首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
● Pd-Cu modified CNT membranes were prepared successfully by electrodeposition method. ● The deposition voltage and deposition time were optimized for Pd-Cu co-deposition. ● NO3-N was removed efficiently from water by Pd-Cu modified CNT membranes. ● The presence of dissolved oxygen did not affect the nitrate reduction performance. ● Mass transfer rate was promoted significantly with the increase in membrane flux. Excessive nitrate in water is harmful to the ecological environment and human health. Electrocatalytic reduction is a promising technology for nitrate removal. Herein, a Pd-Cu modified carbon nanotube membrane was fabricated with an electrodeposition method and used to reduce nitrate in a flow-through electrochemical reactor. The optimal potential and duration for codeposition of Pd and Cu were −0.7 V and 5 min, respectively, according to linear scan voltammetry results. The membrane obtained with a Pd:Cu ratio of 1:1 exhibited a relatively high nitrate removal efficiency and N2 selectivity. Nitrate was almost completely reduced (~99 %) by the membrane at potentials lower than −1.2 V. However, −0.8 V was the optimal potential for nitrate reduction in terms of both nitrate removal efficiency and product selectivity. The nitrate removal efficiency was 56.2 %, and the N2 selectivity was 23.8 % for the Pd:Cu=1:1 membrane operated at −0.8 V. Nitrate removal was enhanced under acidic conditions, while N2 selectivity was decreased. The concentrations of Cl ions and dissolved oxygen showed little effect on nitrate reduction. The mass transfer rate constant was greatly improved by 6.6 times from 1.14 × 10−3 m/h at a membrane flux of 1 L/(m2·h) to 8.71 × 10−3 m/h at a membrane flux of 15 L/(m2·h), which resulted in a significant increase in the nitrate removal rate from 13.6 to 133.5 mg/(m2·h). These findings show that the Pd-Cu modified CNT membrane is an efficient material for nitrate reduction.  相似文献   

2.
● A CNT filter enabled effective KMnO4 activation via facilitated electron transfer. ● Ultra-fast degradation of micropollutants were achieved in KMnO4/CNT system. ● CNT mediated electron transfer process from electron-rich molecules to KMnO4. ● Electron transfer dominated organic degradation. Numerous reagents have been proposed as electron sacrificers to induce the decomposition of permanganate (KMnO4) by producing highly reactive Mn species for micropollutants degradation. However, this strategy can lead to low KMnO4 utilization efficiency due to limitations associated with poor mass transport and high energy consumption. In the present study, we rationally designed a catalytic carbon nanotube (CNT) membrane for KMnO4 activation toward enhanced degradation of micropollutants. The proposed flow-through system outperformed conventional batch reactor owing to the improved mass transfer via convection. Under optimal conditionals, a > 70% removal (equivalent to an oxidation flux of 2.43 mmol/(h·m2)) of 80 μmol/L sulfamethoxazole (SMX) solution can be achieved at single-pass mode. The experimental analysis and DFT studies verified that CNT could mediate direct electron transfer from organic molecules to KMnO4, resulting in a high utilization efficiency of KMnO4. Furthermore, the KMnO4/CNT system had outstanding reusability and CNT could maintain a long-lasting reactivity, which served as a green strategy for the remediation of micropollutants in a sustainable manner. This study provides new insights into the electron transfer mechanisms and unveils the advantages of effective KMnO4 utilization in the KMnO4/CNT system for environmental remediation.  相似文献   

