首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS2) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O2 concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg?1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H2S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.  相似文献   

2.
Prior to composting, the composition of palm oil mill wastes were analyzed. Palm empty fruit bunches (PEFB) contained the highest total organic carbon (52.83 % dry weight) while palm oil mill biogas sludge (POMS) and decanter cake (DC) contained higher total nitrogen (3.6 and 2.37 % dry weight, respectively) than the others. In addition, palm oil fuel ash (POFA) had a high amount of phosphorus and potassium (2.17 and 1.93 % dry weight, respectively). The effect of mixture ratio of POMS and other palm oil mill wastes for composting was studied using the mixed culture Super LDD1 as an inoculum. All compost piles turned dark brown and attained an ambient temperature after 40 days incubation. The pH values were stable in the range of 6.9–7.8 throughout the process whereas the moisture content tended to decrease till the end with the final value around 30 %. After 60 days incubation, the mixture ratio of POMS:PEFB:DC at 2:1:1 with the addition of biogas effluent gave the highest quality of the compost. Its nitrogen content was 31.75 % higher than the other treatments that may be a result of growth of ink cap mushroom (Coprinus sp.). This is the first report on the occurrence of this mushroom during composting. In addition, its nutrients (3.26 % N, 0.84 % P and 2.03 % K) were higher than the level of the Organic Fertilizer Standard. The mixed culture Super LDD1 produced the highest activity of CMCase (6.18 Unit/g) and xylanase (11.68 Unit/g) at 9 days fermentation. Therefore, this solid-state fermentation could be employed for production of compost as well as enzymes.  相似文献   

3.
Elongation properties of extruded cornstarch were improved by blending with glycerol. Further blending of starch-glycerol with polyvinyl alcohol (PVOH) resulted in significant improvements in both tensile strength (TS) and elongation at break. Samples of starch-glycerol without PVOH equilibrated at 50% relative humidity had a TS of 1.8 MPa and elongation of 113%, whereas those containing PVOH had a TS and elongation of 4 MPa and 150%, respectively. Dynamic mechanical analysis (DMA) of starch-glycerol-PVOH blends showed that decreases in glass transition temperatures (T g values) were proportional to glycerol content. Scanning electron microscopy (SEM) of fractured surfaces revealed numerous cracks in starch-glycerol (80:20) samples. Cracks were absent in starch-glycerol (70:30) samples. In both blends, many starch granules were exposed at the surface. No exposed starch granules were visible in blends with added PVOH. Starch-glycerol samples incubated in compost lost up to 70% of their dry weight within 22 days. Addition of PVOH lowered both the rate and extent of biodegradation.  相似文献   

4.
Gas cleaning systems of MSW (Municipal Solid Waste) incinerators are characterised by the process employed to remove acid gases. The commonly used technologies for acid gas removal are: (1) dry treatment with Ca(OH)2 or (2) with NaHCO3, (3) semi-dry process with Ca(OH)2 and (4) wet scrubbing. In some recent plants beside a wet cleaning system, a dry neutralization with Ca(OH)2 is used. The goal is to reduce the amount of acid to be removed in the wet treatment and the liquid effluents produced. The influence of these different technologies on the electrical efficiency was investigated by a detailed simulation of a WTE (Waste To Energy) plant with a capacity of about 100,000 t/y of MSW. The effects of the different gas cleaning systems on electrical efficiency were significant. The difference of efficiency between the most advantageous technology, which is dry treatment with NaHCO3, and the least advantageous technology which is semi-dry treatment, is about 0.8%. A simple economic analysis showed that the few advantages of dry technologies can often be lost if the costs of chemicals and the disposal of products are considered.  相似文献   

