to a multiple management period problem. The strengths and limitations of the GA and SA based models are evaluated by comparing the results with those obtained using linear programming, nonlinear programming, and differential dynamic programming. For the three example problems examined in this study, the GA and SA based models yield nearly identical or better solutions than the various programming methods. While SA tends to outperform GA in terms of the number of forward simulations needed, it uses more empirical control parameters which have significant impact on solution efficiency but are difficult to determine.  相似文献   

8.
ABSTRACT: Increasing demands on western water are causing a mounting need for the conjunctive management of surface water and ground water resources. Under western water law, the senior water rights holder has priority over the junior water rights holder in times of water shortage. Water managers have been reluctant to conjunctively manage surface water and ground water resources because of the difficulty of quantification of the impacts to surface water resources from ground water stresses. Impacts from ground water use can take years to propagate through an aquifer system. Prediction of the degree of impact to surface water resources over time and the spatial distribution of impacts is very difficult. Response functions mathematically describe the relationship between a unit ground water stress applied at a specific location and stream depletion or aquifer water level change elsewhere in the system. Response functions can be used to help quantify the spatial and temporal impacts to surface water resources caused by ground water pumping. This paper describes the theory of response functions and presents an application of transient response functions in the Snake River Plain, Idaho. Transient response functions can be used to facilitate the conjunctive management of surface and ground water not only in the eastern Snake River Plain basin, but also in similar basins throughout the western United States.  相似文献   

9.
ABSTRACT: Feasibility of disposing treated sewage in wells sunk into a partially confined coastal limestone aquifer at Waimanalo in the island of Oahu was investigated using an electric analog model. Electric analog modeling was preferred over digital modeling because of ease with which tides could be generated at the ocean boundary in the form of sinusoidal waves. The results of model operation showed that high permeability, low storativity, and the presence of ocean render the Waimanalo aquifer highly suitable for the disposal of waste water in deep wells. Since the quality of water in the aquifer is already unsuitable for municipal, industrial, or agricultural use, waste water injection will not result in any loss of fresh water supply source to the island. It is also believed that the cost of waste water disposal through the aquifer will be considerably less than that through an ocean outfall. During model development it was discovered that electric analog models can help prepare certain graphs which can be useful for aquifer analysis without any further use of the model.  相似文献   

10.
Water quality must be considered in the development and planning aspects of water resource management. To accomplish this, the decision-maker needs to have at his disposal a systematized procedure for simulating water quality changes in both time and space. The simulation model should be capable of representing changes in several parameters of water quality as they are influenced by natural and human factors impinging on the hydrologic system. The objective of this work is two-fold. The first goal is to demonstrate the feasibility of developing and utilizing a water quality simulation model in conjunction with a hydrologic simulation model. The model represents water quality changes in both time and space in response to changing atmospheric and hydrologic conditions and time-varying waste discharges at various points in the system. This model has been developed from and verified with actual field data from a prototype system selected for this purpose. The second aim is to set forth procedural guidelines to assist in the development of water quality simulation models as tools for use in the quality-quantity management of a hydrologic unit.  相似文献   

11.
An inexact rough-interval two-stage stochastic programming (IRTSP) method is developed for conjunctive water allocation problems. Rough intervals (RIs), as a particular case of rough sets, are introduced into the modeling framework to tackle dual-layer information provided by decision makers. Through embeding upper and lower approximation intervals, rough intervals are capable of reflecting complex parameters with the most reliable and possible variation ranges being identified. An interactive solution method is also derived. A conjunctive water-allocation system is then structured for characterizing the proposed model. Solutions indicate a detailed optimal allocation scheme with a rough-interval form; a total of [[1048.83, 2078.29]:[1482.26, 2020.60]] would be obtained under the pre-regulated inputs. Comparisons of the proposed model to a conventional and an interval two-stage stochastic programming model are also conducted. The results indicate that the optimal objective function values of TSP and ITSP always fall into the range of , while they are sometimes out of the range of ; the optimal solutions of decision variables also present this feature. This implies the reliability of IRTSP in handling conjunctive water allocation problems.  相似文献   

