首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Interbasin water transfer is one of the most controversial water-resources-planning topics. Local communities, particularly those from which the water is to be taken (donor regions), generate enough opposition to doom many projects to failure. The opposition often arises because planners have traditionally considered excess water a free commodity rather than a marketable resource. To make transfer schemes mutually acceptable to donor and recipient regions, visible benefits must be offered. Agreement must be made on an acceptable purchase price and/or on other benefits such as a substantial amount of low flow augmentation or possibly some degree of flood control on the donor source stream. The hydrologic and economic feasibility of water transfer from the East Susquehanna River basin to the Delaware Reservoir System for supplemental supply to the New York City area was investigated. Nine alternative schemes for diversions up to 400 cfs and compensations in the form of low flow augmentation and/or flood control were considered resulting in unit costs to the recipient region between $90 and $380/mg. If only the minimum state-mandated flow is released to the Susquehanna River, the savings to the water recipients would be sufficient to pay a purchase price of about $21/mg, which would be equivalent to a total amount of $420,000/year for an average export of 100 cfs.  相似文献   

2.
ABSTRACT The 60's drought (1961 1966) which hit the Northeastern United States, had its center over the Delaware River Basin and caused water supply shortages to New York City, Philadelphia, and many other towns and industries in the Basin. Until this event occurred, the existing water supply sources and those planned for the future had been considered adequate, as they were designed for the worst drought of record (usually the 1930-31 drought). In view of this “change in hydrology,” the Delaware River Basin Commission authorized a study (DRBC Resolution 67-4) to re-evaluate the adequacy of existing and planned water supply sources of the Delaware River Basin and its Service Area (New York City and northern New Jersey). Synthetic hydrology is a tool which can be used to overcome many of the limitations of the traditional approach. By analyzing generated streamflow traces in this study, it has been determined that there is a definite relationship between the accumulated rainfall deficiency during the drought and the return periods associated with various durations of runoff in the drought. This indicated that generated traces can be used to standardize the hydrology over an area where the intensity of drought varied. This represented an important facet in the study, because it provided a means to equalize the effects of this drought over the study area, and gave the Delaware River Basin Commission more information so that it could better plan and manage its water resources equitably, not only for the people within the Basin, but for the New York City and northern New Jersey areas as well. Synthetic hydrology was used to determine yield-probability relationships for 50-year periods, and storage-yield-frequency relationships for existing and planned water-supply reservoirs. It was also used to determine yield-probability relationships for reservoir systems within the Basin. In the study, it was determined that monthly streamflow traces and uniform draft rates could be used in yield analysis because of the magnitude of the reservoirs and because seasonal variations of draft rate are small in the study area. Although it was found that with the streamflow generating models (first order Markov) in common use today, it is not possible to definitely determine the actual frequency of a very severe historic drought, it is possible to place a drought in perspective by using synthetic hydrology. The study showed that it is a useful tool in determining water availability over a basin and is useful in studying water management problems such as interbasin transfers, and reservoir systems operations.  相似文献   

3.
A total of 154 aquatic alien species have invaded the New York State Canal and Hudson River systems and a total of 162 aquatic species have invaded the Great Lakes Basin. Some of these invasive species are causing significant damage and control costs in both aquatic ecosystems. In the New York State Canal and Hudson River systems, the nonindigenous species are causing an estimated 500 million dollars in economic losses each year. The economic and environmental situation in the Great Lakes Basin is far more serious from nonindigenous species, with losses estimated to be about 5.7 billion dollars per year. Commercial and sport fishing suffer the most from the biological invasions, with about 400 million dollars in losses reported for the New York State Canal and Hudson River systems and 4.5 billion dollars in losses reported for the Great Lakes Basin.  相似文献   

4.
ABSTRACT: The effects of potential climate change on water resources in the Delaware River basin were determined. The study focused on two important water-resource components in the basin: (1) storage in the reservoirs that supply New York City, and (2) the position of the salt front in the Delaware River estuary. Current reservoir operating procedures provide for releases from the New York City reservoirs to maintain the position of the salt front in the estuary downstream from freshwater intakes and ground-water recharge zones in the Philadelphia metropolitan area. A hydrologic model of the basin was developed to simulate changes in New York City reservoir storage and the position of the salt front in the Delaware River estuary given changes in temperature and precipitation. Results of simulations indicated that storage depletion in the New York City reservoirs is a more likely effect of changes in temperature and precipitation than is the upstream movement of the salt front in the Delaware River estuary. In contrast, the results indicated that a rise in sea level would have a greater effect on movement of the salt front than on storage in the New York City reservoirs. The model simulations also projected that, by decreasing current mandated reservoir releases, a balance can be reached wherein the negative effects of climate change on storage in the New York City reservoirs and the position of the salt front in the Delaware River estuary are minimized. Finally, the results indicated that natural variability in climate is of such magnitude that its effects on water resources could overwhelm the effects of long-term trends in precipitation and temperature.  相似文献   

