首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Traunsee is a deep oligotrophic lake in Austria characterised by an artificial enrichment of chloride in the hypolimnion (up to 170 mg L-1) caused by waste disposal of soda and salt industries. Protists were collected monthly over one year, observed alive and after Quantitative Protargol Staining (ciliates) or via epifluorescence microscopy (heterotrophic flagellates). Three sites within the lake (0–40 m depths) were compared to deeper water layers from 60–160 m depths where chloride concentrations and conductivity were increased. In addition, we observed the protozooplankton of two neighbouring lakes, i.e. reference systems, during one sampling occasion. In Traunsee the abundance of ciliates was low (200–36 600 cells L-1) in contrast to high species diversity (at least 60 different species; HS = 2.6) throughout the year. The main pelagic species in terms of abundance were small oligotrichs and prostomatids like Rimostrombidium brachykinetum/hyalinum, Balanion planctonicum and Urotricha spp. throughout the investigation period. Among free-living heterotrophic flagellates, which occurred at densities of 40–2800 cells mL-1, small morphotypes dominated in the pelagial. No differences at the community level between the three lakes could be observed and pelagic ciliates and flagellates seemed not to be affected by increased chloride concentrations or by enhanced conductivity.  相似文献   

2.
Traunsee, a 191 m deep Alpine lake in Austria, is affected by industrial tailings from the soda and salt mining industries since 1883. In 1998 littoral water chloride concentrations ranged between 40 and 85 mg L-1 and the highest conductivity was 560 S cm-1, which is almost double as high as the values reported from the two nearby reference lakes. Chloride concentrations increased towards the location of the industrial salt and soda emission into the lake. Analogously to the chloride gradient, the epilithic littoral diatom flora changes towards the waste inlet. Shifts in the species percentages towards the emission source, a high percentage of taxa with large conductivity tolerances, the presence of a small Achnanthes minutissima Kützing morphotype, and occurrences of taxa focused at habitats of higher electrolyte content, indicate subtle impacts on the epilithic diatom flora. An analysis of the seasonal succession of the epilithic diatoms at the waste inlet compared to a lake intern reference site, reveals that only during the late summer period in 1998 the diatom assemblage at the waste inlet became significantly different, indicating seasonally restricted effects of the industrial emissions.  相似文献   

3.
Since nearly one hundred years Traunsee experiences the import of tons of liquid and solid waste originating from salt and soda production. Today, the lake exhibits chloride concentrations of up to 170 mg L-1 and 19% of the lake floor are directly or indirectly influenced by industrial deposits (ID). Based on the comparison of several microbial parameters in unaffected, directly affected and intermediate lake bottom sediments, the ecological integrity of the lake was evaluated. The highly alkaline ID, which were exclusively colonized by microorganisms, harbored a bacterial community reduced by a factor of 10 in abundance and biomass compared to undisturbed sediment areas within the lake. The bacterial community of ID was furthermore characterized by a reduced content of actively respiring cells (INT-formazan reduction), a lower frequency of dividing cells (FDC) and a significantly reduced cell and biomass production. A 80 to 90% reduction in carbon recycling is estimated for the area exclusively covered by ID. Protists, although occasionally absent from the industrial sediments, were in general found to be less sensitive to the contaminant stress. Differences in alkalinity and dissolved organic carbon (DOC) concentrations of sediment porewaters as well as the total organic content and C/N ratios of sediments partly explain the microbial pattern observed at the various sampling sites. Possible consequences of the continuous industrial tailings for the whole lake ecosystem and the validation of the ecological integrity are discussed.  相似文献   