12.
ABSTRACT: The use of artificial recharge in Saskatchewan and the rest of Canada to improve rural community and farmstead domestic water supply has great potential. Approximately 75 percent of the people in rural Saskatchewan and 26 percent of all the people in Canada are dependent on ground water for their domestic water supply. Typically, this water is highly mineralized and is often unpalatable due to odor and taste. A source of readily available, high quality water to eliminate expensive chemical treatment of available water and long distance hauling would be of significant value to rural residents. Storage of high quality water in aquifers by injection through wells has been documented and has been shown to depend on the use of a surface water catchment system to provide the high quality water. Since air entrainment or formation clogging can occur in poorly operated recharge schemes, development of proper design and operation of recharging procedure is required. This can be accomplished by using an injection response computer model and a properly designed injection system. Small scale artificial recharge projects will provide a valuable commodity to rural water users and will promote sustainable and conjunctive use of surface and ground water resources.  相似文献   

13.
ABSTRACT: A ground water management model based on the linear systems theory and the use of linear programming is formulated and solved. The model maximizes the total amount of pound water that can be pumped from the system subject to the physical capability of the system and institutional constraints. The results are compared With analytical and numerical solutions. Then, this model is applied to the Pawnee Valley area of south-central Kansas. The results of this application support the previous studies about the future ground water resources of the Valley. These results provide a guide for the ground water resources management of the area over the next ten years.  相似文献   

14.
The utilization of water quality analysis to inform optimal decision-making is imperative to achieve sustainable management of river water quality. A multitude of research works in the past has focused on river water quality modeling. Despite being a precise statistical regression technique that allows for fitting separate models for all potential combinations of predictors and selecting the optimal subset model, the application of best subset method in river water quality modeling is not widely adopted. The current research aims to validate the use of best subset method in evaluating the water quality parameters of the Godavari River, one of the largest rivers in India, by developing regression equations for different combinations of its physicochemical parameters. The study involves in formulating best subset regression equations to estimate the concentrations of river water quality parameters while also identifying and quantifying their variations. A total of 17 water quality parameters are analyzed at 13 monitoring sites using 13 years (1993–2005) of observed data for the monsoon (June–October) period and post-monsoon (November–February) period. The final subset model is selected among model combinations that are developed for each year's dataset through widely used statistical criteria such as R2, F value, adjusted R2a, AICc, and RSS. The final best subset model across all parameters exhibits R2 values surpassing 0.8, indicating that the models possess the ability to account for over 80% of the variations in the concentrations of dependent parameters. Therefore, the findings demonstrated the appropriateness of this method in evaluating the water quality parameters in extensive rivers. This work is very useful for decision-making and in the management of river water quality for its sustainable use in the study area.  相似文献   

15.
ABSTRACT: Protection of ground water quality is of considerable importance to local, state, and federal governments. This study uses a 15-year mathematical programming model to evaluate the effectiveness of low-input agriculture, under alternative policy scenarios, as a strategy to protect ground water quality in Richmond County, Virginia. The analysis considers eight policy alternatives: cost-sharing for green manures, two restrictions on atrazine applications levels, chemical taxation, a restriction on potential chemical and nitrogen levels in ground water only and in surface and ground water, and two types of land retirement programs. The CREAMS and GLEAMS models were used to estimate nitrate and chemical leaching from the crop root zone. The economic model evaluates production practices, policy constraints, and water quality given a long-term profit maximizing objective. The results indicate that low-input agriculture alone may not be an effective ground water protection strategy. The policy impacts include partial adoption of low-input practices, land retirement, and the substitution of chemicals. Only mandatory land retirement policies reduced all chemical and nutrient loadings of ground water; however, they did not promote the use of low-input agricultural practices.  相似文献   