3.
● Diurnal patterns of CH4 and CO2 are clearly extracted using EEMD. ● CH4 and CO2 show mid-morning high and evening low patterns during sea breezes. ● Wind direction significantly modulates the diurnal variations in CH4 and CO2. Methane (CH4) and carbon dioxide (CO2) are the two most important greenhouse gases (GHGs). To examine the variation characteristics of CH4 and CO2 in the coastal South China Sea, atmospheric CH4 and CO2 measurements were performed in Bohe (BH), Guangdong, China, in summer 2021. By using an adaptive data analysis method, the diurnal patterns of CH4 and CO2 were clearly extracted and analysed in relation to the sea breeze (SB) and land breeze (LB), respectively. The average concentrations of CH4 and CO2 were 1876.91 ± 31.13 ppb and 407.99 ± 4.24 ppm during SB, and 1988.12 ± 109.92 ppb and 421.54 ± 14.89 ppm during LB, respectively. The values of CH4 and CO2 during SB basically coincided with the values and trends of marine background sites, showing that the BH station could serve as an ideal site for background GHG monitoring and dynamic analysis. The extracted diurnal variations in CH4 and CO2 showed sunrise high and sunset low patterns (with peaks at 5:00–7:00) during LB but mid-morning high and evening low patterns (with peaks at 9:00) during SB. The diurnal amplitude changes in both CH4 and CO2 during LB were almost two to three times those during SB. Wind direction significantly modulated the diurnal variations in CH4 and CO2. The results in this study provide a new way to examine the variations in GHGs on different timescales and can also help us gain a better understanding of GHG sources and distributions in the South China Sea.  相似文献   

4.
● High fluorine is mainly HCO3·Cl-Na and HCO3-Na type. ● F decreases with the increase of depth to water table. ● High fluoride is mainly affected by fluorine-containing minerals and weak alkaline. ● Fluorine pollution is mainly in the north near Laizhou Bay (wet season > dry season). ● Groundwater samples have a high F health risk (children > adults). Due to the unclear distribution characteristics and causes of fluoride in groundwater of Mihe-Weihe River Basin (China), there is a higher risk for the future development and utilization of groundwater. Therefore, based on the systematic sampling and analysis, the distribution features and enrichment mechanism for fluoride in groundwater were studied by the graphic method, hydrogeochemical modeling, the proportionality factor between conventional ions and factor analysis. The results show that the fluorine content in groundwater is generally on the high side, with a large area of medium-fluorine water (0.5–1.0 mg/L), and high-fluorine water is chiefly in the interfluvial lowlands and alluvial-marine plain, which mainly contains HCO3·Cl-Na- and HCO3-Na-type water. The vertical zonation characteristics of the fluorine content decrease with increasing depth to the water table. The high flouride groundwater during the wet season is chiefly controlled by the weathering and dissolution of fluorine-containing minerals, as well as the influence of rock weathering, evaporation and concentration. The weak alkaline environment that is rich in sodium and poor in calcium during the dry season is the main reason for the enrichment of fluorine. Finally, an integrated assessment model is established using rough set theory and an improved matter element extension model, and the level of groundwater pollution caused by fluoride in the Mihe-Weihe River Basin during the wet and dry seasons in the Shandong Peninsula is defined to show the necessity for local management measures to reduce the potential risks caused by groundwater quality.  相似文献   

5.
● Methanol effectively reduces CO, HC, CO2, PM, and PN emissions of gasoline vehicles. ● Elemental composition of methanol directly affects the reduction of emissions. ● Several physicochemical properties of methanol help reduce vehicle emissions. The transport sector is a significant energy consumer and a major contributor to urban air pollution. At present, the substitution of cleaner fuel is one feasible way to deal with the growing energy demand and environmental pollution. Methanol has been recognized as a good alternative to gasoline due to its good combustion performance. In the past decades, many studies have investigated exhaust emissions using methanol-gasoline blends. However, the conclusions derived from different studies vary significantly, and the explanations for the effects of methanol blending on exhaust emissions are also inconsistent. This review summarizes the characteristics of CO, HC, NOx, CO2, and particulate emissions from methanol-gasoline blended fuels and pure methanol fuel. CO, HC, CO2, particle mass (PM), and particle number (PN) emissions decrease when methanol-blended fuel is used in place of gasoline fuel. NOx emission either decreases or increases depending on the test conditions, i.e., methanol content. Furthermore, this review synthesizes the mechanisms by which methanol-blended fuel influences pollutant emissions. This review provides insight into the pollutant emissions from methanol-blended fuel, which will aid policymakers in making energy strategy decisions that take urban air pollution, climate change, and energy security into account.  相似文献   