4.
Morphometric, hydrological and basic physico-chemicalcharacteristics of three deep Alpine lakes, Traunsee,Hallstättersee and Attersee as well as their long-termbahaviour are presented. The deep Alpine lakesHallstättersee and Traunsee have been influenced by saltmining and the traditional salt industry for over 100 years. Waste products from these activities, entering the lakes, have mainlyaffected the chemistry of these water bodies, especially bysubstantially increasing the chloride concentrations up to 170 mg L-1. As a consequence of the increased density, mixing conditions of the lakes were altered. The resulting incomplete mixing led to oxygen depletionin deeper layers. In addition, increased nutrientload from the catchment rised the trophic level in the 70s and 80sof the last century in turn, affecting the oxygen content in thehypolimnion. Finally a situation developed where the risk becamehigh for these lakes to become meromictic induced by humanactivity. In fact, Hallstättersee became facultativelymeromictic. This process was interrupted by increased chlorideinput of more than 30 mg L-1 due to accidental wash outfrom an upstream salt mine rendering Hallstätterseehomogenous in 1978 to 1980 resulting in complete over-turn. Conditions substantially improved in both lakes after miningpractices were altered and restoration measures againsteutrophication were initiated. Chloride and phosphorusconcentrations declined, while oxygen conditions substantiallyimproved in the following years. Conditions in Traunseesubstantially improved and chloride levels near the sedimentdecreased to less than 140 mg L-1. The third lakeconsidered here, Attersee, always remained in a near-naturalstate although some signs of increased nutrient levels becamevisible in the late 1970s. Chloride concentrations of around 3 mgL-1 in this lake can be considered as background levels.Attersee can now serve as a reference site for deep Alpine lakesbecause of its ultra-oligotrophic and pristine nature.  相似文献   

5.
The epiphytic invertebrates found on Potamogetonperfoliatus L. in Traunsee, an oligotrophic Alpine lake inAustria, were investigated in August and October 1998 in orderto study the impact of industrial tailings discharged into thelake. 113 taxa were found, 54 could be identified to thespecies level. Their total abundance varied between ca.190,000 and 1,138,000 ind. m-2 lake bottom area. Thisepiphytic assemblage was dominated by Dreissenapolymorpha and Sida crystallina, which resulted in avery low overall species diversity. Multivariate statisticalanalyses revealed significant differences in the communitystructure between three sites, each of them was located at adifferent distance from the site of industrial waste emission.These differences were interpreted as variations which reflectthe patchiness within highly structured habitats rather thanas being the result of the industrial pollution.  相似文献   

6.
Alkaline tailings from a salt work and a soda plant have been pumped into the southernmost part of Traunsee at Ebensee for many decades. A survey in 1981 showed an accumulation of more than 3 × 106 m3 alkaline mud in the Bay of Ebensee and the existence of slumping structures and turbidites in the profundal zone of the lake. A new survey of the industrial tailings has been performed in 1999. Compared to the earlier survey, the accumulation in the Bay of Ebensee has grown to >4 × 106 m3, which suggests an average yearly input of 90 000 m3. Slumping structures and turbidites document the unstable situation of the tailings near the waste inlet. The lake area occasionally affected by the turbidity currents in the profundal zone has increased to 19%. Within the central profundal area these tailings reach <1 m in thickness.  相似文献   

7.
In order to analyse potential influences of soda industryeffluents on the ecological integrity of Traunsee (TS) weinvestigated the fish community of the lake in comparison witha reference lake (Hallstättersee HS) and used a reconstructionfrom the (older) literature concerning the original speciescomposition of Traunsee. Published `Index of Biotic Integrity(IBI)' metrics were considered to be of limited value due tothe relatively low species number in the oligotrophic, Alpinelake. Therefore we included, in addition to speciescomposition, studies on egg distribution, larval fishdensities, life-history parameters (i.e. growth, maturity,fecundity, age and size composition), stress levels and heavymetal content of the dominant whitefish (Coregonuslavaretus), as well as overall fish density and biomass (usinghydroacoustics) to assess the ecological status of the fishcommunity. Two of the original 18 species have disappearedfrom the lake, presumably in connection with the introductionof non-native eel (Anguilla anguilla) and theconstruction of a power plant in the outflow. Silt from grindedlimestone together with highly alkaline pore waters is emittedvia industrial wastewater from Sodaworks and covers part of thelake bottom. We observed that eggs of whitefish were spawnedmainly in the main inflowing river and close to the shore, thusavoiding the silty areas and making the anticipated damage tothe reproductive potential of whitefish neglectable. This wascorroborated by larval surveys done weekly on both lakes fromJanuary to May, which showed halve the density of whitefishlarvae in TS compared to HS. Estimates of potentially spawningfish from hydroacoustic surveys resulted in a ratio of 1(TS) :3 (HS). Analysis of whitefish revealed that they are growingfaster in TS and have higher fecundity leading to somecompensation of lower abundance. High levels of fishing in TSmight have led to this pattern and to depressed yields asindicated by the age composition. Level of oxidative stress andheavy metal content were not discernible from the referencelake. Therefore we concluded that negative impacts on theecological status of the fish community resulted from fisheriesmismanagement and a power plant situated in the outflow of thelake, considered to have damaged spawning places for somespecies, but not from soda industry effluents.  相似文献   

