首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Okland B  Bjørnstad ON 《Ecology》2006,87(2):283-290
Detailed analyses of thresholded ecological interactions can improve our understanding of the transition from aperiodic to periodic dynamics. We develop a threshold model of the population dynamics of outbreaking bark beetle populations that alternate between non-epidemic and epidemic behavior. The model involves accumulation of resources during low-density periods and depletion during outbreaks. The transition between the two regimes is caused by disturbance events in the form of major tree felling by wind. The model is analyzed with particular reference to the population dynamics of the spruce bark beetle (Ips typographus) in Scandinavia for which a comprehensive literature allows full parameterization. The fairly constant outbreak lengths and the highly variable waiting time between outbreaks that are seen in the historical records of this species agree well with the predictions of the model. The thresholded resource-depletion dynamics result in substantial variation in the degree of periodicity between stochastic realizations. The completely aperiodic tree colonizations are partly predictable when the timing of the irregular windfall events are known. However, the predictability of inter-outbreak periods is low due to the large variation of cases falling most frequently in the middle between the extremes of purely nonperiodic (erratic) and periodic (cyclic) fluctuations.  相似文献   

2.
In British Columbia, Canada, management efforts used to control mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have included treatment of infested trees with an organic arsenic pesticide, monosodium methanearsonate (MSMA). Cumulative pesticide applications over a large geographic area have generated concerns about arsenic loading in the environment and potential toxicity to nontarget wildlife. We investigated woodpecker foraging patterns in infested stands with and without MSMA treatment using a combination of tree debarking indices, point count surveys, and radiotelemetry methods in addition to insect flight traps to measure mountain pine beetle emergence. Debarking indices indicated woodpecker foraging of MSMA-treated trees was significantly lower than nontreated trees in all sampling years. However, approximately 40% of MSMA trees had some evidence of foraging. Focal observations of foraging woodpeckers and point count surveys in MSMA treatment areas further confirmed that several species of woodpeckers regularly used MSMA stands during the breeding season. Radio-tagged Hairy (Picoides villosus) and Three-toed (Picoides dorsalis) Woodpeckers spent on average 13% and 23% (range 0-66%) of their time, respectively, in treated stands, despite the fact that these areas only comprised on average 1-2% of their core home range (1 km2). MSMA strongly reduced the emergence of several bark beetle (Coleoptera, Scolytidae) species including the mountain pine beetle, and there was a highly significant positive relationship between Dendroctonus beetle abundance and Three-toed Woodpecker abundance. This study identifies the potential negative impact that forest management practices using pesticides can have on woodpecker populations that depend on bark beetles and their host trees.  相似文献   

3.
Summary. Ponderosa pine, Pinus ponderosa Laws. (Pinaceae), forests in Arizona have suffered from a nine-year period of drought and bark beetle, Ips lecontei Swaine (Coleoptera: Scolytidae), outbreaks. Abiotic and biotic stress in ponderosa pine results in the induced synthesis of certain monoterpenes that may in turn affect bark beetle behavior and survival. In this study, we investigate whether induced monoterpene production could result in a different monoterpene composition that remains stored in the needles or the trunk resin of the tree. Needle and resin samples in addition to trunk cores were collected from ponderosa pines at three locations in Arizona. Ungulate browsing induced a significant increase in limonene (P=0.010) and in chemodiversity (P=0.009), a measure of the evenness of distribution among the monoterpenes present in needles. We compared the level of ‘stress’ of the trees by measuring the thickness of annual rings in living trees and those that were killed by bark beetles. Where drought occurred, the spacing of annual rings from the last 10 years of trees killed by bark beetles was significantly smaller (P=0.020) compared to living trees. There was no difference in the monoterpene composition between the core sections of closest spacing of annual rings (stressed years) compared to the sections of widest spacing, which indicates that monoterpenes are distributed evenly throughout the extended resin system. In the area where the degree of drought was less overall, none of the individual monoterpenes present in the resin was related to bark beetle killed trees. However, about half the living pines had resin in which one of the major monoterpenes (α-pinene, Δ3-carene, and limonene) was absent, and these trees had a lower monoterpene chemodiversity compared to trees killed by bark beetles. Trees with these three major monoterpenes, corresponding to the average relative proportion in living pines at that location, may sustain higher selection and colonization by bark beetles.  相似文献   

