首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Water quality modelling in the meso-scale Rhin catchment in the German federal state Brandenburg was done (1) to answer some specific questions concerning identification of point and diffuse sources of nutrient pollution in the catchment, (2) to assess the influences of possible climate and land use changes on water quantity and quality and (3) to evaluate potential measures to be done in order to achieve a “good ecological status” of the river and its lakes as required by the Water Framework Directive (WFD).The Rhin catchment is a typical highly regulated lowland river basin in Northern Germany. The regulations complicate water quantity and quality modelling in the catchment. The research was done by using the eco-hydrological model SWIM (Soil and Water Integrated Model), which simulates water and nutrient fluxes in soil and vegetation, as well as transport of water and nutrients to and within the river network. The modelling period was from 1981 until 2005. After calibrating the hydrological processes at different gauges within the basin with satisfactory results, water quality (nitrogen and phosphorus) modelling was done taking into account the emissions of different point sources (sewage treatment plants, etc.) and identifying the amount of diffuse pollution caused mainly by agriculture.For suggesting some feasible measures to improve water quality and to reduce diffuse pollution considering possible climate and land use changes, different reasonable scenarios were applied in consultation with the Environmental Agency of Brandenburg (LUA). The study revealed that the amount of water discharge has significant influence on the concentration of nutrients in the river network, and that nitrogen pollution, caused mainly by diffuse sources, could be notably reduced by application of agricultural measures, whereas the pollution by phosphorus could be diminished most effectively by the reduction of point source emissions.  相似文献   

2.
3.
Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics.  相似文献   

4.
5.
Land-use change significantly contributes to biodiversity loss, invasive species spread, changes in biogeochemical cycles, and the loss of ecosystem services. Planning for a sustainable future requires a thorough understanding of expected land use at the fine spatial scales relevant for modeling many ecological processes and at dimensions appropriate for regional or national-level policy making. Our goal was to construct and parameterize an econometric model of land-use change to project future land use to the year 2051 at a fine spatial scale across the conterminous United States under several alternative land-use policy scenarios. We parameterized the econometric model of land-use change with the National Resource Inventory (NRI) 1992 and 1997 land-use data for 844 000 sample points. Land-use transitions were estimated for five land-use classes (cropland, pasture, range, forest, and urban). We predicted land-use change under four scenarios: business-as-usual, afforestation, removal of agricultural subsidies, and increased urban rents. Our results for the business-as-usual scenario showed widespread changes in land use, affecting 36% of the land area of the conterminous United States, with large increases in urban land (79%) and forest (7%), and declines in cropland (-16%) and pasture (-13%). Areas with particularly high rates of land-use change included the larger Chicago area, parts of the Pacific Northwest, and the Central Valley of California. However, while land-use change was substantial, differences in results among the four scenarios were relatively minor. The only scenario that was markedly different was the afforestation scenario, which resulted in an increase of forest area that was twice as high as the business-as-usual scenario. Land-use policies can affect trends, but only so much. The basic economic and demographic factors shaping land-use changes in the United States are powerful, and even fairly dramatic policy changes, showed only moderate deviations from the business-as-usual scenario. Given the magnitude of predicted land-use change, any attempts to identify a sustainable future or to predict the effects of climate change will have to take likely land-use changes into account. Econometric models that can simulate land-use change for broad areas with fine resolution are necessary to predict trends in ecosystem service provision and biodiversity persistence.  相似文献   