8.
The influence of industrial tailings on the biological integrity of the phytoplankton was assessed from annual measurements of photosynthetic rates in the alpine lake Traunsee. The mean annual integral production of 21 mmol C m-2 d-1 corresponded to the oligotrophic nature of the lake. Effects of effluents were tested by comparing photosynthesis at a station close to the industrial outlet (EB) and at a reference site with a maximum depth of 190 m (VI). Between-site optical properties (vertical attenuation coefficient, euphotic depth) were statistically significant different. The euphotic zone at the impacted station was on average 2 m shallower than at the reference site, owing to turbidity emanating from the industrial plant. The adaptation to low light intensities by the algal community at this station was evident from a high maximum light utilisation coefficient (* at low light saturation (E K). Algae at the deep reference site were photosynthetically less efficient but adapted to high light intensities. Photosynthetic adaptation to different light climates in the euphotic zone without significant quantitative biomass alterations at the impacted site gave a clear signature of biological integrity of the phytoplankton in the oligotrophic Traunsee.  相似文献   

9.
The abundance and photosynthetic activity ofpicocyanobacteria in the oligotrophic alpine lake Traunseewere measured at a station located close to the outlet ofindustrial soda waste and at a mid-lake reference stationduring spring, 1999 through to autumn, 2000.Picocyanobacterial numbers measured by flow cytometry inTraunsee (0.7–13.2 × 104 ml-1) were comparable tothose of other oligotrophic lakes, and there was nosignificant difference between the contaminated and thereference sampling location. Picoplankton (<2 m)photosynthetic rates measured in vitro by the 14C-technique were significantly reduced at the contaminated siterelative to the reference station at low photosyntheticallyavailable radiation (10 E m-2 s-1), while nodifference between these two stations was found at moderatelyhigh light intensity (100 E m-2 s-1). Theinvestigation was complemented by laboratory experiments withcultured picocyanobacteria. Three Synechococcus spp.strains were exposed to water taken from either of the twoTraunsee stations and from a control station located inneighbouring Attersee. Cell-specific photosynthetic activitymeasured by 4-h in vitro incubations revealed no significantdifference among the three stations investigated. Growthrates of the same three Synechococcus spp. strains weremeasured by flow cytometry over several days in thelaboratory. One strain, in particular, was sensitive to watertaken from the contaminated site; growth rate of this strainwas significantly reduced, relative to when exposed to watertaken from the reference station. Taken together, our resultsdemonstrate that picocyanobacteria are highly sensitivebioindicators of contaminant stress. The overall impact ofthe emissions from the industrial outlet on thepicocyanobacteria was, however, relatively minor.  相似文献   

10.
Ecological Integrity: Concept,Assessment, Evaluation: The Traunsee Case   总被引:2,自引:0,他引:2  
Definitions and concepts relevant to the evaluation of theEcological Integrity of lakes are discussed herein. Theirapplication to Traunsee, a deep lake located in the AustrianAlps which is affected by wastes of salt- and soda-producingindustries, is evaluated, based on 13 contributions published inthis special issue of Water, Air, and Soil Pollution.: Focus.  相似文献   

11.
The absence of Potamogeton lucens L. in an area of Traunsee, Austria, which is heavily impacted by industrial sludges was related to these deposits. The hypothesis that P. lucens L. is affected by the industrial tailings was confirmed by growth experiments of the translocated plants in the field. At the unpolluted reference site of the lake, the plants grew better, they were longer and produced more leaves than at the emission site.  相似文献   