5.
ABSTRACT: With the increasing availability of digital and remotely sensed data such as land use, soil texture, and digital elevation models (DEMs), geographic information systems (GIS) have become an indispensable tool in preprocessing data sets for watershed hydrologic modeling and post processing simulation results. However, model inputs and outputs must be transferred between the model and the GIS. These transfers can be greatly simplified by incorporating the model itself into the GIS environment. To this end, a simple hydrologic model, which incorporates the curve number method of rainfall‐runoff partitioning, the ground‐water base‐flow routine, and the Muskingum flow routing procedure, was implemented on the GIS. The model interfaces directly with stream network, flow direction, and watershed boundary data generated using standard GIS terrain analysis tools; and while the model is running, various data layers may be viewed at each time step using the full display capabilities. The terrain analysis tools were first used to delineate the drainage basins and stream networks for the Susquehanna River. Then the model was used to simulate the hydrologic response of the Upper West Branch of the Susquehanna to two different storms. The simulated streamflow hydrographs compare well with the observed hydrographs at the basin outlet.  相似文献   

6.
The emphasis upon comprehensive regional water resources planning in the past decade has encouraged the hydrologic engineer to take advantage of improvements in technology to develop new hydrologic engineering techniques for use in regional planning studies. The new techniques are necessary because the traditional hydro-logic engineering techniques are not always consistent with the increased scope and diversified objectives of regional planning studies. The Hydrologic Engineering Center has been involved in aiding in the development of some of these new techniques as the result of studies that have been made in cooperation with other Corps of Engineers offices. Most of the new techniques being developed emphasize computational procedures developed specifically for use with electronic computers. Applications of new techniques range from framework studies to planning of day-to-day operation criteria. Studies recently completed or in progress include: (1) development of a regional flood control site screening plan for the North Atlantic Region study; (2) use of streamflow simulation for planning and operation of the Missouri River mainstem projects; (3) development of an operation plan for the Arkansas-White-Red Rivers Reservoir System; (4) standard project flood and flood frequency estimates for the Colorado River Basin Framework Study; and several other projects which are described in more detail in the following paragraphs. One of the initial efforts in regional analysis was the formulation of procedures for determining standard project flood estimates for southern California coastal streams using generalized criteria. Techniques were developed that were readily adaptable to the computer and which would determine representative unit hydrographs, losses and standard project precipitation for any location in the study area. The resulting standard project flood estimates were consistent with the accuracy required for framework studies; however, they could be refined easily for design studies. As a result of the recent drought in the Northeastern United States, a study was made to evaluate both present and future water supply reservoirs in that region. The study consisted of computerized studies of the hypothetical operation of a large number of reservoirs as a system. The reservoirs were on many different streams throughout the region and had varying constraints, depending upon the stream and the state in which the reservoir was located. Since only preliminary data was available on the proposed reservoirs, it was not possible to refine the studies to a large degree. However, the models of each system can be easily refined as more accurate design data become available. The development of a computer-aided screening procedure for use in evaluating several hundred potential reservoir sites for the Missouri River Basin Comprehensive Framework Study is a third example of regional analysis. The adopted procedures used available physical, hydrologic, and climatologic data in estimating reservoir storage requirements throughout the basin. Because the procedure is based upon the techniques often used in more refined studies, it is expected that the results of the screening study will be very useful in future planning and design work. Shortcomings of some of the traditional techniques have helped in the development of new techniques. For maximum usefulness the new techniques should: (1) be consistent with the scope, objectives, and requirements of the overall study; (2) use all available physical, hydrologic, and climatologic data without requiring extensive data which may not be available; (3) take full advantage of the capabilities of the computer and associated data processing systems; and (4) produce results which form a firm basis for future, more detailed, planning and design studies instead of being limited in usefulness largely to the study at hand.  相似文献   

7.
In this paper, a procedure for analyzing a water resource system with special emphasis on evaluation of acceptable economic risk due to occasional failures to deliver water is proposed. The basic methodology includes the development of a simple mathematical model which describes the physical hydrologic and economic characteristics of a single reservoir irrigation and city water supply system and an evaluation of economic benefits of the system with full and partial deliveries of water. The system is simulated for various combinations of decision variables (system magnitudes) and an optimum design is obtained by response surface technology. Emphasis is placed on the basic model and methodology although, in order to introduce some realism, the procedure is applied to data based on the existing reservoir system on the South Concho River in West Central Texas.  相似文献   