4.
A model is presented to predict sanitary felling of Norway spruce (Picea abies) due to spruce bark beetles (Ips typographus, Pityogenes chalcographus) in Slovenia according to different climate change scenarios. The model incorporates 21 variables that are directly or indirectly related to the dependent variable, and that can be arranged into five groups: climate, forest, landscape, topography, and soil. The soil properties are represented by 8 variables, 4 variables define the topography, 4 describe the climate, 4 define the landscape, and one additional variable provides the quantity of Norway spruce present in the model cell. The model was developed using the M5′ model tree. The basic spatial unit of the model is 1 km2, and the time resolution is 1 year. The model evaluation was performed by three different measures: (1) the correlation coefficient (51.9%), (2) the Theil's inequality coefficient (0.49) and (3) the modelling efficiency (0.32). Validation of the model was carried out by 10-fold cross-validation. The model tree consists of 28 linear models, and model was calculated for three different climate change scenarios extending over a period until 2100, in 10-year intervals. The model is valid for the entire area of Slovenia; however, climate change projections were made only for the Maribor region (596 km2). The model assumes that relationships among the incorporated factors will remain unchanged under climate change, and the influence of humans was not taken into account. The structure of the model reveals the great importance of landscape variables, which proved to be positively correlated with the dependent variable. Variables that describe the water regime in the model cell were also highly correlated with the dependent variable, with evapotranspiration and parent material being of particular importance. The results of the model support the hypothesis that bark beetles do greater damage to Norway spruce artificially planted out of its native range in Slovenia, i.e., lowlands and soils rich in N, P, and K. The model calculation for climate change scenarios in the Maribor region shows an increase in sanitary felling of Norway spruce due to spruce bark beetles, for all scenarios. The model provides a path towards better understanding of the complex ecological interactions involved in bark beetle outbreaks. Potential application of the results in forest management and planning is discussed.  相似文献   

5.
The link between individual habitat selection decisions (i.e., mechanism) and the resulting population distributions of dispersing organisms (i.e., outcome) has been little-studied in behavioural ecology. Here we consider density-dependent habitat (i.e., host) selection for an energy- and time-limited forager: the mountain pine beetle (Dendroctonus ponderosae Hopkins). We present a dynamic state variable model of individual beetle host selection behaviour, based on an individual’s energy state. Field data are incorporated into model parameterization which allows us to determine the effects of host availability (with respect to host size, quality, and vigour) on individuals’ decisions. Beetles choose larger trees with thicker phloem across a larger proportion of the state-space than smaller trees with thinner phloem, but accept lower quality trees more readily at low energy- and time-states. In addition, beetles make habitat selection decisions based on host availability, conspecific attack densities, and beetle distributions within a forest stand. This model provides a framework for the development of a spatial game model to examine the implications of these results for attack dynamics of beetle populations.  相似文献   

6.
Predicting population dynamics is a fundamental problem in applied ecology. Temperature is a potential driver of short-term population dynamics, and temperature data are widely available, but we generally lack validated models to predict dynamics based upon temperatures. A generalized approach involves estimating the temperatures experienced by a population, characterizing the demographic consequences of physiological responses to temperature, and testing for predicted effects on abundance. We employed this approach to test whether minimum winter temperatures are a meaningful driver of pestilence from Dendroctonus frontalis (the southern pine beetle) across the southeastern United States. A distance-weighted interpolation model provided good, spatially explicit, predictions of minimum winter air temperatures (a putative driver of beetle survival). A Newtonian heat transfer model with empirical cooling constants indicated that beetles within host trees are buffered from the lowest air temperatures by approximately 1-4 degrees C (depending on tree diameter and duration of cold bout). The life stage structure of beetles in the most northerly outbreak in recent times (New Jersey) were dominated by prepupae, which were more cold tolerant (by >3 degrees C) than other life stages. Analyses of beetle abundance data from 1987 to 2005 showed that minimum winter air temperature only explained 1.5% of the variance in interannual growth rates of beetle populations, indicating that it is but a weak driver of population dynamics in the southeastern United States as a whole. However, average population growth rate matched theoretical predictions of a process-based model of winter mortality from low temperatures; apparently our knowledge of population effects from winter temperatures is satisfactory, and may help to predict dynamics of northern populations, even while adding little to population predictions in southern forests. Recent episodes of D. frontalis outbreaks in northern forests may have been allowed by a warming trend from 1960 to 2004 of 3.3 degrees C in minimum winter air temperatures in the southeastern United States. Studies that combine climatic analyses, physiological experiments, and spatially replicated time series of population abundance can improve population predictions, contribute to a synthesis of population and physiological ecology, and aid in assessing the ecological consequences of climatic trends.  相似文献   