5.
Composting has been recognized as one of the most cost effective and environmentally sound alternatives for organic wastes recycling from long and composted wastes have a potential to substitute inorganic fertilizers. We investigated the potential of composted tannery sludge for ornamental purposes and to examine the effects of two different composts and concentrations on ornamental Capsicum growth. The two composts were produced with tannery sludge and the composition of each compost was: compost1 of tannery sludge (C1TS) – tannery sludge + sugarcane straw and cattle manure mixed in the ratio 1:3:1 (v:v:v); compost2 of tannery sludge (C2TS) – tannery sludge + “carnauba” straw and cattle manure in the ratio 1:3:1 (v:v:v). Each compost was amended with soil at rates (% v:v) of 0%, 25%, 50%, 75% and 100% (designation hereafter as T1T5, respectively). The number of leaves and fruits were counted, and the stem length was also measured. Chlorophyll content was recorded on three leaves of each harvested plant prior to harvest. Number of leaves and fruits, stem length, dry weight of shoot and roots did not vary significantly between the plants grown in two tannery composts. All the treatments with composted tannery sludge application (T2T5) significantly increased the number of leaves and fruits, stem length and chlorophyll content compared with the control (T1). The chlorophyll content was higher in plants growing in the C1TS compared to C2TS. The results of the present study further suggest that Capsicum may be a good option to be grown on composted tannery amended soil.  相似文献   

6.
Biodegradability under composting conditions is assessed by test methods, such as ASTM D 5338-92, based on the measurement of CO2 released by test materials when mixed with mature compost and maintained in a controlled composting environment. However, in real composting, biodegradation occurs in fresh waste. To clarify this point, the biodegradation of paper and of a starch-based biodegradable thermoplastic material, Mater-Bi ZI01U, was followed by measuring the weight loss of samples introduced either into a mature compost or into a synthetic waste. The weight loss in mature compost was higher at the beginning but tended to decrease; in synthetic waste a first lag phase was followed by an exponential phase. Complete degradation of paper was noticed simultaneously in the two substrates (after 25 days). The bulkier Mater-Bi samples were fully degraded after 20 days in fresh waste, but after 45 days in mature compost. Therefore, the test methods using mature compost as a substrate can possibly underestimate the biodegradation rate occurring in fresh waste, i.e., in real composting plants, and have to be considered as conservative test methods. The test procedure described in this paper seems very suitable as a screening method to verify the compostability of plastic materials in a composting environment.  相似文献   

7.
A respirometric system was used to analyze the biodegradation of high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films in soil under laboratory conditions. The respirometric system consisted of air-conditioning pretraps, a soil reactor, and a carbon dioxide (CO2) posttrap. A 200-g homogeneous soil mixture of all-purpose potting soil : manure soil : sand [1 : 1 : 1 (w/w)] and 1.5 g of PLA plastic films in 1 × 1-cm2 squares was added to each bottle. The respirometers were placed in a 28, 40, or 55°C water bath for 182 days. Treatments (three replicates) included native corn starch (positive control), polyethylene (Glad Cling Wrap; negative control), and three PLA films: Ca-I (Cargill Dow Polymers LLC, monolayer), GII (Cargill Dow Polymers LLC, Generation II), and Ch-I (Chronopol; monolayer). The degree of polymer mineralization was indicated by the cumulative CO2 liberated from each respirometer. The initial average mineralization rate and total percentage mineralized of the PLA plastic films at 28, 40, and 55°C was 24.3, 41.5, and 76.9 mg/day with a 27, 45, and 70% carbon loss, respectively. No decrease in soil pH was observed after 182 days of mineralization. Hence, increase in soil temperature drastically enhanced the biodegradation of PLA plastic films in soil under laboratory conditions (P < 0.0001).  相似文献   

8.
Six strains of Pseudomonas were tested for their abilities to synthesize poly(hydroxyalkanoate) (PHA) polymers from crude Pollock oil, a large volume byproduct of the Alaskan fishing industry. All six strains were found to produce PHA polymers from hydrolyzed Pollock oil with productivities (P; the percent of the cell mass that is polymer) ranging from 6 to 53% of the cell dry weight (CDW). Two strains, P. oleovorans NRRL B-778 (P = 27%) and P. oleovorans NRRL B-14682 (P = 6%), synthesized poly(3-hydroxybutyrate) (PHB) with number average molecular weights (Mn) of 206,000 g/mol and 195,000 g/mol, respectively. Four strains, P. oleovorans NRRL B-14683 (P = 52%), P. resinovorans NRRL B-2649 (P = 53%), P. corrugata 388 (P = 43%), and P. putida KT2442 (P = 39%), synthesized medium-chain-length PHA (mcl-PHA) polymers with Mn values ranging from 84,000 g/mol to 153,000 g/mol. All mcl-PHA polymers were primarily composed of 3-hydroxyoctanoic acid (C8:0) and 3-hydroxydecanoic acid (C10:0) amounting to at least 75% of the total monomers present. Unsaturated monomers were also present in the mcl-PHA polymers at concentrations between 13% and 16%, providing loci for polymer derivatization and/or crosslinking. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