16.
Studies that evaluate determinants of residential water demand typically use data from a single spatial scale. Although household‐scale data are preferred, especially when econometric models are used, researchers may be limited to aggregate data. There is little, if any, empirical analysis to assess whether spatial scale may lead to ecological fallacy problems in residential water use research. Using linear mixed‐effects models, we compare the results for the relationship of single‐family water use with its determinants using data from the household and census tract scales in the city of Phoenix. Model results between the household and census tract scale are similar suggesting the ecological fallacy may not be significant. Common significant determinants on these two spatial scales include household size, household income, house age, pool size, irrigable lot size, precipitation, and temperature. We also use city/town scale data from the Phoenix metropolitan area to parameterize the linear mixed‐effects model. The difference in the parameter estimates of those common variables compared to the first two scales indicates there is spatial heterogeneity in the relationship between single‐family water use and its determinants among cities and towns. The negative relationship between single‐family house density and residential water use suggests that residential water consumption could be reduced through coordination of land use planning and water demand management.  相似文献   

17.
ABSTRACT: Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara‐Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate‐driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM‐RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM‐RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions.  相似文献   

18.
ABSTRACT: This paper examines the critical interaction between existing Texas water law and the state's water resources. Conjunctive use and management of interrelated water resources, though seldom practiced, is generally considered desirable. However, a significant barrier to the coordinated, efficient use and management of water resources is the legal division of water in the various phases of the hydrologic cycle into different classes and recognition of well-defined water rights in the separate phases. Several examples of the problems which relate to, or result from, present Texas water law and which prevent correlated water resource management are discussed. Any substantive revision of Texas law, particularly ground water law, will apparently be difficult to achieve in the immediate future, primarily because of the large number of recognized private water rights and the political power inherent in them. Data necessary for operation of conjunctive management systems are gradually being acquired, and perhaps someday other hydrologic phases can be integrated with surface and ground water. Nevertheless, Texas courts and the legislature have sufficient information on the interrelated hydrologic cycle so that prospective water conflicts should be anticipated and avoided. Great care must be exercised in the recognition of new types of private water rights or extension of existing rights, because this institutional structure, once established, presents a formidable obstacle to desirable revisions of the law.  相似文献   

19.
ABSTRACT: Climate change has the potential to have dramatic effects on the agricultural sector nationally and internationally as documented in many research papers. This paper reports on research that was focused on a specific crop growing area to demonstrate how farm managers might respond to climate-induced yield changes and the implications of these responses for agricultural water use. The Hadley model was used to generate climate scenarios for important agricultural areas of Georgia in 2030 and 2090. Linked crop response models indicated generally positive yield changes, as increased temperatures were associated with increased precipitation and CO2. Using a farm management model, differences in climate-induced yield impacts among crops led to changes in crop mix and associated water use; non-irrigated cropland received greater benefit since irrigated land was already receiving adequate moisture. Model results suggest that farm managers will increase cropping intensity by decreasing fallowing and increasing double cropping; corn acreage decreased dramatically, peanuts decreased moderately and cotton and winter wheat increased. Water use on currently irrigated cropland fell. The potential for increased water use through conversion of agriculturally important, but currently non-irrigated, growing areas is substantial.  相似文献   

20.
The Soil and Water Assessment Tool (SWAT) is widely used in the United States (U.S.) to simulate hydrology and water quality simulation. Process‐based models like SWAT require a great deal of data to accurately represent the natural world, including topography, land use, soils, weather, and management. With the exception of management, all these data are available nationally from multiple sources. To date, credible SWAT studies in the U.S. have assembled suitable management data (operation scheduling, fertilization application rates, and plant growth parameterization). In this research, we develop a national management database for SWAT using existing U.S. Department of Agriculture data sources. These data are compatible with existing SWAT interfaces and are relatively easy to use. Although management data from local sources is preferred, these data are not always available. This work is intended to fill this void with more reasonable management data than the existing defaults. This national database covers all major cultivated crops and should facilitate improved SWAT applications in the U.S. These data were tested in two case studies and found to produce satisfactory SWAT predictions. The database developed in this research is freely available on the web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号