6.
● Terminal carboxylate group activation is PFOA degradation’s rate-limiting step. ● Bi3O(OH)(PO4)2 with surface frustrated Lewis pairs (SFLPs) efficiently degrade PFOA. ● Photo-induced Lewis acidic sites and proximal surface hydroxyls constitute SFLPs. ● SFLPs act as collection centers to effectively adsorb PFOA. ● SFLPs endow accessible pathways for photogenerated holes rapid transfer to PFOA. Heterogeneous photocatalysis has gained substantial research interest in treating per- and polyfluoroalkyl substances (PFAS)-contaminated water. However, sluggish degradation kinetics and low defluorination efficiency compromise their practical applications. Here, we report a superior photocatalyst, defected Bi3O(OH)(PO4)2, which could effectively degrade typical PFAS, perfluorooctanoic acid (PFOA), with high defluorination efficiency. The UV light irradiation could in situ generate oxygen vacancies on Bi3O(OH)(PO4)2 through oxidation of the lattice hydroxyls, which further promotes the formation of Lewis acidic coordinately unsaturated bismuth sites. Then, the Lewis acidic sites couple with the proximal surface hydroxyls to constitute the surface frustrated Lewis pairs (SFLPs). With the in-depth spectroscopic analysis, we revealed that the photo-induced SFLPs act as collection centers to effectively adsorb PFOA and endow accessible pathways to transfer photogenerated holes to PFOA rapidly. Consequently, activation of the terminal carboxyl, a rate-limiting step for PFOA decomposition, could be easily achieved over the defected Bi3O(OH)(PO4)2 photocatalyst. These results suggest that SFLPs exhibit great potential in developing highly efficient photocatalysts to degrade persistent organic pollutants.  相似文献   

7.
● N2H4 addition enhanced and recovered anammox performance under Cr(VI) stress. ● N2H4 accelerated electron transfer of Cr(VI) reduction for detoxification. ● N2H4 enhanced anammox metabolism for activity recovery from Cr(VI) inhibition. ● Extracellular Cr(VI) reduction to less toxic Cr(III) was the dominant mechanism. The hexavalent chromium (Cr(VI)) would frequently impose inhibition to anaerobic ammonium oxidation (anammox) process, hindering the efficiency of nitrogen removal in wastewater treatment. Hydrazine (N2H4), which is an intermediate product of anammox, participates in intracellular metabolism and extracellular Cr(VI) reduction. However, the roles of N2H4-induced intracellular metabolism and extracellular reduction in nitrogen removal under Cr(VI) stress remain unclear. The addition of 3.67 mg/L of N2H4 increased the anammox activity by 17%. As an intermediate, N2H4 enhanced anammox metabolism by increasing the heme c content and electron transfer system activity. As a reductant, N2H4 accelerated the reduction of c-Cyts-mediated extracellular Cr(VI) to the less toxic Cr(III). Extracellular Cr(III) accounts for 74% of the total Cr in a Cr(VI)-stressed anammox consortia. These findings highlight that N2H4-induced extracellular Cr(VI) reduction is the dominant mechanism for the survival of anammox consortia. We also found that N2H4 increased the production of extracellular polymeric substances to sequester excessive Cr(VI) and produced Cr(III). Taken together, the study findings suggest a potential strategy for enhancing nitrogen removal from ammonium-rich wastewater contaminated with Cr(VI).  相似文献   