12.
The aim of this study was to determine a suite of four metals (Fe, Mn, Zn, Cu) in the sediment, porewater and a pioneer plant (Juncus bulbosus) of Lusatian lignite mining lakes in eastern Germany. An attempt was made to understand the factors which affect element concentrations in the above- and below-ground biomass of Juncus bulbosus in an extreme environment. Water samples, sediments, porewater and plant material collected from two different mining lakes dominated by Juncus bulbosus species were analyzed for their elemental content. Additionally, scanning electron microscopy (SEM) and an energy-dispersive X-ray (EDX) detector were used to follow the internal metal distribution in the roots of Juncus plant. Results showed that sediment and porewater element concentrations in the lakes decreased in the order Fe > Mn > Zn and Cu. All the four elements were higher in the roots than in above-ground tissues, suggesting that iron plaque induced on roots under anaerobic conditions served as a metal reservoir, but not as an ultimate mechanism to control metal concentrations in the above-ground tissues. SEM and EDX analyses revealed that the rhizodermis, exodermis and endodermis cells regulate the traffic of transition metals and therefore avoid excess levels that are toxic to the plant in acidic mining-impacted lake sediments.  相似文献   

13.
Measurements of the cosmogenically-produced 35S, a radioisotope of sulphur (t1/2 = 87 days), are reported for the Ned Wilson Lake watershed in Colorado. The watershed contains two small lakes and a flowing spring presumed to be representative of local ground water. The watershed is located in the Flattops Wilderness Area and the waters in the system have low alkalinity, making them sensitive to increases in acid and sulphate deposition. Time series of 35S measurements were made during the summers of 1995 and 1996 (July–September) at all three sites. The system is dominated by melting snow and an initial concentration of 16–20 mBq L-1 was estimated for snowmelt based on a series of snow samples collected in the Rocky Mountains. The two lakes had large initial 35S concentrations in July, indicating that a large fraction of the lake water and sulphate was introduced by meltwater from that year's snowpack. In 1995 and 1996, 35S concentrations decreased more rapidly than could be accounted for by decay, indicating that other processes were affecting 35S concentrations. The most likely explanation is that exchange with sediments or the biota was removing 35S from the lake and replacing it with older sulphate devoid of 35S. In September of 1995 and 1996, 35S concentrations increased, suggesting that atmospheric deposition is important in the sulphate flux of these lakes in late summer. Sulphur-35 concentrations in the spring water were highly variable but never higher than 3.6 mBq L-1 and averaged 2 mBq L-1. Using a simple mixing model, it was estimated that 75% of the spring water was derived from precipitation of previous years.  相似文献   

14.
The MAGIC model was calibrated to 143 lakes in Sweden, all of which are monitored in Swedish national monitoring programmes conducted by the University of Agricultural Sciences (SLU). Soil characteristics of the lake catchments were obtained from the National Survey of Forest Soils and Vegetation also carried out by SLU. Deposition data were provided by the Swedish Meteorological and Hydrological Institute (SMHI). The model successfully simulated the observed lake and soil chemistry at 133 lakes and their catchments. The fact that 85% of the lakes calibrated successfully without being treated in an individual way suggests that data gathered by the national monitoring programmes are suitable for modelling of soil and surface water recovery from acidification. The lake and soil chemistry data were then projected into the future under the deposition scenario based on emission reductions agreed in the Gothenburg protocol. Deposition of sulphur (sea salt corrected) was estimated to decrease from 1990 to 2010 by 65–73%; deposition of nitrogen was estimated to decrease by 53%. The model simulated relatively rapid improvements in lake water chemistry in response to the decline in deposition from 1990 to 2010, but the improvements levelled off once deposition stabilised at the lower value. There was a major improvement of simulated lake water charge balance acid neutralising capacity (ANC) from 1990 to 2010 in all lakes. The modelled lakes were divided into acidification sensitive and non-sensitive. The modelled sensitive lakes are representative of 20% of the most sensitive lakes in Sweden. By 2010, the ANC in the sensitive lakes was 10 to 50 μeq L-1 below estimated pre-industrial levels and did not increase much further from 2010 to 2040. Soils at the majority of the modelled catchments continued to lose base cations even after the simulated decline in acid deposition was complete, i.e. after the year 2010. Based on this model prediction, the acidification of the Swedish soils will in general not be reversed by the deposition reduction experienced over the last 10 years and expected to occur by the year 2010.  相似文献   