9.
Melt-pressed films of polycaprolactone (PCL) and poly(lactic acid) (PLA) with processing additives, CaCO3, SiO2, and erucamide, were subjected to pure fungal cultures Aspergillus fumigatus and Penicillium simplicissimum and to composting. The PCL films showed a rapid weight loss with a minor reduction in the molecular weight after 45 days in A. fumigatus. The addition of SiO2 to PCL increased the rate of (bio)erosion in A. fumigatus and in compost. The use of a slip additive, erucamide, was shown to modify the properties of the film surface without decreasing the rate of bio(erosion). Both the rate of weight loss and the rate of molecular weight reduction of PCL increased with decreasing film thickness. The addition of CaCO3 to PLA significantly reduced the thermal degradation during processing, but it also reduced the rate of the subsequent (bio)degradation in the pure fungal cultures. PLA without additives and PLA containing SiO2 exhibited the fastest (bio)degradation, followed by PLA with CaCO3. The degradation of the PLA films was initially governed by chemical hydrolysis, followed by an acceleration of the weight change and of the molecular weight reduction. PLA film subjected to composting exhibits a rapid decrease in molecular weight, which then remains unchanged during the measurement period, probably because of crystallization.  相似文献   

10.
Corn starch and zein mixtures (4 : 1 dry weight) were extruded and injection-molded in the presence of plasticizers (glycerol and water). Tensile strength and percentage elongation of the molded plastics were measured before and after 1 week of storage under a dry or humid condition (11 or 93% RH). With 10–12% glycerol and 6–8% water, injection-molded plastics had relatively good tensile properties (20- to 25-MPa tensile strength and 3.5–4.7% elongation). But while exposed to dry conditions (11% RH), the molded plastics lost weight (0.5–1.5% in 7 days) and became very brittle, with significant decreases in tensile strength and elongation. Partial replacement (5–10%) of starch with a maltodextrin (average DE 5) reduced the glass transition and melting temperatures of the starch-zein mixture as well as the dry storage stability. Using potato starch instead of corn starch significantly improved the dry storage stability of the injection-molded starch-zein plastics (18- vs 11-MPa tensile strength). Anionic corn starches with a maleate or succinate group (DS<0.01) produced injection-molded plastics with improved tensile properties and storage stability. Plastics prepared from the starch maleate and zein mixture retained the strength during 1 week of dry storage without a significant change (26-MPa tensile strength and 3.7% elongation after 1 week of storage).Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Journal paper No. J-15561 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2863.  相似文献   

11.
Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 °C/min were found to be CO and CO2, contributing to almost 25% of the paper sludge dry weight loss at 500 °C. The hydrocarbons (CH4, C2H4, C2H6) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 °C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 °C had a calorific value of 13.3 MJ/kg.  相似文献   

12.
The present study was conducted to evaluate the impact of lead toxicity on the growth parameters of spinach and the performance of lead-resistant bacterial isolates under lead stress conditions. Out of four bacterial isolates selected for this study, only two isolates AMB-CD-2 and AMB-CD-4 were selected based on their lead tolerance ability. A polybag experiment was conducted with six treatments and four replications in spinach. The treatments included T1 (RDF + control), T2 (lead acetate), T3 (AMB-CD-2 + lead), T4 (AMB-CD-4 + lead), T5 (AMB-CD-2), and T6 (AMB-CD-4). Results showed that lead contamination significantly decreased plant growth parameters, particularly in the treatment T2 (lead acetate) when compared with other treatments. Similarly, reduced uptake of nitrogen, phosphorus, and potassium (NPK) was recorded in T2. Inoculation with lead-resistant bacteria, AMB-CD-2, significantly improved plant growth parameters (plant height, root fresh weight, shoot fresh weight, root dry weight, shoot dry weight, and root length). The uptake of NPK was higher in T5 (AMB-CD-2) in the absence of lead by approximately 0.81%, 0.37%, and 0.42% than in the control, respectively. Through atomic absorption spectrophotometer analysis, the lead concentration in treatment T2 (control) was about 3.20 mg/g while in treatment T3 (AMB-CD-2 + lead) it was about 1.32 ppm. The 16S rRNA gene sequencing revealed that AMB-CD-2 resembles Brevibacillus parabrevis. The results demonstrate that the lead-resistant bacteria B. parabrevis AMB-CD-2 showed a significant lead reduction of approximately 58.75% compared to the control.  相似文献   

