首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.  相似文献   

2.
This paper illustrates an overview of the past and present MSWM strategies in China. A comparison is made with MSWM in China, and other developed and developing countries to identify and analyze the problems of existing MSWM, and evaluate some effective suggestion to overcome the limitations. Rapid urbanization and economic growth are the main factors of increasing MSW generation in China. The generating MSW has 55.86 % food waste with high moisture contain due to unavailable source separation. Chinese MSWM is dominated by 60.16 % landfilling, whereas incineration, untreated discharge, and other treatments are 29.84, 8.21, and 1.79 %, respectively. In 2014, a total of 604 sanitary landfills, 188 incineration plants, and 26 other units were used for MSWM. With the magnitude of timing, the increasing rate of incineration unit and disposal capacity is higher than the landfill. In 2004–2014, the disposal capacity of landfill and incineration is increased from 68.89 to 107.44 and 4.49 to 53.3 million tons, respectively. However, the heating value in the majority of Chinese incineration plants is 3000–6700 kJ/kg and the inappropriate leachate treatment can be found in 47 % landfill sites. A proper taxation system for MSW disposal is not fully implemented in China, which has a negative impact on overall MSW recycling. From the comparative study of MSWM, it is revealed that the source separation MSW collection, high energy recovery from incineration plants, appropriate leachate treatment, effective landfill location and management, increase waste recycling and proper taxation system for MSW disposal are essential to improve MSWM in China.  相似文献   

3.
The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China.  相似文献   

4.
A study was performed into relations between physical properties of aluminum packaging waste and the corresponding aluminum scraps in bottom ash from three typical incineration processes. First, Dutch municipal solid waste incineration (MSWI) bottom ash was analyzed for the identifiable beverage can alloy scraps in the +2mm size ranges using chemical detection and X-ray fluorescence. Second, laboratory-scale pot furnace tests were conducted to investigate the relations between aluminum packaging in base household waste and the corresponding metal recovery rates. The representative packaging wastes include beverage cans, foil containers and thin foils. Third, small samples of aluminum packaging waste were incinerated in a high-temperature oven to determine leading factors influencing metal recovery rates. Packaging properties, combustion conditions, presence of magnesium and some specific contaminants commonly found in household waste were investigated independently in the high-temperature oven. In 2007, the bottom ash (+2mm fraction) from the AEB MSWI plant was estimated to be enriched by 0.1 wt.% of aluminum beverage cans scrap. Extrapolating from this number, the recovery potential of all eleven MSWI plants in the Netherlands is estimated at 720 ton of aluminum cans scrap. More than 85 wt.% of this estimate would end up in +6mm size fractions and were amenable for efficient recycling. The pot furnace tests showed that the average recovery rate of metallic aluminum typically decreases from beverage cans (93 wt.%) to foil containers (85 wt.%) to thin foils (77 wt.%). The oven tests showed that in order of decreasing impact the main factors promoting metallic aluminum losses are the packaging type, combustion temperature, residence time and salt contamination. To a lesser degree magnesium as alloying element, smaller packaging size and basic contaminations may also promote losses.  相似文献   

5.
Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO2 levels by 3% in comparison with current thermal power plants.  相似文献   

6.
Reduction and recycling initiatives such as producer responsibility and pay-as-you-throw are being implemented in Taiwan. This paper presents a study assessing the impact of recently implemented municipal solid waste (MSW) reduction and recycling management strategies on the characteristics of waste feedstock for incineration in Taiwan. Through the periodic sampling of two typical MSW incineration plants, proximate and ultimate analyses were conducted according to standard methods to explore the influence of MSW reduction and recycling management strategies on incineration feed waste characteristics. It was observed that the annual amount of MSW generated in 2005 decreased by about 10% compared to 2003 and that the characteristics of MSW have changed significantly due to recent management strategies. The heating value of the MSW generated in Taiwan increased yearly by about 5% after program implementation. A comparison of the monthly variations in chemical concentrations indicated that the chlorine content in MSW has changed. This change results from usage reduction of PVC plastic due to the recycling fund management (RFM) program, and the food waste as well as salt content reduction due to the total recycling for kitchen garbage program. This achievement will improve the reduction of dioxin emissions from MSW incineration. In summary, management strategies must be conducted in tandem with the global trend to achieve a zero-waste-discharge country. When implementing these strategies and planning for future MSW management systems, it is important to consider the changes that may occur in the composition and characteristics of MSW over time.  相似文献   