8.
● NH3 in biogas had a slight inhibitory effect on dry reforming. ● Coexistence of H2S and NH3 led to faster decline of biogas conversion. ● Regeneration was effective for catalysts deactivated under synergetic effect. Biogas is a renewable biomass energy source mainly composed of CH4 and CO2. Dry reforming is a promising technology for the high-value utilization of biogas. Some impurity gases in biogas can not be completely removed after pretreatment, which may affect the performance of dry reforming. In this study, the influence of typical impurities H2S and NH3 on dry reforming was studied using Ni/MgO catalyst. The results showed that low concentration of H2S in biogas could cause serious deactivation of catalyst. Characterization results including EDS, XPS and TOF-SIMS confirmed the adsorption of sulfur on the catalyst surface, which was the cause of catalyst poisoning. We used air calcination method to regenerate the sulfur-poisoned catalysts and found that the regeneration temperature higher than 500 °C could help catalyst recover the original activity. NH3 in the concentration range of 50–10000 ppm showed a slight inhibitory effect on biogas dry reforming. The decline rate of biogas conversion efficiency increased with the increase of NH3 concentration. This was related to the reduction of oxygen activity on catalyst surface caused by NH3. The synergetic effect of H2S and NH3 in biogas was investigated. The results showed that biogas conversion decreased faster under the coexistence of H2S and NH3 than under the effect of H2S alone, so as the surface oxygen activity of catalyst. Air calcination regeneration could also recover the activity of the deactivated catalyst under the synergetic effect of H2S and NH3.  相似文献   

9.
● Higher concentrations of PS, PS-NH2 and PS-SO3H inhibited seed germination. ● PS, PS-NH2 and PS-SO3H influenced seedling growth in a dose-dependent manner. ● PS, PS-NH2 and PS-SO3H reduced essential nutrients uptake and plant quality. ● PS, PS-NH2 and PS-SO3H increased antioxidant enzyme activities and MDA content. ● Nanoplastic toxicity was related to surface charges. Nanoplastic pollution has become a significant problem in farmland systems worldwide. However, research on the effects of nanoplastics (NPs) with different charges on field crops is still limited. In our study, NPs with different charges, including unmodified polystyrene nanoplastics (PS), positively charged polystyrene nanoplastics (PS-NH2), and negatively charged polystyrene nanoplastics (PS-SO3H), were investigated for their impacts on seed germination and seedling growth of rape. The results showed that seed water uptake (after 12 h), seed germination, seed vigour, and relative root elongation were all significantly reduced under exposure to NPs (200 mg/L). Similarly, remarkable decreases in plant biomass (root weight, shoot weight), growth (root length, plant height), photosynthesis ability (chlorophyll a, chlorophyll b, carotenoids), essential nutrient uptake (Fe, Mn, Zn, Cu), and plant quality (soluble protein, soluble sugar, crude fibre content) of rape seedlings were also observed after exposure to NPs. Among the three kinds of NPs, PS-NH2 showed stronger effects. Moreover, superoxide dismutase, peroxidase, and catalase activities of rape seedlings were changed, and the content of malondialdehyde was significantly increased under exposure to NPs. Furthermore, positively charged PS-NH2 showed stronger effects on the phenotype, physiology, biochemistry, nutrient uptake, and plant quality of rape. Notably, a comprehensive toxicity evaluation revealed that PS-NH2 had the strongest toxicity to rape. The present study provides important implications for the interaction and risk assessment of NPs and crops in soil-plant systems.  相似文献   

10.
● This study explored the long-term association by double robust additive models. ● Individual exposure concentrations were assessed by integrating GAM, LUR and BPNN. ● PM2.5, SO2 and NO2 are positively associated with cerebrovascular disease. ● CO could reduce the risk of cerebrovascular disease with the highest robustness. ● The elderly, women and people with normal BMI are at higher risk for air pollution. The relationship between air pollution and cerebrovascular disease has become a popular topic, yet research findings are highly heterogeneous. This study aims to investigate this association based on detailed individual health data and a precise evaluation of their exposure levels. The integrated models of generalized additive model, land use regression model and back propagation neural network were used to evaluate the exposure concentrations. And doubly robust additive model was conducted to explore the association between cerebrovascular disease and air pollution after adjusted for demographic characteristics, physical examination, disease information, geographic and socioeconomic status. A total of 25097 subjects were included in the Beijing Health Management Cohort from 2013 to 2018. With a 1 μg/m3 increase in the concentrations of PM2.5, SO2 and NO2, the incidence risk of cerebrovascular disease increased by 1.02 (95% CI: 1.008–1.034), 1.06 (95% CI: 1.034–1.095) and 1.02 (95% CI: 1.010–1.029) respectively. Whereas CO exposure could decrease the risk, with an odds ratio of 0.38 (95% CI: 0.212–0.626). In the subgroup analysis, individuals under the age of 50 with normal BMI were at higher risk caused by PM2.5, and SO2 was considered more hazardous to women. Meanwhile, the protective effect of CO on women and those with normal BMI was stronger. Successful reduction of long-term exposure to PM2.5, SO2 and NO2 would lead to substantial benefits for decrease the risk of cerebrovascular disease especially for the health of the susceptible individuals.  相似文献   