13.
The catalytic decomposition of mixed plastics consisting of polypropylene (PP) and polyethylene terephthalate (PET) has been investigated over titania/silica catalysts at 698 K. The yield of oil produced was about 70%, and the large amounts of C18+ hydrocarbons this contained was from the aromatics in PET. Gas was also produced, including C3–C5 hydrocarbons. The carbon-number fractions in the oil was influenced by the PET/(PP + PET) ratios and the catalyst weight. The titania/silica catalysts could be used repeatedly, and after they had been fouled, could be regenerated. From the Fourier Transform Infrared (FT–IR) spectroscopic data of adsorbed pyridine on the catalyst surface, most of the acid sites of the titania/silica catalysts were found to be Lewis sites where the hydride abstracted from PP pyrolysates react with PET pyrolysates to form oil and gas. Received: July 19, 2000 / Accepted: October 20, 2000  相似文献   

14.
Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO2 accounts showed significantly different results: waste incineration in one network caused a CO2 saving of 48 kg CO2/GJ energy input while in the other network a load of 43 kg CO2/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.  相似文献   

15.
The landfill leachate in Hong Kong usually contains quite high NH4+–N concentration, which is well known to inhibit nitrification in biological treatment processes. A common pre-treatment for reducing high strength of ammonium (NH4+–N) is by an air-stripping process. However, there are some operational problems such as carbonate scaling in the process of stripping. For this reason, some technical alternatives for NH4+–N removal from leachate need to be studied. In this study, a bench-scale experiment was initiated to investigate the feasibility of selectively precipitating NH4+–N in the leachate collected from a local landfill in Hong Kong as magnesium ammonium phosphate (MAP). In the experiment, three combinations of chemicals, MgCl2·6H2O+Na2HPO4·12H2O, MgO+85% H3PO4, and Ca(H2PO4)2·H2O+MgSO4·7H2O, were used with the different stoichiometric ratios to generate the MAP precipitate effectively. The results indicated that NH4+–N contained in the leachate could be quickly reduced from 5618 to 112 mg/l within 15 min, when MgCl2·6H2O and Na2HPO4·12H2O were applied with a Mg2+:NH4+:PO43− mol ratio of 1:1:1. The pH range of the minimum MAP solubility was discovered to be between 8.5 and 9.0. Attention should be given to the high salinity formed in the treated leachate by using MgCl2·6H2O and Na2HPO4·12H2O, which may affect microbial activity in the following biological treatment processes. The other two combinations of chemicals [MgO+85% H3PO4 and Ca(H2PO4)2·H2O+MgSO4·7H2O] could minimise salinity after precipitation, but they were less efficient for NH4+–N removal, compared with MgCl2·6H2O and Na2HPO4·12H2O. COD had no significant reduction during this precipitation. It was found that the sludge of MAP generated was easily settled within 10 min to reach its solids content up to 27%. The other characteristics including capillary suction time (CST) and dry density (DD) of the MAP sludge were also tested. The experimental results indicate that the settled sludge is quite solid and can be directly dumped at a landfill site even without any further dewatering treatment.  相似文献   

16.
A potting experiment was carried out to determine the effects of soil amendments containing polysaccharides and earthworms on a land application system for the purification of animal waste water. The following soil amendments were used: purified Konjak powder (KP, powder containing glucomannan made from the root system of devil's tongue, Amorphophalus rivieri Dur.), crystallized cellulose (CC), and a mixture of the two (MX). These soil amendments were added to the pots, and then Chrysanthemum corondria were planted in the earthworm pots (A pots), the nonearthworm pots (B pots), and the control pots (C pots); the first two plots received primary-treated animal waste water, and the other one received tap water. The following items were then measured: pH, electrical conductivity, chemical oxygen demand (CODMn), total nitrogen (TN), total phosphorus, the volume of drained water from each pots, the height and dry matter weight of plants, and the water permeability into the soil. The MX-A pots, i.e., the pots containing both soil amendments and earthworms, gave good results, especially for water permeability, plant growth, the purification of CODMn, and TN. These results suggest that the presence of soil amendments and earthworms may enhance the improvement of water quality in land application systems using vegetation. Received: December 9, 1998 / Accepted: February 8, 2000  相似文献   