6.
Land-use change is considered one of the greatest human threats to marine ecosystems globally. Given limited resources for conservation, we adapted and scaled up a spatially explicit, linked land–sea decision support tool using open access global geospatial data sets and software to inform the prioritization of future forest management interventions that can have the greatest benefit on marine conservation in Vanuatu. We leveraged and compared outputs from two global marine habitat maps to prioritize land areas for forest conservation and restoration that can maximize sediment retention, water quality, and healthy coastal/marine ecosystems. By combining the outputs obtained from both marine habitat maps, we incorporated elements unique to each and provided higher confidence in our prioritization results. Regardless of marine habitat data source, prioritized areas were mostly located in watersheds on the windward side of the large high islands, exposed to higher tropical rainfall, upstream from large sections of coral reef and seagrass habitats, and thus vulnerable to human-driven land use change. Forest protection and restoration in these areas will serve to maintain clean water and healthy, productive habitats through sediment retention, supporting the wellbeing of neighboring communities. The nationwide application of this linked land–sea tool can help managers prioritize watershed-based management actions based on quantitative synergies and trade-offs across terrestrial and marine ecosystems in data-poor regions. The framework developed here will guide the implementation of ridge-to-reef management across the Pacific region and beyond.  相似文献   

7.
A multi-agent simulation (MAS) was developed to assess the risk of malaria re-emergence in the Camargue in southern France, a non-endemic area where mosquitoes of the genus Anopheles (Culicidae) live. The contact rate between people and potential malaria vectors, or the human biting rate, is one of the key factor to predict the risk of re-emergence of malaria, would the parasite be introduced in the region. Our model (called MALCAM) represents the different agents that could influence malaria transmission in the Camargue – people, mosquitoes, animal hosts and the landscape – in a spatially explicit environment. The model simulates spatial and temporal variations in human biting rate at the landscape scale. These variations depend on the distribution of people and potential vectors, their behaviour and their interactions. A land use/cover map was used as a cellular-spatial support for the movements of and interactions between mobile agents. The model was tested for its sensitivity to variations in parameter values, and for the agreement between field observations and model predictions. The MALCAM model provides a tool to better understand the interactions between the multiple agents of the disease transmission system, and the land use and land cover factors that control the spatial heterogeneity in these interactions. It allows testing hypotheses and scenarios related to disease dynamics by varying the value of exogenous biological, geographical, or human factors. This application of agent-based modelling to a human vector-borne disease can be adapted to different diseases and regions.  相似文献   

8.
9.
The contribution of certain contaminants to reproductive failure in many avian species has been an ongoing concern. Appropriate quantitative techniques have focused either on the individual organisms by providing explicit bioaccumulation dynamics or on whole ecosystems by looking at the fate of the contaminant but fail to make the necessary link via population dynamics of interacting individuals. We used the individual-oriented approach in an effort to quantify effects of chronic contaminant exposure on individual birds. This was made possible by the use of an object-oriented model, where individual birds are interacting objects, and their actions are implemented by passing to them appropriate messages. Using this modeling approach a breeding colony of Great Blue Herons (Ardea herodias) is simulated as an assemblage of interacting individuals whose daily actions (foraging, growth, feeding of the young) are simultaneously followed over short time intervals for a nesting season. Spatial distribution of the contaminants in prey resources is used on a cell by cell basis and their effects on certain behavior characteristics of adult birds (e.g. foraging efficiency, effects on flying efficiency, parental care) are taken into account. Results showed that sublethal effects could have a considerable effect on colony success. Appropriate selection of endpoints for risk assessment yields a variety of scenarios for colony success.  相似文献   

10.
This paper presents an extension to the Constrained Cellular Automata (CCA) land use model of White et al. [White, R., Engelen, G., Uljee, I., 1997. The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B: Planning and Design 24(3), 323–343] to make it better suited for modelling the dynamics of shifting cultivation. In the extended model the time passed since the last land use transition of a location is a factor of its land use potential. The model can now account for the gradual decrease in soil fertility after an area of forest has been cleared for cultivation and also capture the process of regeneration once the plot is fallowed. The model is applied for the Ruhunupura area of Sri Lanka where chena, a particular practice of shifting cultivation, is a common land use that dominates the landscape dynamics. The model is calibrated for the period 1985–2001 and the results are assessed in terms of location to location overlap as well as structural similarity at multiple scales. These results give confidence in the representation of land use dynamics for the main land use classes. On the basis of a long term scenario run for the period 2001–2030, it is verified that the model captures stylized facts related to chena dynamics, in particular shortening fallow periods and increasingly long cultivation periods of chena, as a result of increasing land use pressure.  相似文献   