7.
Summary. Chemical, physiological and behavioral components of pheromone communication have been described for a number of bark beetle species, yet our understanding of how these signals function under natural conditions remains relatively limited. Development of ecologically based models is complicated by the multiple functions and sources of variability inherent in bark beetle semiochemistry. This discussion addresses four ecological issues of chemical signaling in bark beetles: the effects of aggregation on individual fitness, the possibility of cheating, how plants can defend themselves against herbivores that employ aggregation pheromones, and the implications of variability in chemical communication systems to predator avoidance. An analysis of published data from thirteen scolytid – conifer systems indicates that the net benefit and optimal colonization density vary with host condition and beetle species. When beetles attack live trees, the benefit of cooperative host procurement exceeds losses due to competition for the limited substrate, at least up to moderate densities. When beetles colonize dead tissue, however, the effect of subsequently arriving beetles on initial colonizers is almost entirely negative. This suggests that aggregation originated as exploitation of senders, but evolved into manipulation of receivers. It is also proposed that the optimal colonization density which typifies each species or population may offer a more objective and less value–laden index of behavior than current labels such as “aggressiveness”. Beetles can maximize the relative benefits of group attack by incorporating instantaneous measures of host resistance into their colonization behavior, and by adjusting oviposition with colonization density. This system may provide opportunities for cheating. However a number of factors may select against a fixed strategy of cheating, including the linkage between tree allelochemistry and beetle semiochemistry, the reduced quality of substrate available to late arrivers, the short adult lifespans of most bark beetles, differential exposure to some predators, the difficulty of locating signalers during extensive endemic periods, and the low costs incurred during host assessment. However, the possibility that beetles employ flexible, density – dependent strategies deserves heightened attention. The ability of bark beetles to collectively exhaust host defenses poses a particular problem for plant defense. It is argued here that the ideal defense should include both direct resistance mechanisms against invading beetles, and indirect mechanisms that inhibit chemical communication. Evidence for the latter mechanism is explored. The ability of predators to efficiently exploit aggregation pheromones as kairomones in prey finding poses significant risk to bark beetles. It is proposed that minor alterations in pheromone components may provide colonizers with partial escape from such natural enemies while maintaining intraspecific functionality. Traditional interpretations emphasized the fidelity and consistency of pheromones, but under natural conditions chemical signals are modified by unpredictable features of the biotic and abiotic environment. Although we typically view variation in pheromonal signals as experimental noise or simple deviations from a population norm, such variation may reflect evolutionary dynamics. Complex ecological interactions may impose trade-offs between the clarity versus diversity of their signals. Received 3 July 2000; accepted 8 January 2001  相似文献   

8.
Kulakowski D  Veblen TT 《Ecology》2007,88(3):759-769
Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.  相似文献   

9.
Summary. Using Porapak Q traps, we collected the bark volatiles of six angiosperm trees native to British Columbia: black cottonwood, Populus trichocarpa Torr. & A. Gray (Salicaceae), trembling aspen, P. tremuloides Michx. (Salicaceae), paper birch, Betula papyrifera Marsh. (Betulaceae), bigleaf maple, Acer macrophyllum Pursh (Aceraceae), red alder, Alnus rubra Bong. (Betulaceae), and Sitka alder, A. viridis ssp. sinuata (Regel) á. L?ve & D. L?ve (Betulaceae). Utilising coupled gas chromatographic-electroantennographic detection analysis, the captured volatiles were assayed for antennal responses in five species of coniferophagous bark beetles (Coleoptera: Scolytidae), sympatric with most or all of the angiosperm trees: the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, the mountain pine beetle, D. ponderosae Hopkins, the spruce beetle, D. rufipennis (Kirby), the western balsam bark beetle, Dryocoetes confusus Swaine, and the pine engraver, Ips pini (Say). The identities of 25 antennally-active compounds were determined by coupled gas chromatographic-mass spectroscopic analysis, and co-chromatographic comparisons with authentic chemicals. The compounds identified were: hexanal, (E)-2-hexenal, (Z)-3-hexen-1-ol, 1-hexanol, heptanal, α-pinene, frontalin, benzaldehyde, β-pinene, 2-hydroxycyclohexanone, 3-carene, limonene, β-phellandrene, benzyl alcohol, (E)-ocimene, salicylaldehyde, conophthorin, guaiacol, nonanal, methyl salicylate, 4-allylanisole, decanal, thymol methyl ether, (E)-nerolidol, and dendrolasin. A number of these compounds are known semiochemicals that are active in the behaviour of other organisms, including bark beetles, suggesting a high degree of semiochemical parsimony. Antennally-active compounds ranged from seven in A. viridis to 17 in P. trichocarpa. The fewest number of compounds (9) were detected by I. pini and the largest number (24) were detected by D. pseudotsugae. Six compounds excited the antennae of all five species of bark beetles. The large number of antennally-active compounds detected in common by numerous bark beetles and present in common in numerous nonhost trees supports the hypothesis of olfaction-based recognition and avoidance of nonhost angiosperm trees during the process of host selection by coniferophagous bark beetles. Received 13 December 1999; accepted 14 March 2000  相似文献   