17.
The ability of Pseudomonas aeruginosa ATCC 27853 to grow and synthesize polyhydroxyalkanoates (PHAs) using Tween 20 as the sole carbon source was investigated. Tween 20 could support cell growth and PHA production. The polymer produced from Tween 20 was compared with those produced from its major free fatty acids components: lauric (C12), myristic (C14), and palmitic (C16) acids. Gas-chromatographic analysis of methanolyzed samples and 13C-Nuclear Magnetic Resonance (NMR) showed that the PHAs obtained are composed of even carbon atoms 3-hydroxyalkanoates ranging from C6 to C14, with C8 and C10 as the predominant components. The nature of the carbon sources used had little influence on the composition, but was found to be important in determining the average molecular weight, shorter chain fatty acids yielding higher molecular weight products. Fast Atom Bombardment-Mass Spectrometry (FAB-MS) of partially pyrolyzed samples, coupled to statistical analysis, showed that these PHAs are random copolymers.  相似文献   

18.
The effects of sewage sludge (SL) application on the soil and olive trees (Olea europaea L., cultivar: cornicabra) were studied. The plants were grown in 8.5L pots and subjected to the following treatments: 0, 3.66, 7.32, 14.65, 29.3, 58.6, and 117.2 g SL kg(-1) soil that corresponded, respectively, to 0, 4, 8, 16, 32, 64 and 128 M g ha(-1) dry weight of sewage sludge. The application of SL at the rates 64 and 128 M g ha(-1) produced leaf tip burning and leaf drop after 120 days, although cumulative metal pollutant loading rates was below USEPA and European regulations. This toxicity symptom could be caused by the high sodium levels in the leaves (over 0.19%), which can damage olive tree development. The Na contents of leaves were well correlated with soil Na content (r2: 0.91). In general, SL rates significantly increased the level of Cr, Ni, Cu, Zn, Cd and Pb in soil and plants, but these concentrations were in the normal ranges, except for the Zn concentration, which was over the critical soil content for the rates of 32, 64, 128 Mg ha(-1) but not in the leaves. Results suggested that regulations about the utilization of sewage sludge on agricultural land should consider the limit values for salt, and not only metals, that may be added to soil, in order to minimize the risk of negative effects to plant health.  相似文献   

19.
The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD5 concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36 weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15–2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications.  相似文献   

20.
A co-product stream from soy-based biodiesel production (CSBP) containing glycerol, fatty acid soaps, and residual fatty acid methyl esters (FAME) was utilized as a fermentation feedstock for the bacterial synthesis of poly(3-hydroxybutyrate) (PHB) and medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) polymers. Pseudomonas oleovorans NRRL B-14682 and P. corrugata 388 grew and synthesized PHB and mcl-PHA, respectively, when cultivated in up to 5% (w/v) CSBP. In shake flask culture, P. oleovorans grew to 1.3 ± 0.1 g/L (PHA cellular productivity = 13–27% of the bacterial cell dry weight; CDW) regardless of the initial CSBP concentration, whereas P. corrugata reached maximum cell yields of 2.1 g/L at 1% CSBP, which tapered off to 1.7 g/L as the CSBP media concentration was increased to 5% (maximum PHA cellular productivity = 42% of the CDW at 3% CSBP). While P. oleovorans synthesized PHB from CSBP, P. corrugata produced mcl-PHA consisting primarily of 3-hydroxyoctanoic acid (C8:0; 39 ± 2 mol%), 3-hydroxydecanoic acid (C10:0; 26 ± 2 mol%) and 3-hydroxytetradecadienoic acid (C14:2; 15 ± 1 mol%). The molar mass (Mn) of the PHB polymer decreased by 53% as the initial CSBP culture concentration was increased from 1% to 5% (w/v). In contrast, the Mn of the mcl-PHA polymer produced by P. corrugata remained constant over the range of CSBP concentrations used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号