11.
● Waste refrigerator polyurethane (WRPU) was ingested and biodegraded by mealworms. ● The carbon in WRPU-based frass was lower than that in WRPU. ● Urethane groups in WRPU were broken down after ingestion by mealworms. ● Thermal stability of WRPU-based frass were deteriorated compared to that of WRPU. ● Gut microbiomes of mealworms fed using WRPU were distinct from that fed using bran. Refrigerator insulation replacement results in discarding a large amount of waste refrigerator polyurethane (WRPU). Insect larvae like mealworms have been used to biodegrade pristine plastics. However, knowledge about mealworms degrading WRPU is scarce. This study presents an in-depth investigation of the degradation of WRPU by mealworms using the micro-morphology, composition, and functional groups of WRPU and the egested frass characteristics. It was found that the WRPU debris in frass was scoured, implying that WRPU was ingested and degraded by mealworms. The carbon content of WRPU-based frass was lower than that of WRPU, indicating that mealworms utilized WRPU as a carbon source. The urethane groups in WRPU were broken, and benzene rings’ C=C and C–H bonds in the isocyanate disappeared after being ingested by mealworms. Thermal gravimetric-differential thermal gravimetry analysis showed that the weight loss temperature of WRPU-based frass was 300 °C lower than that of WRPU, indicating that the thermal stability of WRPU deteriorated after being ingested. The carbon balance analysis confirmed that carbon in the ingested WRPU released as CO2 increased from 18.84 % to 29.80 %, suggesting that WRPU was partially mineralized. The carbon in the mealworm biomass ingesting WRPU decreased. The possible reason is that WRPU does not supply sufficient nutrients for mealworm growth, and the impurities and odor present in WRPU affect the appetite of the mealworms. The microbial community analysis indicated that WRPU exerts a considerable effect on the gut microorganism of mealworms. These findings confirm that mealworms degrade WRPU.  相似文献   

12.
● Appreciable H2O2 production rate was achieved in MRCs utilizing NH4HCO3 solutions. ● Carbon black outperformed activated carbon as the catalyst for H2O2 production. ● The optimum carbon black loading for H2O2 production on air-cathode was 10 mg/cm2. ● The optimum number of cell pairs was determined to be three. ● A maximum power density of 980 mW/m2 was produced by MRCs with 5 cell pairs. H2O2 was produced at an appreciable rate in microbial reverse-electrodialysis cells (MRCs) coupled with thermolytic solutions, which can simultaneously capture waste heat as electrical energy. To determine the optimal cathode and membrane stack configurations for H2O2 production, different catalysts, catalyst loadings and numbers of membrane cell pairs were tested. Carbon black (CB) outperformed activated carbon (AC) for H2O2 production, although AC showed higher catalytic activity for oxygen reduction. The optimum CB loading was 10 mg/cm2 in terms of both the H2O2 production rate and power production. The optimum number of cell pairs was determined to be three based on a tradeoff between H2O2 production and capital costs. A H2O2 production rate as high as 0.99 ± 0.10 mmol/(L·h) was achieved with 10 mg/cm2 CB loading and 3 cell pairs, where the H2O2 recovery efficiency was 52 ± 2% and the maximum power density was 780 ± 37 mW/m2. Increasing the number of cell pairs to five resulted in an increase in maximum power density (980 ± 21 mW/m2) but showed limited effects on H2O2 production. These results indicated that MRCs can be an efficient method for sustainable H2O2 production.  相似文献   