8.
ABSTRACT: Point‐nonpoint trading has been suggested as a relatively efficient approach for reducing nutrient pollution in the Chesapeake Bay and elsewhere. However, relatively little economic research has examined the design of trading programs involving nonpoint sources. The purpose of this paper is to investigate the economics of several fundamental design choices for point‐nonpoint trading programs. The Susquehanna River Basin (SRB) in Pennsylvania as an example, although many of the insights should generally apply to other regions as well.  相似文献   

9.
ABSTRACT: Understanding the effects of climate change on water resources requires coupling atmospheric and hydrologic models. With the wide array of hydrologic models, from simple empirical to complex physically based, it is not clear which is preferable to simulate hydrologic variations over long time scales. To address this issue, a black-box artificial neural network (ANN) model was compared to a distributed parameter conceptual Geographic Information System based Hydrologic Modeling System (GIS-HMS). Both models computed daily direct surface runoff in four sub-basins of the West Branch of the Susquehanna River Basin, Pennsylvania and were evaluated with five objective functions. Overall, results were comparable between models. However, the ANN was favored in the larger sub-basins, while GIS-HMS was more accurate in the smaller catchments. Both models were impaired by the poor spatial and temporal resolution of precipitation data and the simplified representation of antecedent soil-moisture conditions. In the context of climate change, where simulations are limited by computing power, results suggest that both models are appropriate. When detailed simulations are essential, GIS-HMS is a preferable model to use. On the other hand, the ANN model is more suitable when multiple scenarios require immediate analysis and the distributed qualities of runoff are not required.  相似文献   

10.
ABSTRACT: The meteorology flood hydroclimatolog and socioeconomic impacts of the Flood of January 1996 in the Susquehanna River Basin are explored. The analysis explains how an unusual storm system brought high humidities, high temperatures, strong winds, and heavy rain to the basin. The rapid melt of the deep snowpack, combined with the heavy rainfall, produced the sudden release of large volumes of water. Because the ground surface was frozen or saturated, this water moved primarily as overland flow. Thus, the flood waters were not restricted to areas immediately adjacent to stream channels and, consequently, some of the largest impacts were on people, property, and infrastructure in areas not normally prone to flooding. Socioeconomic patterns of flooding over time and space are investigated to put this flood into context and to highlight its impacts. The analysis concludes that if such overland flooding is a more common feature of climate change, then the current vulnerability to this form of flooding and its economic implications must be considered carefully.  相似文献   

11.
ABSTRACT: An environmental simulation model of the Upper St. Johns River Basin, Florida, has been developed in order to predict hydrologic responses under proposed management plans. Land use projections for each of 19 hydrologic planning units are provided by a linear programming analysis of agricultural activities. Inputs to the model include rainfall, runoff, evapotranspiration (ET), aquifer properties, topography, soil types, and vegetative patterns. A water balance is developed in the uplands based on infiltration, ET, surface runoff, and groundwater flow. Valley continuity is based on stage-volume relationship for inflows and outflows and a variable roughness coefficient dependent on vegetative patterns. Land use changes form the basis for predicting hydroperiod variation under alternative management schemes. Plans are ranked according to two criteria, deviation from a natural hydroperiod and flood or drought control provided. Results indicate that (1) a single reservoir without irrigation and (2) floodplain preservation plans are superior to (3) multiple reservoir with irrigation and (4) uncontrolled floodplain plans with regard to both criteria.  相似文献   

12.
Regarding emerging large‐scale reservoir operation models, reports of reservoir operation feedback for hydrologic modeling are rare, and little attention has been paid to flood control. An operation scheme considering multilevel flood control (MLFC) was first proposed in this study, but more reservoir information was needed. Thus, an alternative scheme was proposed that consisted of a modified version of the reservoir operation scheme in the Soil and Water Assessment Tool Model (MSWAT scheme). These schemes were coupled to a land surface and hydrologic model system with feedback, i.e., a system in which reservoir operation can affect the subsequent simulation, and were investigated in the Huai River Basin. The results show reservoir storage and peak flow were generally overestimated by the original SWAT reservoir scheme (SWAT scheme). Compared with the SWAT scheme, the MSWAT scheme successfully reduced the simulated storage and peak flow at the reservoir stations. For the downstream stations, the streamflow simulations were improved at a significance level of 5%. The performances of the MSWAT and MLFC schemes at the reservoir stations were nearly equivalent. Importantly, reservoir operation feedback to hydrologic modeling was necessary because the reservoir operation effects could not be transferred downstream without it. The streamflow simulation of a reservoir station located on a flat plain was less sensitive to feedback than that of a mountain reservoir station.  相似文献   