15.
This study is based on a Finnish lake survey conducted in 1995, a dataset of 874 statistically selected lakes from the national lake register. The dataset was divided into subgroups to evaluate lake water-catchment relationships in different geographical regions and in lakes of different size. In the three southernmost regions, the coefficients of determination in multiple regression equations varied between 0.40 and 0.53 for total nitrogen (TN) and between 0.37 and 0.53 for total phosphorus (TP); the best interpreters were agricultural land and water area in the catchment. In the two northernmost regions, TN concentrations in lake water were best predicted by the proportion of peatlands in the catchment, the catchment slope, and TP concentrations by lake elevation and latitude. Coefficients of determination in multiple regression equations in these northern regions varied between 0.39 and 0.67 for TN and between 0.41 and 0.52 for TP. For all the subsets formed, the best coefficients of determination explaining TN, TP, and total organic carbon (TOC) were obtained for a subset of large lakes (>10 km2), in which 72–83% of the variation was explained. This was probably due to large heterogeneous catchments of these lakes.  相似文献   

16.
Traunsee, an oligotrophic Alpine lake, has suffered from inputsof industrial tailings (soda- and salt-mining industries) forseveral decades. The effects of the industrial sludges on thespatial distribution of the littoral and profundal invertebratefauna was investigated along three transects at five dates. Inthe littoral zone, no negative impacts were found. A distinctgradient in faunal composition and diversity was, however,observed along a profundal transect relative to the distance fromthe waste emission. Near the industrial input, the enhanced pH,the substrate instability, and the poor sediment quality forsubstrate- and deposit-feeders were the main factors that loweror prohibit colonization of the industrial sludges. Along atransitional zone between the waste emission and the deepestbasin, recolonization was delayed, but did occur as soon aslayers of a few mm natural sediment seal the sludge. Mobile,epibenthic organisms are the first to settle these areas, whereasrecolonization by tube-building oligochaetes and chironomidsrequires thicker sealings of the industrial sludges. Differencesin the abundance of benthic invertebrates at different profundalsites were not only related to the waste emission, but also tothe influence of the main tributary, the River Traun. Theenhanced availability of allochthonous organic matter wasprobably responsible for high densities of tubificids near theinlet in the South of Traunsee. Moreover, a higher proportion oftolerant oligochaete and ostracod species in the lower profundaloutside the influence of the industrial tailings was interpretedas reflecting the increased trophy of Traunsee in the 1970s,which forced sensitive species to shift to the upper profundalwhen the oxygen climate deteriorated.  相似文献   

17.
Microbial consortia of composite biofilms, grown in surface water of acidicmining lakes near Lauchhammer, Germany, were investigated. The red-brown colored lake water was acidic (pH 2.5), had high concentrations of Fe(III), Al(III), and sulphate and low concentrations of dissolved organic matter. As a result the abundance of bacteria in the lake is with 104 cells mL-1 rather low. One input of organic material into the lake are autumnal leaves from trees, growing in the lakeside area. From aliquots of unfixed birch leave biofilms the 16S rRNA genes were amplified by PCR and community fingerprints were determined by single-strand conformation polymorphism (SSCP) analysis. Specific bands within the fingerprints were extracted from SSCP gels and sequenced for the taxonomical affiliation.These results were compared with those from the second type of biofilms which were grown on sterile substrata, floating submersed in surface waters of the lakes. By excising the bands from the gel and sequencing the individual bands bacterial taxa, common to both types of biofilms, were found but also some, which were only present in one type of biofilm. Ultrathin sectioned biofilms often showed bacteria associated with electron dense particles as main inorganic constituents. Elemental microanalysis by energy dispersive X-ray analysis (EDX) revealed them to contain iron, sulfur and oxygen as main elemental fractions and electron diffraction ring pattern analysis classified them to be schwertmannite. These bacteria and their interactions with each other as well as with the inorganic minerals formed in this lake generally is of great interest, in order to use these results for bioremediation applications.  相似文献   