10.
Summary. Host selection in tree-killing bark beetles (Coleoptera: Scolytidae) is mediated by a complex of semiochemical cues. Using gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometric analyses, we conducted a comparative study of the electrophysiological responses of four species of tree-killing bark beetles, the Douglas-fir beetle, Dendroctonus pseudotsugae, Hopkins, the mountain pine beetle, D. ponderosae Hopkins, the spruce beetle, D. rufipennis Kirby, and the western balsam bark beetle, Dryocoetes confusus Swaine, to volatiles captured by aeration of 1) bole and foliage of four sympatric species of conifers, Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, lodgepole pine, Pinus contorta var. latifolia Engelm., interior spruce, Picea engelmannii x glauca, and interior fir, Abies lasiocarpa x bifolia, and 2) con- and heterospecific beetles at three stages of attack. We identified 13 monoterpenes in the conifers and nine compounds in the volatiles of beetles that elicited antennal responses. There was no qualitative difference in the terpene constitution of the four species of conifers and very little difference across beetle species in their antennal response to compounds from conifers or beetles. The lack of species-specific major or minor components in conifers suggests that beetles would need to detect differences in the ratios of different compounds in conifers to discriminate among them. Attraction to hosts and avoidance of nonhost conifers may be accentuated by perception of compounds emitted by con- and heterospecific beetles, respectively. The 22 compounds identified are candidate semiochemicals with potential behavioural roles in host location and discrimination.  相似文献   

11.
Complex computer simulations of ecological models often fail to have much impact on later stages of applied research and management. We believe that this reflects a methodological gap. We present a case study where we try to bridge this gap. A recently published general model for insect outbreak has not yet been tested adequately in the field because of the complexity, size, and time involved in real-world insect pest outbreaks. However, a modified version of the model can be used to predict complex dynamics for a laboratory managed population of vinegar flies (Drosophila melanogaster).A comparison of the dynamics of the laboratory system with the simulation predictions allowed us to conclude that the model is “feasible”, i.e. under certain circumstances the model can predict the dynamics of some real system. These results were obtained despite considerable environmental and biological variability, indicating the robustness of the model. The factors chosen for the model appear to be “sufficient” to describe the real system's essential dynamics. Testing for feasibility and sufficiency should, in our opinion, always precede the much more expensive stages of field testing.  相似文献   

12.
The forest tent caterpillar (Malacosoma disstria Hübner) (FTC) has an outbreak cycle of approximately 10 years; however, smaller spatial scale analyses show some regions have longer or more frequent periods of high defoliation. This may be a result of local forest fragmentation, pollution or other sources of stress that may affect FTC directly or indirectly through stress on their hosts or parasitoids. Population dynamics of FTC were examined to investigate how stress may alter the severity and frequency of defoliation. We developed a spatially explicit agent-based model to simulate the host-parasitoid dynamics of FTC. Theoretical and empirically derived parameters were established using past literature and over 50 years of population data of FTC from Ontario, Canada. We find that increasing FTC fecundity, FTC dispersal or parasitoid mortality resulted in more severe outbreaks while a decrease in parasitoid fecundity or searching efficiency resulted in an overall elevation of defoliation. Parasitoid efficiency was the most effective parameter for altering the FTC defoliation. Since plant stress has been shown to alter several of these parameters in nature due to changes in food quality, habitat suitability, and chemical cue interference, our results suggest that forests affected by stressors such as climate change and pollution will have more severe and frequent defoliation from these insects than surrounding unaffected forests. As stressors such as drought and pollution emissions are predicted to increase in frequency or intensity over the next few decades, understanding how they may affect the outbreak cycle of a forest defoliator can aid in planning strategies to reduce the detrimental effects of this insect.  相似文献   