7.
Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems.  相似文献   

8.
The new Xicheng and new Dongcheng districts of Beijing in 2010 were chosen as the research object. Based on the analysis of the current municipal solid waste (MSW) logistics system, the transfer station’s processing capacity and the terminal treatment facilities' conditions of the two new districts and other districts, a MSW logistics system was built using geographic information system (GIS) and analytic network process methods considering transregional treatment. The new logistics (MSW from new Xicheng was collected for Majialou. MSW from old Dongcheng and Xuanwu was collected for Datun and Xiaowuji, respectively) proved to be an improvement with a 10 % less collection fee, 111 % output–input ratio after transfer station (include) and 0.8:4.6:4.6 I:C:L (incineration:compost:landfill). After Nangong, Gaoantun II and Asuwei incineration are established, the output–input ratio of the new logistics will reach 114 %, and I:C:L will reach 3.6:4.2:2.2 which is environmentally friendly and nearer to the 4:3:3 Beijing government target. For a full load of every transfer station, the complement schemes were also presented and contrasted based on GIS analysis. The results have great theoretical and practical significance in transregional treatment and improving resource management level of MSW.  相似文献   

9.
The primary goal of managing MSW incineration residues is to avoid any impact on human health or the environment. Incineration residues consist of bottom ash, which is generally considered as rather harmless and fly ash which usually contains compounds which are potentially harmful for public health. Small quantities of ash (both bottom and fly) are produced currently in Greece, mainly from the healthcare waste incineration facility in Attica region. Once incineration plants for MSW (currently under planning) are constructed in Greece, the produced ash quantities will increase highly. Thus, it is necessary to organize, already at this stage, a roadmap towards disposal/recovery methods of these ash quantities expected.Certain methods, related to the treatment of the future generated ash which are more appropriate to be implemented in Greece are highlighted in the present paper. The performed analysis offers a waste management approach, having 2016 as a reference year for two different incineration rates; 30% and 100% of the remaining MSW after recycling process. The results focus on the two greater regions of Greece: Attica and Central Macedonia. The quantity of potential future ash generation ranges from 137 to 459 kt for Attica region and from 62 to 207 kt for central Macedonia region depending on the incineration rate applied. Three alternative scenarios for the treatment of each kind of ash are compiled and analysed. Metal recovery and reuse as an aggregate in concrete construction proved to be the most advantageous -in terms of economy-bottom ash management scenario. Concerning management of the fly ash, chemical treatment with phosphoric solution addition results to be the lowest total treatment cost and is considered as the most profitable solution. The proposed methodology constitutes a safe calculation model for operators of MSW incineration plants regardless of the region or country they are located in.  相似文献   

10.
This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.  相似文献   

11.
Municipal solid waste disposal in Portugal   总被引:1,自引:0,他引:1  
In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.  相似文献   

12.
Incineration has undergone several technology improvements, reducing air emissions and increasing the efficiency of energy and material recovery; however, there is still a long way to go. To analyze the environmental impacts of waste incineration, this study assessed 15 waste fractions that compose municipal waste in Spain, which are grouped as non-inert materials (plastics, paper, cardboard and organic matter), unburned materials (glass and Al) and ferrous materials. Additionally, this paper evaluates the valorization of bottom ash (BA) to produce steel, aluminum and cement in these recycled/recoverable waste fractions. The results depend on the input waste composition and the heating value (HHV) and showed that ferrous and unburned materials had the worst environmental performance due to the null HHV. The valorization of BA in steel, Al and cement production significantly reduced the environmental impact and the consumption of resources. BA recycling for secondary steel and Al production would improve the environmental performance of the combustion of unburned materials and ferrous materials, whereas the use of BA in cement production diminished the consumption of NR for non-inert materials. This is of great interest for organic matter and PC, waste with a low energy production and high heavy metal and sulfur content.  相似文献   