13.
● Microwave-assisted catalytic NH3-SCR reaction over spinel oxides is carried out. ● SCR reaction temperature is tremendously lowered in microwave field. ● NO conversion of NiMn2O4 is highly up to 90.6% at 70°C under microwave heating. Microwave-assisted selective catalytic reduction of nitrogen oxides (NOx) was investigated over Ni-based metal oxides. The NiMn2O4 and NiCo2O4 catalysts were synthesized by the co-precipitation method and their activities were evaluated as potential candidate catalysts for low-temperature NH3-SCR in a microwave field. The physicochemical properties and structures of the catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), N2-physisorption, NO adsorption-desorption in the microwave field, H2-temperature programmed reduction (H2-TPR) and NH3-temperature programmed desorption (NH3-TPD). The results verified that microwave radiation reduced the reaction temperature required for NH3-SCR compared to conventional heating, which needed less energy. For the NiMn2O4 catalyst, the catalytic efficiency exceeded 90% at 70 °C and reached 96.8% at 110 °C in the microwave field. Meanwhile, the NiMn2O4 also exhibited excellent low-temperature NH3-SCR reaction performance under conventional heating conditions, which is due to the high BET specific surface area, more suitable redox property, good NO adsorption-desorption in the microwave field and rich acidic sites.  相似文献   

14.
● A 2D finite-element solute transport model, PRB-Trans, is developed. ● PC-PRB can significantly improve the remediation efficiency of PRB. ● PC-PRB can considerably reduce the required PRB dimensions and materials costs. ● The required PRB length decreases with the increase of pipe length, L p. The passive convergence-permeable reactive barrier (PC-PRB) was proposed to address the limitations of traditional PRB configurations. To evaluate the hydraulic and pollutant removal performance of the PC-PRB system, we developed a simulation code named PRB-Trans. This code uses the two-dimensional (2D) finite element method to simulate groundwater flow and solute transport. Case studies demonstrate that PC-PRB technology is more efficient and cost-effective than continuous permeable reactive barrier (C-PRB) in treating the same contaminated plume. Implementation of PC-PRB technology results in a 33.3% and 72.7% reduction in PRB length (LPRB) and height (HPRB), respectively, while increasing 2D horizontal and 2D vertical pollutant treatment efficiencies of PRB by 87.8% and 266.8%, respectively. In addition, the PC-PRB technology has the ability to homogenize the pollutant concentration and pollutant flux through the PRB system, which can mitigate the problems arising from uneven distribution of pollutants in the C-PRB to some extent. The LPRB required for PC-PRB decreases as the water pipe length (Lp) increases, while the HPRB required initially decreases and then increases with increasing Lp. The effect of passive well height (Hw) on HPRB is not as significant as that of Lp on HPRB. Overall, PC-PRB presents a promising and advantageous PRB configuration in the effective treatment of various types of contaminated plumes.  相似文献   

15.
● The co-existing metals in WPCBs has positive catalytic influence in pyrolysis. ● Cu, Fe, Ni can promote reaction progress and reduce the apparent activation energy. ● Ni play better role in promoting WPCB pyrolysis reaction. Waste printed circuit boards (WPCBs) are generated increasingly recent years with the rapid replacement of electric and electronic products. Pyrolysis is considered to be a potential environmentally-friendly technology for recovering organic and metal resources from WPCBs. Thermogravimetric analysis and kinetic analysis of WPCBs were carried out in this study. It showed that the co-existing metals (Cu, Fe, Ni) in WPCBs have positive self-catalytic influence during the pyrolysis process. To illustrate their catalytic effects, the apparent activation energy was calculated by differential model. Contributions of different reactions during catalytic pyrolysis process was studied and the mechanism function was obtained by Šesták-Berggren model. The results showed that Cu, Fe, Ni can promote the reaction progress and reduce the apparent activation energy. Among the three metals, Ni plays better catalytic role than Cu, then Fe. This work provides theoretical base for understanding the three metals’ catalytic influence during the pyrolysis of non-metal powders in WPCBs.  相似文献   