13.
ABSTRACT: Law and hydrology are inextricably woven together in the pattern of water resource development in the west. The former attempts to allocate a limited and valuable resource as the latter tries to define the limits of the resource. In the past an inadequate data base has made hydrologic estimates difficult and political factors have pushed the law into possibly conflicting commitments in the Colorado River Basin. Through the use of tree-ring research, hydrologists have produced a more definitive data base and placed water allocations such as the Colorado River Compact of 1922 in a clearer long-term perspective. This data base leads to the conclusion that the surface-water supply is about 13.5 million acre-feet per year. This hydrologic limit must be apportioned within an existing legal framework - the “Law of the River.” As development approaches the resource limit in the Upper Colorado River Basin, lawyers and hydrologists must act in concert toward the equitable solution of allocation and reallocation problems.  相似文献   

14.
Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon’s (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions.  相似文献   

15.
Gebremichael, Mekonnen, Emmanouil N. Anagnostou, and Menberu M. Bitew, 2010. Critical Steps for Continuing Advancement of Satellite Rainfall Applications for Surface Hydrology in the Nile River Basin. Journal of the American Water Resources Association (JAWRA) 46(2):361-366. DOI: 10.1111/j.1752-1688.2010.00428.x. Abstract: Given the increasingly higher resolution and data accessibility, satellite precipitation products could be useful for hydrological application in the Nile River Basin, which is characterized by lack of reasonably dense hydrological in situ sensors and lack of access to the existing dataset. However, in the absence of both extreme caution and research results for the Nile basin, the satellite rainfall (SR) products may not be used, or may even be used erroneously. We identify two steps that are critical to enhance the value of SR products for hydrological applications in the Nile basin. The first step is to establish representative validation sites in the Nile basin. The validation site will help to quantify the errors in the different kinds of SR products, which will be used to select the best products for the Nile basin, include the errors in decision making, and design strategies to minimize the errors. Using rainfall measurements collected from the unprecedented high-density rain gauge network over a small region within the Nile basin, we indicate that SR estimates could be subject to significant errors, and quantification of estimation errors by way of establishing validation sites is critically important in order to use the SR products. The second step is to identify the degree of hydrologic model complexity required to obtain more accurate hydrologic simulation results for the Nile basin when using SR products as input. The level of model complexity may depend on basin size and SR algorithm, and further research is needed to spell out this dependence for the Nile basin.  相似文献   

16.
Freshwater management requires balancing and tradingoff multiple objectives, many of which may be competing. Ecological needs for freshwater are often described in terms of environmental flow recommendations (e.g., minimum flows), and there are many techniques for developing these recommendations, which range from hydrologic rules to multidisciplinary analyses supported by large teams of subject matter experts. Although hydrologic rules are well acknowledged as overly simplified, these techniques remain the state‐of‐the‐practice in many locations. This article seeks to add complexity to the application of these techniques by studying the emergent properties of hydrologic environmental flow methodologies. Two hydrologic rules are applied: minimum flow criteria and sustainability boundaries. Objectives and metrics associated with withdrawal rate and similarity to natural flow regimes are used to tradeoff economic and environmental needs, respectively, over a range of flow thresholds and value judgments. A case study of hypothetical water withdrawals on the Middle Oconee River near Athens, Georgia is applied to demonstrate these techniques. For this case study, sustainability boundaries emerge as preferable relative to both environmental and economic outcomes. Methods applied here provide a mechanism for examining the role of stakeholder values and tradeoffs in application of hydrologic rules for environmental flows.  相似文献   

17.
ABSTRACT: Riparian buffers are considered important management options for protecting water quality. Land costs and buffer performance, which are functions of local environmental characteristics, are likely to be key attributes in the selection process, especially when budgets are limited. In this article we demonstrate how a framework involving hydrologic models and binary optimization can be used to find the optimal buffer subject to a budget constraint. Two hydrologic models, SWAT and REMM, were used to predict the loads from different source areas with and without riparian buffers. These loads provided inputs for a binary optimization model to select the most cost efficient parcels to form a riparian buffer. This methodology was applied in a watershed in Delaware County, New York. The models were parameterized using readily available digital databases and were later compared against observed flow and water quality data available for the site. As a result of the application of this method, the marginal utility of incremental increases in buffer widths along the stream channel and the set of parcels to form the best affordable riparian buffer were obtained.  相似文献   

18.
Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests.  相似文献   

19.
针对东江流域的地区特点,以目前社会和经济发展水平为基础,确立水资源安全分级标准,采用层次分析法确定各指标的权重,用多级模糊综合评判法对东江流域水资源安全进行评价,最后得出从2000年到2007年东江流域各行政区的水资源安全度呈下降的趋势。  相似文献   

20.
ABSTRACT: Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 1990–94 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could be refined with more-current land use and land cover information and a more accurate estimate of the percentage of basin area planted in corn. Factors related to herbicide yields can be used to predict herbicide yields in other basins within the Chesapeake Bay watershed and to develop an estimate of herbicide loads to Chesapeake Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号