11.
Hamann A  Wang T 《Ecology》2006,87(11):2773-2786
A new ecosystem-based climate envelope modeling approach was applied to assess potential climate change impacts on forest communities and tree species. Four orthogonal canonical discriminant functions were used to describe the realized climate space for British Columbia's ecosystems and to model portions of the realized niche space for tree species under current and predicted future climates. This conceptually simple model is capable of predicting species ranges at high spatial resolutions far beyond the study area, including outlying populations and southern range limits for many species. We analyzed how the realized climate space of current ecosystems changes in extent, elevation, and spatial distribution under climate change scenarios and evaluated the implications for potential tree species habitat. Tree species with their northern range limit in British Columbia gain potential habitat at a pace of at least 100 km per decade, common hardwoods appear to be generally unaffected by climate change, and some of the most important conifer species in British Columbia are expected to lose a large portion of their suitable habitat. The extent of spatial redistribution of realized climate space for ecosystems is considerable, with currently important sub-boreal and montane climate regions rapidly disappearing. Local predictions of changes to tree species frequencies were generated as a basis for systematic surveys of biological response to climate change.  相似文献   

12.
中国土地生产力变化的情景分析   总被引:4,自引:0,他引:4  
中国土地生产力变化态势是当前国内外学术界、决策界关注的焦点问题之一.介绍了土地生产力估算系统(ESLP)的原理与功能模块并利用该系统研究了中国土地生产力的变化态势.ESLP是在气温、降水、辐射水平、土壤质地等自然因素控制下,受土地利用方向与强度影响的,考虑土地系统不同的投入水平和管理措施的区域土地生产力估算系统.ESLP关注土地生产力变化的时空动态,能表达出不同投入管理水平下土地生产力的时空变化.文章应用ESLP研究了1988年和2000年中国土地生产力变化及其空间分异特征,将估算结果与1988年和2000年全国分县粮食产量数据的比较与验证表明,基于ESLP估算的各县土地生产力与各县粮食总产量具有很高的相关性,在一定程度上反映一个区域的粮食生产能力.在此基础上,应用ESLP预测了2010与2020年在气候变化情景下土地生产力的变化,预测结果显示,虽然局部地区土地生产力有小幅减少趋势,但从全国来看,土地生产力增长趋势明显.平均来看,2010年比2000年增长4.4%,而到2020年,土地生产力的增长幅度达到10.7%.不过在各个农业生态分区上,不同年份土地生产力变化差异较大,在2010年和2020年长江中下游区土地生产力均呈一定幅度的下降,而甘新区和西藏区只在2010年土地生产力有小幅下降.该研究结论对我国编制土地利用规划与粮食生产方面的决策具有重要的参考价值.  相似文献   

13.
Outbreaks of bark beetles in forests can result in substantial economic losses. Understanding the factors that influence the development and spread of bark beetle outbreaks is crucial for forest management and for predicting outbreak risks, especially with the expected global warming. Although much research has been done on the ecology and phenology of bark beetles, the complex interplay between beetles, host trees, beetle antagonists and forest management makes predicting beetle population development especially difficult. Using the recent infestations of the European Spruce Bark Beetle (Ips typographus L. Col. Scol.) in the Bavarian Forest National Park (Germany) as a case study, we developed a spatially explicit agent-based simulation model (SAMBIA) that takes into account individual trees and beetles. This model primarily provides a tool for analysing and understanding the spatial and temporal aspects of bark beetles outbreaks at the stand scale. Furthermore, the model should allow an estimation of the effectiveness of concurrent impacts of both antagonists and management to confine outbreak dynamics in practice. We also used the model to predict outbreak probabilities in various settings. The simulation results indicated a distinct threshold behaviour of the system in response to pressure by antagonists or management of the bark beetle population. Despite the different scenarios considered, we were able to extract from the simulations a simple rule of thumb for the successful control of an outbreak: if roughly 80% of individual beetles are killed by antagonists or foresters, outbreaks will rarely take place. Our model allows the core dynamics of this complex system to be reduced to this inherent common denominator.  相似文献   