13.
Previous reports have focused on the emission of coplanar polychlorinated biphenyls (Co-PCBs) which have a toxic mechanism similar to that of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/DFs) released from municipal solid waste (MSW) incineration. Such emissions accounted for a small percentage of all the dioxins (PCDDs/DFs and Co-PCBs) recorded at the toxicity equivalent (TEQ) level. There is, however, very little information about Co-PCBs, such as the quantities being released and their effect on overall environmental pollution. The aim of this research has been to clarify the substance flow of Co-PCBs from MSW incineration processes. The results reveal that whereas the input of Co-PCBs into the MSW incineration facilities in Kyoto City was 0.13–0.29 μg-TEQ per ton waste, the total output of Co-PCBs (the sum of Co-PCBs released from emission gas, fly ash, and bottom ash) was 4.9 μg-TEQ per ton waste. The total output was therefore found to be higher than the total input. Over 90% of the total PCBs were decomposed in the incineration process. In comparing the profiles of congeners and homologues, those in the MSW were found to be similar to those detected in the atmosphere and products containing PCBs, but different from those in the MSW incineration gas. Received: August 26, 1998 / Accepted: March 2, 1999  相似文献   

14.
The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions.This study is designed to estimate the N2O emission factors from MSW incineration plants, and calculate the N2O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N2O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment.The average of the N2O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N2O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N2O emissions from MSW incineration comprised 19% of the total N2O emissions.  相似文献   

15.
This paper presents the experimental research process and results about flue gas purifying of municipal solid wastes (MSW) incineration using in-pipe jet adsorption techniques. MSW incineration was carried out in a fluidized bed test rig, and the flue gas purifying was carried out in an in-pipe jet adsorption test rig. The experimental results are as follows: when the feedstock of activated carbon is 1.6g/Nm(3), the desulfurization efficiency is 83%, the denitrification efficiency is 41%, and the dechlorination efficiency is 27%. The order of purifying effect of the three kinds of adsorbents on acidic gases from MSW incineration is activated carbon>activated bauxite>kaolin. Comparison of adsorption capabilities of the three kinds of adsorbents to heavy metals shows that activated carbon is the best additive to remove Cd, Pb and Cu, kaolin is inferior, and activated bauxite is the worst one. However, activated bauxite is the best additive to remove Hg, and it can remove Cd effectively. PAHs in fly ash are dominated by three-, four-, and five-ringed PAHs, and PAHs in the flue gas mainly include three- and four-ringed PAHs. When the injected quantity of additive is constant, the order of cleaning effect on PAHs is kaolin>activated carbon>activated bauxite. These three kinds of adsorbents have different purifying effects on acidic gases, heavy metals and PAHs in the flue gas from MSW incineration. In general, activated carbon has a better adsorption capability.  相似文献   

16.
Fourteen paper sludge samples were collected at seven representative pulp and paper mills in Japan, and were analyzed to obtain fundamental data on the reuse of paper sludge-incinerated ash as papermaking material. For comparison, incinerated ashes of municipal solid waste (MSW) were collected at MSW incineration plants in Tokyo, and analyzed by similar methods. Elementary and X-ray diffraction analyses revealed that the predominant elements in paper sludge samples are calcium, silicon, aluminum, and magnesium, which are derived from paper fillers, coating pigments, and coagulants used in papermaking and process effluent treatments. Similar results were also obtained for the MSW-incinerated ashes, indicating that major components in the collected MSW are paper-related materials. Incineration of paper sludge around 800°C is recommended in terms of high brightness of the incinerated ash, which has about 60% brightness. Calcium, silicon, and aluminum components in the paper sludge are fused or sintered by heating. Although paper-sludge-incinerated ashes have irregular shape and large particle size distributions, they may be used as papermaking materials after pulverization using a ball mill. The MSW-incinerated ashes have 5%–30% water-soluble fractions and low brightness, and thus incineration conditions must be changed to reuse the MSW-incinerated ash as a papermaking material.Part of this paper was presented at the 68th Research Conference of Japan Tappi, Tokyo, 2001  相似文献   