16.
● This study summarizes and evaluates different approaches that indicate O3 formation. ● Isopleth and sensitivity methods are useful but have many prerequisites. ● AOC is a better indicator of photochemical reactions leading to O3 formation. Tropospheric ozone (O3) concentration is increasing in China along with dramatic changes in precursor emissions and meteorological conditions, adversely affecting human health and ecosystems. O3 is formed from the complex nonlinear photochemical reactions from nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs). Although the mechanism of O3 formation is rather clear, describing and analyzing its changes and formation potential at fine spatial and temporal resolution is still a challenge today. In this study, we briefly summarized and evaluated different approaches that indicate O3 formation regimes. We identify that atmospheric oxidation capacity (AOC) is a better indicator of photochemical reactions leading to the formation of O3 and other secondary pollutants. Results show that AOC has a prominent positive relationship to O3 in the major city clusters in China, with a goodness of fit (R2) up to 0.6. This outcome provides a novel perspective in characterizing O3 formation and has significant implications for formulating control strategies of secondary pollutants.  相似文献   

17.
● Electroconductive RGO-MXene membranes were fabricated. ● Wettable membrane channels were established between RGO and MXene nanosheets. ● Hydrophilic MXene reduces the resistance of water entering the membrane channels. ● Water permeance of RGO-MXene membrane is 16.8 times higher than that of RGO membrane. ● Electro-assistance can enhance the dye rejection performance of RGO-MXene membrane. Reduced graphene oxide (RGO) membranes are theoretically more conducive to the rapid transport of water molecules in their channels compared with graphene oxide (GO) membranes, as they have fewer oxygen-containing functional groups and more non-oxidized regions. However, the weak hydrophilicity of RGO membranes inhibits water entry into their channels, resulting in their low water permeability. In this work, we constructed wettable RGO-MXene channels by intercalating hydrophilic MXene nanosheets into the RGO membrane for improving the water permeance. The RGO-MXene composite membrane exhibits high pure water permeance of 62.1 L/(m2·h·bar), approximately 16.8 times that of the RGO membrane (3.7 L/(m2·h·bar)). Wettability test results and molecular dynamics simulations suggest that the improved water permeance results from the enhanced wettability of RGO-MXene membrane and increased rate of water molecules entering the RGO-MXene channels. Benefiting from good conductivity, the RGO-MXene membrane with electro-assistance exhibits significantly increased rejection rates for negatively charged dyes (from 56.0% at 0 V to 91.4% at 2.0 V for Orange G) without decreasing the permeate flux, which could be attributed to enhanced electrostatic repulsion under electro-assistance.  相似文献   

18.
● Reducting the sampling frequency can enhance the modelling process. ● The pyrolysis of HDPE was investigated at three different heating rates. ● The average Ea and k0 were calculated by Friedman, KAS, FWO, and CR methods. ● ANN was employed to predict the HDPE weight loss with the optimal MSE and R2. Pyrolysis is considered an attractive option and a promising way to dispose waste plastics. The thermogravimetric experiments of high-density polyethylene (HDPE) were conducted from 105 °C to 900 °C at different heating rates (10 °C/min, 20 °C/min, and 30 °C/min) to investigate their thermal pyrolysis behavior. We investigated four methods including three model-free methods and one model-fitting method to estimate dynamic parameters. Additionally, an artificial neural network model was developed by providing the heating rates and temperatures to predict the weight loss (wt.%) of HDPE, and optimized via assessing mean squared error and determination coefficient on the test set. The optimal MSE (2.6297 × 10−2) and R2 value (R2 > 0.999) were obtained. Activation energy and pre-exponential factor obtained from four different models achieves the acceptable value between experimental and predicted results. The relative error of the model increased from 2.4 % to 6.8 % when the sampling frequency changed from 50 s to 60 s, but showed no significant difference when the sampling frequency was below 50 s. This result provides a promising approach to simplify the further modelling work and to reduce the required data storage space. This study revealed the possibility of simulating the HDPE pyrolysis process via machine learning with no significant accuracy loss of the kinetic parameters. It is hoped that this work could potentially benefit to the development of pyrolysis process modelling of HDPE and the other plastics.  相似文献   