14.
ABSTRACT

Human activity shapes the levels of anthropogenic pressure that depend on the land management method adopted. This has a fundamental role in the transformation of traditional landscapes. This study focuses on a representative region of the Mediterranean area with the objective to analyse the landscape’s dynamics, to detect the spatial arrangement of class patches, to identify the main agroecosystem characters and to provide a framework to assess ecosystems services. In order to assess land use/land cover changes and landscape persistence, the period between 1960 and 2012 was analysed, taking into consideration the years 1960, 2000 and 2012 using comparable land use maps. Land use and land cover analysis show an urban area growth of 24% during 2000–2012 and of 523% over between 1960 and 2012. The very high levels of land abandonment up to the year 2000 (+7216%) have reversed their trend between 2000 and 2012 (?95%). The orchards showed a relevant increase, particularly after 2000, while the vineyards were linked to the highest value of surface erosion (?74%). The outcomes showed that urban settlements can damage the ecological network with negative effects on the landscape’s environmental sustainability in proximity of significant urban centres. Instead, the ecological network is well preserved and highly associated to the agricultural areas when there is the persistence of many land uses and low urban density, despite the presence of dynamic changes.  相似文献   

15.
The International Institute for Aerospace Survey and Earth Sciences (ITC) has a research programme that should result in an integrated environmental coastal zone management system through three subprojects. The programme aims to develop methodologies and tools for assessing coastal zone changes, and for the evaluation of scenarios for coastal zone management, based on a spatio-temporal Geographical Information System (GIS) working platform which integrates remote sensing data, physical-morphodynamic and eco-hydrologic modelling, and a decision support system. The first subproject develops methodologies for the generation of optimum Remote Sensing (RS) data sets, leading to better interpretation and complementary use of conventional and new remote sensing imagery. It also integrates RS, GIS, and modelling through hypothesis generation, parameter estimation, evaluation and validation. The second subproject facilitates qualitative and quantitative analysis and prediction of the physical aspects of coastal landscape development under the influence of natural processes and human impacts. This subproject is based on the application of remote sensing and dynamic modelling. The third subproject leads to a spatio-temporal working platform which supports data integration of RS and in-situ measurements, and qualitative and quantitative analysis for the prediction of coastal landscape development. Both support decision making in Integrated Coastal Zone Management.  相似文献   

16.
Understanding how vulnerable forest ecosystems are to climate change is a key requirement if sustainable forest management is to be achieved. Modelling the response of species in their regeneration niche to phenological and biophysical processes that are directly influenced by climate is one method for achieving this understanding. A model was developed to investigate species resilience and vulnerability to climate change within its fundamental-regeneration niche. The utility of the developed model, tree and climate assessment (TACA), was tested within the interior Douglas-fir ecosystem in south-central British Columbia. TACA modelled the current potential tree species composition of the ecosystem with high accuracy and modelled significant responses amongst tree species to climate change. The response of individual species suggests that the studied ecosystem could transition to a new ecosystem over the next 100 years. TACA showed that it can be an effective tool for identifying species resilience and vulnerability to changes in climate within the most sensitive stage of development, the regeneration phase. The TACA model was able to identify the degree of change in phenological and biophysical variables that control tree establishment, growth and persistence. The response to changes in one or more of these variables resulted in changes in the climatic suitability of the ecosystem for species and enabled a measure of vulnerability to be quantified. TACA could be useful to forest managers as a decision support tool for adaptation actions and by researchers interested in modelling stand dynamics under climate change.  相似文献   