17.
It is postulated that the current “garbage crisis” is due to a shortage of disposal capacity, not to burgeoning amounts of municipal solid waste (MSW). In support of this, trends in the quantity and composition of MSW, methods of waste reduction, recycling and growth of waste-to-energy capacity are examined to gain insight as to the future course of MSW management in the U.S. over about the next 15 plus years. This is the likely time to install new disposal capacity if pending legislative proposals are passed, that would enable states that provide their own disposal to ban wastes from other states.A new term, the “intensity of waste generation”, is proposed and illustrated, analogous to the intensity of mineral usage. The intensity is decreasing, implying that it is unlikely that waste generation will grow at rates projected by extrapolation or simple macroeconomic assumptions. Some other conclusions are: per capita MSW generation was nearly statistically constant from 1970 to 1984; the content of most forms of packaging in MSW are decreasing; packaging decreases the amount of food residues in MSW; and proposed national recycling targets of about 25% or more are not likely to be achieved, in part because of changes in the composition of MSW. Coupled with likely shortages of labor to process separated waste, it is forecast that there will be some future time when people will not think source separation is worth the bother and recycling will decrease. The future growth of waste-to-energy capacity is projected by assuming that a city will install capacity when others have done so, which leads to a simple quantitative model. The likely effects of impending landfill and incineration regulations are addressed.  相似文献   

18.
At international level LCA is being increasingly used to objectively evaluate the performances of different Municipal Solid Waste (MSW) management solutions. One of the more important waste management options concerns MSW incineration. LCA is usually applied to existing incineration plants.In this study LCA methodology was applied to a new Italian incineration line, to facilitate the prediction, during the design phase, of its potential environmental impacts in terms of damage to human health, ecosystem quality and consumption of resources. The aim of the study was to analyse three different design alternatives: an incineration system with dry flue gas cleaning (without- and with-energy recovery) and one with wet flue gas cleaning. The last two technological solutions both incorporating facilities for energy recovery were compared. From the results of the study, the system with energy recovery and dry flue gas cleaning revealed lower environmental impacts in relation to the ecosystem quality.As LCA results are greatly affected by uncertainties of different types, the second part of the work provides for an uncertainty analysis aimed at detecting the extent output data from life cycle analysis are influenced by uncertainty of input data, and employs both qualitative (pedigree matrix) and quantitative methods (Monte Carlo analysis).  相似文献   

19.
This paper presents the determination of total iron, copper, zinc, chromium, nickel, lead, cadmium and mercury contents in the compost obtained from sorted municipal organic solid waste applying the following methods of sample mineralization: 40% hydrofluoric acid with preliminary incineration of a sample, a mixture of concentrated nitric(V) and chloric(VII) acids with preliminary incineration of organic matter and a mixture of nitric(V) and chloric(VII) acids without sample incineration. The speciation analysis of Tessier was used to estimate the bioavailability of the metals. Elution degrees of the mobile forms of the metals from the compost with 10% nitric(V) acid and 1 mol/dm(3) hydrochloric acid were compared. The contents of the elements in the eluates were determined applying atomic absorption spectrometry.  相似文献   

20.
The presence of paper in municipal solid waste (MSW) interferes with the efficiency of composting plants. The compost feedstock to these plants is between 12% and 27% paper on a dry weight basis, with an initial C:N ratio ranging from 32:1 to 57:1. Tests of the last aerobic biodegradability (LAB) of the type of paper present in paper and cardboard packaging were carried out, following UNE-EN 14046 standards. The results obtained, measured through the quantity of CO2 generated over 45 days, compared with the maximum that could be produced (ThCO2), showed that the presence of paper retards, to a great degree, the biodegradation of organic material in general. Specifically, the presence of papers with a degradation D (%) >60% at 45 days (white (W) and recycled paper (R)) could be allowed, but always in proportions that did not exceed 27% in dry weight. These results can be achieved with an industrial level process, pre-treated by trituration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号