19.
● Cu addition enhances CH3OH oxidation and alleviates its inhibitory effect on SCR. ● Cu addition improves the activation of SCR reactants in the presence of methanol. ● Damaged structure by more Cu addition decreases specific surface area and acidity. ● Excessive Cu addition would lead to the narrowing of SCR temperature window. Simultaneously removal of NOx and VOCs over NH3-SCR catalysts have attracted lots of attention recently. However, the presence of VOCs would have negative effect on deNOx efficiency especially at low temperature. In this study, copper modification onto Sb0.5CeZr2Ox (SCZ) catalyst were performed to enhance the catalytic performance for simultaneous control of NOx and methanol. It was obtained that copper addition could improve the low-temperature activity of both NOx conversion and methanol oxidation, where the optimal catalyst (Cu0.05SCZ) exhibited a deNOx activity of 96% and a mineralization rate of 97% at 250 °C, which are around 10% higher than that of Cu free sample. The characterization results showed that copper addition could obviously enhance the redox capacity of the catalysts. As such, the inhibition effect of methanol incomplete oxidation on NO adsorption and NH3 activation were then lessened and the conversion of surface formamide species were also accelerated, resulting in the rising of NOx conversion at low temperature. However, excessive copper addition would damage the Sb-Ce-Zr oxides solid solution structure owing to Cu-Ce strong interactions, decreasing the surface area and acidity. Meanwhile, due to easier over-oxidation of NH3 with more Cu addition, the temperature window for NOx conversion would become quite narrow. These findings could provide useful guidelines for the synergistic removal of VOCs over SCR catalyst in real application.  相似文献   

20.
● Fe3O4 NPs increased the biomass and chlorophyll content of hemp clones. ● Fe3O4 NPs penetrated and were internalized by root cells. ● Fe3O4 NPs induced the alteration of metabolite profiles in hemp leaves. ● The psychoactive compound THC in hemp leaves was significantly down-regulated. We investigated the effect of iron oxide nanoparticles (Fe3O4 NPs, ~17 nm in size) on the phenotype and metabolite changes in hemp (Cannabis sativa L.), an annual crop distributed worldwide. Hemp clones were grown in hydroponic cultures with Fe3O4 NPs (50, 100, 200, or 500 mg/L) for four weeks. TEM and ICP-MS were used to determine Fe3O4 NPs uptake and translocation. LC-MS-based metabolomics was employed to explore the deep insight into the effect of Fe3O4 NPs on hemp plants. The results revealed that plant growth enhanced gradually with increasing concentrations of given NPs up to 200 mg/L, which improved the fresh weight and dry weight by 36.13% and 74.68%, respectively, compared to the control. Even at a high dose (500 mg/L), Fe3O4 NPs promoted plant growth, including increased biomass and tissue length. NPs significantly increased the iron and chlorophyll content in plant tissues Increased catalase activity and reduced hydrogen peroxide content in hemp leaves suggested that the Fe3O4 NPs activated the defense system. TEM showed that NPs were abundantly attached to the cell wall and dispersed throughout the root cells. Metabolomics revealed that Fe3O4 NPs induced metabolic reprogramming in hemp leaves, including the up-regulation of carbohydrates and organic acids, and down-regulation of antioxidants, especially tetrahydrocannabinol (THC). The significantly up-regulated metabolites, including peonidin and 2-hydroxycinnamic acid, could be involved in photosynthesis in hemp plants. These results demonstrate the potential of Fe3O4 NPs for promoting hemp growth and decreasing the THC content at low doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号