18.
The ecological integrity of a lake as a whole can only beassessed through an adequate sampling strategy. Spatialheterogeneity of phytoplankton as well as vertical andhorizontal variability of physical and chemical variables wereestimated from 57 stations at four seasons differing in theirhydrological regime. Resolution of grid positions, located byGPS, was 250 m near the impact site, 500 m for the southernpart of the lake, and 1000 m in the northern part. Data areanalysed by conventional gridding methods as well as in threedimensions with a novel GIS-technique. Horizontal large scaledifferences in several variables are associated withhydrological situations. Local variability in the southern baywas due to input of industrial tailings at times. Spatialvariation of phytoplankton biomass estimated as chlorophyll-aand relevant associated environmental variables were analysedusing a graphical multimetric approach. With this technique,the directly impacted area can be evaluated relative to theremaining part of the lake. The lake is then compared with tworeference lakes, one within the same catchement, the other ina different water-shed. An index of ecological integrity wasdeveloped describing multimetric intra- and interspecific lakevariability. The final index was used to describe the statusof lake water quality relative to a `undisturbed' referencelake. Results showed that Traunsee is ecologically intactalthough its chemistry differs substantially from an`external' reference.  相似文献   

19.
The process of eutrophication in form of intense plant growth has been observed in some lakes and water streams at the Plitvice Lakes National Park in central Croatia. Here we investigate whether this phenomenon is a consequence of anthropogenic pollution or due to naturally produced organic matter in the lakes. We applied chemical analysis of water at two springs and four lakes (nutrients, dissolved organic carbon (DOC), trace elements) and measurements of surface lake sediments (mineral and organic fraction analyses, trace elements) in four different lakes/five sites. The chemical composition of water does not indicate recent anthropogenic pollution of water because the concentrations of most trace elements are below detection limits. The concentrations of DOC and nutrients are slightly higher in the area of increased eutrophication-plant growth. Also the content of organic matter in the sediment is at the highest level in areas with highest C/N ratio indicating that the organic fraction of this sediment is mainly of terrestrial origin. There is no significant difference among the trace element concentration in the upper segment of all cores, deposited approximately during last 50 years when higher anthropogenic influence is expected due to development and touristic activity, and the lower part of the cores, corresponding to the period approximately 100–200 years before present. The content of trace elements and organic matter in sediments decreases from the uppermost lake downstream. According to our results there is no indication of recent anthropogenic pollution in water and sediment. Higher concentrations of DOC in water as well as phosphorus and some other elements in the lake sediment can be a consequence of input of natural organic matter to the lake water.  相似文献   

20.
A chemical survey of 69 high-altitude lakes in seven national parks in the western United States was conducted during the fallof 1999; the lakes were previously sampled during the fall of 1985, as part of the Western Lake Survey. Lakes in parks in the Sierra/southern Cascades (Lassen Volcanic, Yosemite, Sequoia/Kings Canyon National Parks) and in the southern RockyMountains (Rocky Mountain National Park) were very dilute; medianspecific conductance ranged from 4.4 to 12.2 S cm-1 andmedian alkalinity concentrations ranged from 32.2 to 72.9 eqL-1. Specific conductances and alkalinity concentrations were substantially higher in lakes in the central and northernRocky Mountains parks (Grand Teton, Yellowstone, and GlacierNational Parks), probably due to the prevalence of more reactivebedrock types. Regional patterns in lake concentrations of NO3 and SO4 were similar to regional patterns in NO3 and SO4 concentrations in precipitation, suggestingthat the lakes are showing a response to atmospheric deposition.Concentrations of NO3 were particularly high in Rocky Mountain National Park, where some ecosystems appear to be undergoing nitrogen saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号