17.
The European Water Framework Directive (WFD) establishes a well differentiated typology of water bodies on the basis of scientific and biological criteria. For coastal waters, such criteria have long been established, while for transitional waters they are still under discussion. One of the difficulties when applying the WFD to coastal lagoons is to include them in only one of these categories, and while there is no doubt about the nature of estuaries as transitional waters, there is some controversy concerning lagoons. To what extent, reference conditions may be similar for estuaries and lagoons, or whether features common to all coastal lagoons are more important for differentiating them from other water bodies than the fact that there is (or is not) any fresh water influence, is something that remains unclear and is discussed in this work. Coastal lagoons and estuaries form part of a continuum between continental and marine aquatic ecosystems. Shelter, strong boundaries or gradients with adjacent ecosystems, anomalies in salinity regarding freshwater or marine ecosystems, shallowness, etc. all contribute to the high biological productivity of estuaries and lagoons and determine common ecological guilds in the species inhabiting them. On the other hand, fresh water influence, the spatial organization of gradients and environmental variability (longitudinal one-dimensional gradients in estuaries versus complex patterns and three-dimensional heterogeneity in lagoons) constitute the main differences, since these factors affect both the species composition and the dominance of certain ecological guilds and, probably, the system’s complexity and homeostatic capability. In the context of the WFD, coastal lagoons and estuaries are closer to each other than they are to continental or marine waters, and, on the basis of the shared features, they could be intercalibrated and managed together. However, coastal lagoons cannot be considered transitional waters according to the present definition. To assume that fresh water influence is an inherent characteristic to these ecosystems could lead to important changes in the ecological organization and functioning of coastal lagoons where natural fresh water input is low or null. In our opinion, the present day definition of transitional waters should be changed substituting the criterion of fresh water influence by another based on common features, such as relative isolation and anomalies in salinity in water bodies with marine influence. Otherwise, coastal lagoons should be considered a particularly characteristic type of water mass for establishing reference conditions of ecological status.  相似文献   

18.
Distributions and populations of large mammals are declining globally, leading to an increase in their extinction risk. We forecasted the distribution of extant European large mammals (17 carnivores and 10 ungulates) based on 2 Rio+20 scenarios of socioeconomic development: business as usual and reduced impact through changes in human consumption of natural resources. These scenarios are linked to scenarios of land‐use change and climate change through the spatial allocation of land conversion up to 2050. We used a hierarchical framework to forecast the extent and distribution of mammal habitat based on species’ habitat preferences (as described in the International Union for Conservation of Nature Red List database) within a suitable climatic space fitted to the species’ current geographic range. We analyzed the geographic and taxonomic variation of habitat loss for large mammals and the potential effect of the reduced impact policy on loss mitigation. Averaging across scenarios, European large mammals were predicted to lose 10% of their habitat by 2050 (25% in the worst‐case scenario). Predicted loss was much higher for species in northwestern Europe, where habitat is expected to be lost due to climate and land‐use change. Change in human consumption patterns was predicted to substantially improve the conservation of habitat for European large mammals, but not enough to reduce extinction risk if species cannot adapt locally to climate change or disperse.  相似文献   

19.
Land‐use change is the largest proximate threat to biodiversity yet remains one of the most complex to manage. In British Columbia (BC), where large mammals roam extensive tracts of intact habitat, continued land‐use development is of global concern. Extant mammal diversity in BC is unrivalled in North America owing, in part, to its unique position at the intersection of alpine, boreal, and temperate biomes. Despite high conservation values, understanding of cumulative ecological impacts from human development is limited. Using cumulative‐effects‐assessment (CEA) methods, we assessed the current human footprint over 16 regional ecosystems and 7 large mammal species. Using historical and current range estimates of the mammals, we investigated impacts of human land use on species’ persistence. For ecosystems, we found that bunchgrass, coastal Douglas fir, and ponderosa pine have been subjected to over 50% land‐use conversion, and over 85% of their spatial extent has undergone either direct or estimated indirect impacts. Of the mammals we considered, wolves were the least affected by land conversion, yet all species had reduced ranges compared with historical estimates. We found evidence of a hard trade‐off between development and conservation, most clearly for mammals with large distributions and ecosystems with high levels of conversion. Rather than serve as a platform to monitor species decline, we strongly advocate these data be used to inform land‐use planning and to assess current conservation efforts. More generally, CEAs offer a robust tool to inform wildlife and habitat conservation at scale.  相似文献   

20.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号