13.
《Ecological modelling》2007,200(1-2):20-32
Species composition in forests depends on the interaction of species traits and species availability. Yet many forest simulation models focus only on interactions of adult trees and saplings, ignoring how species become members of the community. We modify a published forest model for bottomland hardwood forests (program SWAMP [Phipps, R.L., 1979. Simulation of wetlands forest vegetation dynamics. Ecol. Modell. 7, 257–288]) to make it spatially explicit and incorporate explicit seed production and dispersal algorithms. The resulting individual-based, spatially explicit forest simulator (YAFSIM) combines mechanistic seed dispersal with growth and mortality of trees to track forest dynamics over time. We describe the structure of the model and test its validity for dynamics in small bottomland hardwood patches in the Mississippi Alluvial Valley. Dynamics of species composition and basal areas of trees predicted by Yazoo Forest Simulator (YAFSIM) were similar to those of natural second- and old-growth bottomland forests. However, diversity of simulated forest patches declined over time largely because of random dynamics acting on small, isolated populations.  相似文献   

14.
Nitrogen fertilization and winter pruning are commonly used to control crop production in peach [Prunus persica (L.) Batsch] orchards. They are also known to affect the dynamics of Myzus persicae (Sulzer) (Homoptera: Aphididae) aphid populations via bottom-up regulation processes. Interactions between crops and pests can cause complex system behaviour in response to management practices. An integrated approach will therefore improve the understanding of the effects of these two cultural practices on aphid and peach performances.We developed a simulation model that describes the cultural control of interacting peach tree and aphid population dynamics. It uses the principles of common trophic models while gathering available knowledge and explicit assumptions on peach and aphid functioning and the effects of cultural practices.The model was able to qualitatively reproduce the system behaviour observed in the field. It accounted for actions and feedback such as stimulation of foliar growth by winter pruning, consecutive aphid population increase, subsequent damage to foliage, and partial compensatory growth of foliage. The model also reproduced low losses in fruit production due to aphid infestations. However, it called for further integration of ‘long-term’ effects. Analysis of the model showed the complexity of peach tree and aphid responses to leaf N × winter pruning interactions. Simulations indicated that fruit production losses remained low within a range of realistic values of leaf N and pruning intensity, whereas manipulating peach and aphid dynamics, their interactions and their relationships to practices could result in higher losses.The model is useful to evaluate the relevance of cultural practices for a bottom-up regulation of aphid dynamics in crop-pest management. After considering other control methods and fruit quality, it can be used to find a combination of practices that optimises trade-offs between fruit production and environmental conservation goals. A modelling approach that links crop growth and pest population dynamics and integrates management practice effects has strong potential for improving crop-pest management in an integrated crop production context.  相似文献   

15.
Cyclic population dynamics of forest insects with periods of more than two generations have been discussed in relation to a variety of extrinsic and intrinsic forces. In the present study, we employed the selection pressure of density dependent competitive interactions according to Witting's equations (Witting, 2000) as driver for a discrete spatiotemporal model of the green oak leaf roller (Tortrix viridana). The model was successfully parameterised to rebuild the cyclic population dynamics of an empirical data set of a 30-year leaf roller monitoring in Russia. Our analysis focussed on the role of herbivore mortality and host plant food quality, which have a significant effect on T. viridana population dynamics. An additional egg or larvae mortality lowers population density and can lead to selection pressures that favour individuals with higher growth rate. This increased population growth rate can not only compensate the additional mortality, but also can lead to higher average moth abundances in subsequent generations. Furthermore, we analysed the effect of inter- and intraspecific variation in host plant quality on herbivore population dynamics and the spatial distribution of abundance and defoliation patterns. We found significant effects of the qualitative composition of a trees neighbourhood on the herbivore population of the respective tree. Also, the patchy damage patterns observable in reality have been reproduced by the present model. The applicability of the model approach and the putative genetic processes underlying Witting's model are discussed.  相似文献   

16.
Abstract: Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest‐dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan‐European scale. We used meta‐analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management‐intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta‐analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged forests.  相似文献   

17.
The southern pine beetle, Dendroctonus frontalis Zimmermann, is a major insect pest of pines in the southern U.S.A. A population dynamic model of D. frontalis within an infestation was developed. The model is based on the integration of several component submodels that describe individual life stage processes of the beetle. The inclusion of variable forest stand density and microclimate conditions results in a model response which closely follows actual field responses. A sensitivity analysis was performed to investigate effects of weather conditions and the importance of the spatial patterns within the forest.  相似文献   

18.
Accurate estimates of demographic parameters are key for understanding and predicting population dynamics and for providing insights for effective wildlife management. Up until recently, no suitable methodology has been available to estimate survival probabilities of species with asynchronous reproduction and a high level of individual variation in capture probabilities. The present work develops a capture-mark-recapture model for cheetahs in the Serengeti National Park, Tanzania, which (a) deals with continuous reproduction, (b) takes into account the high level of individual heterogeneity in capture probabilities and (c) is spatially explicit. Results show that (1) our approach, which is an extensive modification of the Cormack-Jolly-Seber model, provides a lower female adult survival estimate and a higher male adolescent survival estimate than previous approaches to estimate cheetah survival in the area, (2) using sighting location alone is not sufficient to capture the individual variation in resighting probabilities for both sexes, and (3) precision in estimated survival probabilities is generally increased. Species which are individually recognizable, wide-ranging and/or where individuals differ substantially in sightability are particularly appropriate to our modelling approach, and our methodology would thus be appropriate for a wide number of species to provide more accurate estimates of survival.  相似文献   

19.
Among group-living organisms, some individuals initiate groups by being the first to attack a prey item or the first to colonize a new settlement site. In the group-living mountain pine beetle (Dendroctonus ponderosae), first attackers (known as pioneers) on live trees suffer higher mortality due to tree defenses than do beetles that join aggregations. This study examined factors that affect an individual’s propensity to initiate an aggregation. When placed on an unoccupied tree, the probability of successfully entering the tree was positively correlated with body condition (residual of mass versus length regression). However, beetles in better condition took longer to initiate tunnel construction than those in poorer condition, suggesting that pioneering is a “desperation” strategy used when low energy reserves preclude further dispersal or when potential trees are rare. These contrasting patterns suggest pioneering is a nonlinear behavioral response, such that beetles with the smallest energy reserves and beetles with the greatest energy reserves both avoid pioneering. We further found that pioneering was more likely when the environment favored success, such as in smaller diameter trees (which may have weaker defenses) and earlier in the season (when the probability of recruiting conspecifics is higher). Our results suggest that pioneers incorporate both internal and external variables in their decision to attack an uncolonized tree.  相似文献   

20.
The study used population genetic data to test whether outbreaks of crown-of-thorns starfish (Acanthaster planci) on the Great Barrier Reef (GBR) are largely derived from a single outbreak or are independent events. The consequences of different modes of outbreak for population differentiation and gene flow were predicted and then compared with those estimated from a set of 8 outbreaking and a set of 5 non-outbreaking populations sampled in 1986 and 1987. The level of inter-population variation observed among outbreaking populations was less than that among non-outbreaking populations and gene flow was greater among outbreaking than among non-outbreaking populations. Greater population differentiation among non-outbreaking than outbreaking populations was not consistent with the hypothesis that outbreaks were independent events, but was consistent with a number of outbreaks being secondary. Estimates which took account of a number of aspects of sampling error demonstrated significant levels of genetic subdivision among non-outbreaking populations but not among outbreaking populations. The lack of significant genetic subdivision of outbreaking populations, given significant levels among non-outbreaking populations, was also inconsistent with outbreaks being indenpendent events, but was consistent with outbreaks being largely secondary. The allozyme data were insufficient to identify clearly individual populations that might have been the result of an independent outbreak. It is concluded that the majority of outbreaks are probably secondary derivatives from a single primary outbreak occurring in the northern part of the Central Section of the GBR, although the possibility that a small number of populations might outbreak independently of the main set cannot be excluded.Contribution No. 547 from the Australian Institute of Marine Science  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号